DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 9
Inexact Proximal Point Framework
Lecturer: Jiaming Liang October 5, 2023

1 Proximal point method

We are interested in solving

min{¢(z) := f(z) + h(x)}
e h is closed and convex;
e f is closed and convex, domh C dom f;

e the optimal set X, is nonempty.

Algorithm 1 Proximal point method

Input: Initial point x¢p € dom h and constant stepsize A > 0
for £ > 0 do

Solve zj11 = argmin yern {¢(z) + 55 ||z — 2]}
end for

Theorem 1.

1 2
- *<7 — Lx
Ber) = ¢ < gy lleo —

Proof. 1t follows from the optimality of x4 that for every x € dom h,

1 1 1
o) + ﬁ”ﬂf — ail® > d(wpr1) + ﬁ\lwkﬂ — a|® + 5\\9? — g |

Taking x = xj, we have
1
(k) > d(Tpy1) + X"mk“ — z||?,
and hence this is a descent method. Taking x = z,, we have

1

1 1
bs + ﬁ”l‘k —z.|* > d(apy1) + ﬁ”@c—kl —zi|® + o [ Zpr1 — 2] |?

Rearranging the above inequality, we obtain

1 1
Bakar) = b < o5 llan — wull? = llowrs — @l
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Summing the resulting inequality and using the descent property, we have

i 1 1 1
Klp(ar) — 4] < ;[qb(xi) = ¢ < oyllwo = @l = rllek = @l < oy fleo — 2.

Therefore, the conclusion of the theorem follows. O

2 Inexact proximal point framework

The proximal point method is more conceptual than practical. In practice, we usually design
algorithms to approximate the solution x,; to the proximal subproblem. Algorithms solving the
proximal subproblem approximately can be described and analyzed under the inexact proximal
point (IPP) framework.

2.1 Algorithm

Algorithm 2 Inexact proximal point framework

Input: Initial point 2y € dom h and scalar o € (0, 1]
for £k > 1 do

Step 1. Choose A\ > 0 and d; > 0.

Step 2. Compute (z, Tk, £r) such that

@ S aekgb(jk)a (1)
k

|k — Zx||® + 2Mkek < ol|Zk — D1 ]|® + O (2)

end for

The inclusion (1) in the IPP framework means

Tp— 1

U = Tk €0, <¢>(-) A —ﬂfk—1||2> (Zk)-

In contrast to the PPM, the above inclusion provides two relaxations v, and €. If both 7 = 0
(i.e., T = 1) and e = 0, then

0ed (¢<-> 4ol —xklw) (e).

i.e., the proximal problem is solved exactly

. 1
Ty = argmin gepn § d(z) + —— |l — zp_1|* ¢ .
2k
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Moreover, the inequality (2) is automatically satisfied
H{L‘k — .kaQ + 2 e = Hf}kHQ + 2 e =0 < UHi'k - .%'kfluz + 0.

Hence, the IPP framework becomes the PPM.

2.2 Convergence
Lemma 1. Define vy, = (xp—1 — xx)/\x and

Lyp(x) = ¢(k) + (vk, ¥ — Tpp) — e
Then, the following statements hold:

(a) for every x € domh, we have
Ii(z) < o(x)

(b) the following inequality provides an upper bound for the optimality gap for the proximal prob-
lem
O .

$(F1) + =13k — a1 |? — (xr) — = l|on — wp1 | < o lip — zpa | + S v

2 2 T 2

(c) X
T) = argmin {)\kfk(a:) R in — $k1H2} ;
(d)

l1—0, .
Ha;k — xk,1H2 — 5k

. 1 _
min {)\kl“k(x) + 5”-1' - xleZ} > )\kﬁb(xk) +

Proof. (a) It follows from (1) and the definition of I'y that
d(x) > d(T) + (g, v — &) — e, = Li(x), Vo € domh.
(b) Taking = = xj, in the inequality in the proof of (a) and rearranging the terms, we have
o(x) > ¢(31) + (v, — Tp) — g, Vo € domh.

. . . 1 11~ 2 . . . 1 2
Adding a quadratic function 53-||Zx — -1 and subtracting a quadratic fucntion 55—z —zg—1[|%,
we have

1 1
() + KH@’“ — 1 |® — () — KH% — zp |

1 1
<7||«Tk_xk % = ok — 2p_1)|? + ~—(Th_1 — Tk, Tt — Tk) + €k

2 N, M
1
~on — ||k — wx|* + e
1)
—2A Hmk xp_1]|” + v
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where the last inequality follows from (2).
(c) This is obvious in view of the definition of I'.
(d) For any = € dom h, it is easy to see that

. 1 1

min WD) + gl = ) = ATu(en) + gl — i P
1 2 1 2
= Melk(2) + 5z — e |” = 5 llz — 2|

2 2
Taking x = j in the above identity, we have
: 1 2 - L. 9 1 2
min 3 Aele(2) + S lle = zp-al” 0 = ML) + S 18k — 2 |” = S 13, —
- 1, . -
= )\kgf)(l‘k) + 5 (ka — $k—1”2 — ”ﬂfk — $k”2 — 2)\k5k)

1—0

> X\ed(Zg) + 1Z, — zp—1l” — Ok,

where the second identity is due to the definition of I'y, and the inequality is due to (2). O

Lemma 2. For k > 1, the IPP framework satisfies

1—0

Me[p(T) — d] + 5

s 1 1
13k — apal” < 0 + Pl z? - ek = 2.
Proof. Using Lemma 1(a) and (d), we have
1 2 1 2
Meb (@) + 22— [P = MDue) + ¢ 2 — |

. 1 1
= min {)\kfk(x) + §||93 - 9514—1”2} + §HJU — zp|)?

l—0

N N 1
> Me@(Tr) + |k — zp—1]]* — 0k + §||Jf — g ? (3)

It is worth noting that the above inequality generalizes Lemma 1(b) since rearranging gives

- 1. o .
¢(@1) + 51Tk — 21| — 9(2) — sl — ap | < 5= 13k — wea [P + = — 5[z — 2l
2\ k k k k

Take x = z, in (3), we have

1—0
2

1 B B 1
PYRGRES §||£L“1c—1 — z||* > Mg (Fg) + | — zp—1]|* — Ok + §||56k — x|

Therefore, the lemma follows from rearranging the terms. O
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Theorem 2. Let

Then, we have
k
> iz10i + [z — x*HQ

(b(jk) — ¢x < A 2

Proof. Summing the inequality in Lemma 2 from k& = 1 to k and dividing by Ay, we have

Y AGGE) 0] S 61 :
< — Tyl
- < S g —

It follows from the convexity of ¢ and the definition of Z; that

SF L N[6(E) — 6]
Ag '

¢(£k) — ¢« <
The conclusion immediately follows from the above two inequalities.

Corollary 1. If A\, = X and d; = 0 for every k > 1, then

: . |xo — 212
) — o, < L
min o) — ¢ < Torp

2.3 Proximal gradient method as an example

In this subsection, we assume f is L-smooth, then we show that the proximal gradient (PG) method

with stepsize A\, < o/L for some o € (0, 1] is an instance of the IPP framework. We begin with an

iteration of the PG method

. 1
xp = argmin {ﬂf(x; Tp—1)+ h(z) + KHx — xk_1‘|2} .
TzER™ k

The optimality condition is

LTk—1 — Tk

: € Oy (- xp—1) + h(-)|(z),
k

which means for every x € dom h,

¢(z) > Ly(x;2K-1) + h(2)
> lp(xp; xp—1) + h(xy) + )\1k<$k—1 — Ly & — Tp)

1

= ¢(z) + r(xkz—l — Tj, T — T) — €k
k
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where the first inequality is due to the convexity of f and ¢, is defined as
ek = flag) — Lp(xp; Tp—1).
Hence, PG satisfies the inclusion (1) of IPP with
Tp =z, ek = f(zr) —Ly(TK;T6-1), Ok =0.

Moreover, it follows from the assumption that f is L-smooth that

L L, _ o .
er = flar) — Cp(zpian—r) < Slloe — ap-1 = S1Z — zi-1* < s 13 — 21|
2 2 2k
Hence, the inequality (2) of IPP is also satisfied. Now, we have shown PG is an instance of IPP.
Next, let us show the convergence of PG using the general convergence guarantee of IPP. It
follows from (4) and L-smoothness of f that

1
d(xp—1) > Ly(rp; op—1) + h(xk) + rkak —zpq|?

1L
> olon) + (3~ 5 ) low = P
2—o0 9 1 9
> P(zy) + " lzr — 2p—1ll” > @(ar) + TAkak —z1|%,

where the second last inequality is due to Ay < /L and the last inequality is due to o < 1. Suppose
A = A = 0/L, then it follows from Corollary 1 that

I

. - |lzo — 2 L||zg —
— @k = i) — Qs < =
o(xr) — ¢ @lgkaﬁ(fv ) — ¢ SNE 5ok

I
3 Monotone operators and generalized IPP framework

Consider a point-to-set map 7', and our goal is to find a point x, such that zero belongs to the set
T(x), ie.,
0€T(xy).

This task generally includes optimization and other problems with convex structures.
Definition 1. Consider a point-to-set map T : R™ = R"™, the graph of T is

GrT ={(z,v):v e T(x)}.
Definition 2. T' is monotone if for every (z,v) € GrT and (z,0) € GrT, we have

(Z — 2,0 —v) > 0.
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Figure 1: maximal monotone

Definition 3. T is mazimal monotone if T is monotone and for any monotone T such that Gr'T C
CrT, we have T =T (i.e., GrT = GrT).

Examples

(a) f is a closed convex function then 7' = 9f is maximal monotone. Also, x, is an optimal
solution to min{f(z) : z € R"} <= 0 € 0f(z«) = T (x+).

(b) @ C R™ is a closed convex set, then T'= Ng = 0l is maximal monotone where

Ng(z) ={n:(n,z —x) <0,VZ € Q}.

Figure 2: nonmonotone

3.1 Generalizd proximal point method

Our goal is find z, such that
0 € T(z),

which is equivalent to for some A > 0
0 € AT'(24).
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Figure 3: monotone-but-not-maximal

This is the same as
2 € 2o + AT(24) = (I + AT)(24),

and hence the fixed point problem
Zx = ([ -+ )\T)71<Z*).
The following lemma indeed shows that the inverse map (I + AT)~! is contracive and unique.

Lemma 3. Assume T is monotone and A > 0. Let
z1 € (I + )‘T)(wl)7 22 € (I + AT)(w2>7 (5)

then
w1 — wal| < 21 — 22 (6)

The mapping (I + NT)~! is unique. As a result, there exists a unique z, such that 0 € T(z,).

Proof. Tt follows from (5) that
21 —wy € AXT(wy), 22 —wa € X\T'(w3).
Since XT' is monotone, we have
(z1 — w1 — (22 — wa), w1 —wa) >0,

and hene
(21 — 22, w1 — w2) > [lwy — wal*.

It follows from the Cauchy-Schwarz inequality that (6) holds. Assume for the contrary that wy # wo
and
z€ I+ AT)(wr), z€ I+ NT)(ws).

Clearly, it follows from (6) that
[wr — wa| <z = z[| = 0.
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So

W] = Wo.

Moreover, z, is a unique fixed point
2o = (T +2T) 7 (2,).
Following the argument before this lemma, we can show that 0 € T'(z,).

The fixed-point iteration
zp = (I 4+ NT) Hapey),

i.e.,
xp—1 € (L + NT)(xp),

motivates us the following proximal point-type method

Tp—1 — Tk

T .
" € T(xy)

Algorithm 3 Generalized proximal point framework

Input: Initial point x¢g € domh
for £ > 1 do

Step 1. Choose A > 0.

Step 2. Compute z such that

Thol T Tk Pigy).

end for

Lemma 4. For every k > 1, we have

1
k-1 = 2a]|* = S llzw — 2.
2

N

1 2
<
2ka ij—lH >

Proof. Clearly, we have

Thl 7Tk Play), 0€ T(ay).
Ak
It follows from Definition 2 that
<xk_1 — Tk zy) >0,
Ak

and hence
(Th—1 — 2, Tf — 24) > 0.
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This is equivalent to

1
k-1 = @ul® = 5 llok — .
2

N

1 2
Sz — 21|12 <
Qka rp—1I” <

Theorem 3. There exists i < k such that

o _ llwo — a]?
[Jvil|* < TNk
where
v — Ti—1 — T
) )\1

3.2 Generalizd inexact proximal point framework

We introduce the e-enlargement of a monotone operator, which can be viewed as a generalization
of the e-subdifferential.

Definition 4. The e-enlargement of T denoted by T¢ is defined as
T5(z2) ={0:(x —z,0 —v) > —¢, V(z,v) € GrT}.

Now, we are ready to present the generalized IPP framework.

Algorithm 4 Generalized inexact proximal point framework

Input: Initial point 29 € dom h and scalar o € (0,1)
for £ > 1 do

Step 1. Choose A\ > 0 and d; > 0.

Step 2. Compute (zy, Tk, k) such that

Tp—1 — Tk
Ak
||xk—.7~3k||2+2)\k5k < O-ij_xk_lu2+5k- (7)

€ Tc* (:Z‘k),

end for

3.3 Pointwise convergence
The following lemma is a generalization of Lemma 1.
Lemma 5. Define vy, = (xp_1 — xx)/\x and

Ti(z) = (vg, © — 1) — €.

Then, the following statements hold:
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(a) for every x. € T~1(0), we have

(b) X
Tp = argmin {)\kI‘k(:L‘) + 5”%’ — xleQ} :

(¢)

1—0

) 1 -
mln{)\kfk(x) +2||a:—ﬂck_1|!2} > 1Zk — xp—1]l* — O

Proof. (a) We know vy, € T¢(Zy). For (z4,0) € GrT, we have
<Uk — 0,£k — w*> > —ELk.
By definition, we have T'y(z,) < 0.

(b) This is obvious by the definition of I'.
(c) For any z € dom h, we have

. 1 1
min {)\kl“k(a:) + §Hx — :Uk_1H2} = )\kl“k(a:k) + 5”.7% — xk_1||2
1 9 1 2
= MLk (@) + Sl — 21 l|” — S llz — 2"
2 2
Taking z = %y, we obtain

. 1 - 1 . 1, .
min {Akfk(ﬂﬁ) +5lle - fEk—1H2} = MLk(@0) + 51125 — zpal® - PL |

L -
= 5 (Hajk - J,’k_1||2 — ”ka - l’k”Z — 2)\k5k)
1—0,.
> 1Zk — zp—1]” — Ok,
where the second identity follows from the definition of I'y, and the inequality is due to (7). O

Lemma 6. For every k > 1, we have

l—0

- 1 1
ek () + |2, — 2p_1]|® < 0 + §Hx* —zp1])? - i\lx* — x|

Proof. Using Lemma 5 (c), we have

1 . 1 1
AkLi(2) + §H$ — 2p1]* = min {Akrk(iﬂ) + §||~T - xk—lHQ} + §||$ — zp)?

l1—0
>
- 2

~ 1
I3 — 2|2 = 8+ Sl —
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Taking x = z,, we have

1—0

2

- 1 1
& — p—1] < 0p + inkfl — x| - 5\\% — 2| + NI (@)
The conclusion of the lemma follows by rearranging the terms. O

From now on, for simplicity, let us consider the cae d = 0 for every k > 1, i.e., the smooth
case.

Lemma 7. Let

Tp_ 1 — Tk 2 kEk Ail!vkllz
Vg = T, 91@ = max{ o y (1 + \/5)2 3 (8)

then
O < [|Zx — zr—a*.

Proof. 1t follows from (7) with d; = 0 that
||xk—.’z‘k||2+2)\k€k < Uka —xk_lHQ. (9)

Hence, we have
2k — zh—1 + Mevrl| = |2 — 2| < Vol 2k — 21
Using the triangle inequality, we have

Aklloell < (1 + Vo) || Zr — 21l

It follows from (9) that
2)\k€k S U”i‘k — l’k,1”2.

Using the above two inequalities and the defition of 0y, we conclude the lemma holds. O

Given (p,¢) € Ri 4, using the generalized IPP framework, we want to find (Z, v, ¢) satisfying
veT (), |[bf<p e<e
Theorem 4. (Pointwise convergence) The generalized IPP framework satisfies

. |zo — x|
0, < ¥— 10
i 0 < Ty (10)

Then, there exists i < k such that

ollwo — x|

TN (1— o)k’

(1+ V&)l — .l

2
loall™ < N1 —o)k

(11)
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Proof. 1t follows from Lemma 5(a) and Lemma 6 that

l1—0
2

1
e — 22 = 5l — 2

NN

13 — 2 ]® <
Summing the above inequality, we have

1—0

2

i 1 1
> o lE -z < 2 llzo = zl” - g llek = . (12)
i=1
Using Lemma 7, we obtain

k k B )
kmin 0; <> 60 <> i —zia|* < llzwo — & °
=1 i=1

1<i<k 1—-0o
Finally, (11) follows from the definition of 6, in (8) and (10). O

3.4 Ergodic convergence

In this subsection, we are interested in establishing the convergence of the generalized IPP frame-
work based on the averge of iterates, i.e., the ergodic convergence.

Lemma 8. Assume fori=1,...,k, u; € T (y;), a; > 0, and Zle a; =1. Let
k k
uh = i, Y =
i=1 i=1
k
e =Y oulei + (i — u,y; — y*)).
i=1
Then, we have

u® € T="(y%), €% >0.

Lemma 9. Define

k k ~ k
o i Nl D im Aivi
A:E N, IL=FE ) === 13
k pa k Ak‘ k Ak ( )
and
o Ti NilEi+ @ —E) =2 Mli(E)
ep = = . (14)
Ak Ak

Then, we have
v € T (4.
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Theorem 5. (Ergodic convergence) For every k > 1, we have

. > (2+ Va )2 2o — a4 |?
Awo — ol _ i —wol? _ (295
Ay ’ k= 2A;, B 2A; '

Proof. First, it follows from Lemma 6 with 05 = 0 and = = z, that ||z — x| < ||xo — z«||. By the

[l <

definition of v{ in (13), we have

k

Ak”k_z)‘vl_z i—1— Tj) = Ty — Tk,

i=1
and hence
Al = flo — 2]l < llwo — @l + e — ]| < 2ljoo — ..

which proves the first inequality in the theorem. Using (14) and Lemma 6 with d; = 0 and x = Z{,
(after summation), we have

k
- 1.
Agep = — Z/\il“i(x%) < 5l -~ zol)?,
which proves the first inequality for €} in the theorem. By (12), we also have

max || — i1 < lzo — .}

1<i<k Vi—o

Finally, we have
|17 — ol < max [|Z; — o

< max (|2 — il + [Jzo — 2i])

1<i<k

< max |7 — x| + 2|z — 2|
1<i<k

< max Vol|Zi — xio1|| + 2| w0 — ||

1<i<

\Fon |
\/ — 0

where the second last inequality is due to (7). With this inequality, we complete the proof of the

+ 2”'7"0 - :C*Hv

inequality of &f. 0

4 Saddle point, Chambolle-Pock

Given K : C x D — R closed convex-concave and C' x D C R x R™ convex, define

plr) = max K(z,y), d(y) =min K(z,y)
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Note that we have p(z) > d(y) for all (z,y) € C x D.
Saddle point: (z4,y«) € C X D s.t. p(x4) = d (y«). Finding a saddle point (z,y.) is equivalent to
d(y). Note that F(z,y) > 0 and F(z4,y«) = 0.

ming , F(z,y) = p(x) —
e-saddle point: (z,7) € C x D s.t. p(z) — d(y) < € or equivalently

0€ 0:[K(y) — K(z,)](z,9).

For £ = 0, this is the problem 0 € T'(z) where

A

T(z) = T(x,y) := [K(y) — K(z,)](z, ).

4.1 Smooth composite structure

Assume
K(x,y) = K(z,y) + g1(x) — g2(y).

where g7 is closed and convex over C, go is closed and convex over D, and K is a real-valued
function differentiable on C' x D and VK is L-Lipschitz. Here,

_ [ VaK(z,y) 991 (x)
= ( VK (2, ) ) i ( Dga(a) )

—F(2) —9g(2)

where g(z) = g(z,y) = g1(x) + g2(y)-

4.2 Chambolle-Pock’s method, a.k.a., primal-dual hybrid gradient

Consider the problem

(P) minmax(Ka,y) + G(z) - F*(y)

where G is closed and convex over R”, F'is closed and convex over R™, and K : R"® — R is linear.
The problem (P) is equivalent to
min F(Kz) + G(z),
X

and has the dual formulation

mgxmyin(KZC,y) +G(z) — F*(y) = ¥(z,9),

or equivalently

max —G* (—K"y) — F*(y).
y

Furthermore, let us assume that 3 (x*, y*) € R™ x R™ such that

Kzt +0F* (y*) 30, K'y*+0G(z*)30
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or equivalently

(0,0) € 0 (- y7) — b (2", )] (2", y7) -

Algorithm 5 Chambolle-Pock method

Input: Initial point (;Uo,yo) € R" x R™, choose 71, 2 > 0, and § = 1, and set 720 = x
for £ > 0 do

0.
)

Compute
Y = (I 4+ noF*) ™! (yk + TgK:fk> ,
" = (I +10G)™! (xk — TlK*ka) ,
Fhtl — k1 4 g ($k+1 _ xk) ‘
end for
We have

$k+17_1_$k + K "+ 0G (:rkH) 30,

ka - yk _k w [ k+1

T Kat e or (y )90, (15)

FEHL — gkl _ ok

The above algorithm is an instance of the following framework.

Proposition 1. The Chambolle-Pock method is an instance of the following IPP framework as
long as |K|*1ime < 0. Given (x,yx) and Agy1 > 0, find (i1, yes1), (Frgr, Grr1), ond epyy s.t.

Lh4+1 — Tk

h + 7 [K*ngrl + 0G (ik‘i’l)] >0, (16)

k+1

L*; "k 4y [~ KFps1 + OF* (k41)] 3 0. (17)
k+1

We also have, for some o € (0,1), the inequality

1

5 1 5 1, . 1 ..
— Nwrr1 — g1 I + = Iyrr1 — Gesll® + 2018041 < 0 | = |1 — 2> + = [Te+1 — will*]| -
m T 1 T

(18)
Note:

. 1 1 2 1 2 1 2
(21,22) = —{wn,ao)n+ (o wodms 27 = Zlall + il

Inexact Proximal Point Framework-16



Proof. Superscript: Chambolle-Pock, subscript: IPP framework.
We will show that C-P method is an instance of the IPP framework with A\y11 = 1,e541 = 0,
and
That = Tpp1 = 2" gy =y

Yhi1 = ¥+ K (:Ek“ -~ :g’f“) :
The proof of (16) is straightforward. The left-hand side of (17) is
4 K <jk+1 _ xk+1) . <jk _ xk)

st or (40

yrrt — g k+1 k+1 k k k+1 k+1
=7 T7+K<i+f:ﬂ+f:ﬁ +x fx+>+8F*(y+)
2

k+1 _ ok
= [y Y _ k&b +oF* (yk"'l)] ,
72

which contains 0 in view of (15). We now prove the inequality (18). We observe that

1 2 1 2 1 2
1) = frate (8 =) [ o [ oot o ]
T2 1 T2

HK (a—:k+1 _xk+1>H2 <o [ 1 kaﬂ _kaZ N % Hykﬂ _ykm
T1T2 7'2

2 o 2
— HK||2 HjIH_I _ xk—HH < — ka—H _ ka

k1,

2 2
= P ottt =t 2 -

= HK||27'17'2 < 0.
]

So the convergence of Chambolle-Pock follows from the convergence (pointwise/ergodic) of the
IPP framework.
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