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1 Proximal point method

We are interested in solving

min{ϕ(x) := f(x) + h(x)}

• h is closed and convex;

• f is closed and convex, domh ⊆ dom f ;

• the optimal set X∗ is nonempty.

Algorithm 1 Proximal point method

Input: Initial point x0 ∈ domh and constant stepsize λ > 0

for k ≥ 0 do

Solve xk+1 = argmin x∈Rn{ϕ(x) + 1
2λ∥x− xk∥2}.

end for

Theorem 1.

ϕ(xk)− ϕ∗ ≤
1

2λk
∥x0 − x∗∥2

Proof. It follows from the optimality of xk+1 that for every x ∈ domh,

ϕ(x) +
1

2λ
∥x− xk∥2 ≥ ϕ(xk+1) +

1

2λ
∥xk+1 − xk∥2 +

1

2λ
∥x− xk+1∥2.

Taking x = xk, we have

ϕ(xk) ≥ ϕ(xk+1) +
1

λ
∥xk+1 − xk∥2,

and hence this is a descent method. Taking x = x∗, we have

ϕ∗ +
1

2λ
∥xk − x∗∥2 ≥ ϕ(xk+1) +

1

2λ
∥xk+1 − xk∥2 +

1

2λ
∥xk+1 − x∗∥2.

Rearranging the above inequality, we obtain

ϕ(xk+1)− ϕ∗ ≤
1

2λ
∥xk − x∗∥2 −

1

2λ
∥xk+1 − x∗∥2.
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Summing the resulting inequality and using the descent property, we have

k[ϕ(xk)− ϕ∗] ≤
k∑

i=1

[ϕ(xi)− ϕ∗] ≤
1

2λ
∥x0 − x∗∥2 −

1

2λ
∥xk − x∗∥2 ≤

1

2λ
∥x0 − x∗∥2.

Therefore, the conclusion of the theorem follows.

2 Inexact proximal point framework

The proximal point method is more conceptual than practical. In practice, we usually design

algorithms to approximate the solution xk+1 to the proximal subproblem. Algorithms solving the

proximal subproblem approximately can be described and analyzed under the inexact proximal

point (IPP) framework.

2.1 Algorithm

Algorithm 2 Inexact proximal point framework

Input: Initial point x0 ∈ domh and scalar σ ∈ (0, 1]

for k ≥ 1 do

Step 1. Choose λk > 0 and δk ≥ 0.

Step 2. Compute (xk, x̃k, εk) such that

xk−1 − xk
λk

∈ ∂εkϕ(x̃k), (1)

∥xk − x̃k∥2 + 2λkεk ≤ σ∥x̃k − xk−1∥2 + δk. (2)

end for

The inclusion (1) in the IPP framework means

ṽk =
x̃k − xk
λk

∈ ∂εk

(
ϕ(·) + 1

2λk
∥ · −xk−1∥2

)
(x̃k).

In contrast to the PPM, the above inclusion provides two relaxations ṽk and εk. If both ṽk = 0

(i.e., x̃k = xk) and εk = 0, then

0 ∈ ∂

(
ϕ(·) + 1

2λk
∥ · −xk−1∥2

)
(xk),

i.e., the proximal problem is solved exactly

xk = argmin x∈Rn

{
ϕ(x) +

1

2λk
∥x− xk−1∥2

}
.
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Moreover, the inequality (2) is automatically satisfied

∥xk − x̃k∥2 + 2λkεk = ∥ṽk∥2 + 2λkεk = 0 ≤ σ∥x̃k − xk−1∥2 + δk.

Hence, the IPP framework becomes the PPM.

2.2 Convergence

Lemma 1. Define vk = (xk−1 − xk)/λk and

Γk(x) = ϕ(x̃k) + ⟨vk, x− x̃k⟩ − εk.

Then, the following statements hold:

(a) for every x ∈ domh, we have

Γk(x) ≤ ϕ(x)

(b) the following inequality provides an upper bound for the optimality gap for the proximal prob-

lem

ϕ(x̃k) +
1

2λk
∥x̃k − xk−1∥2 − ϕ(xk)−

1

2λk
∥xk − xk−1∥2 ≤

σ

2λk
∥x̃k − xk−1∥2 +

δk
λk

;

(c)

xk = argmin

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
;

(d)

min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
≥ λkϕ(x̃k) +

1− σ

2
∥x̃k − xk−1∥2 − δk.

Proof. (a) It follows from (1) and the definition of Γk that

ϕ(x) ≥ ϕ(x̃k) + ⟨vk, x− x̃k⟩ − εk = Γk(x), ∀x ∈ domh.

(b) Taking x = xk in the inequality in the proof of (a) and rearranging the terms, we have

ϕ(x) ≥ ϕ(x̃k) + ⟨vk, x− x̃k⟩ − εk, ∀x ∈ domh.

Adding a quadratic function 1
2λk

∥x̃k−xk−1∥2 and subtracting a quadratic fucntion 1
2λk

∥xk−xk−1∥2,
we have

ϕ(x̃k) +
1

2λk
∥x̃k − xk−1∥2 − ϕ(xk)−

1

2λk
∥xk − xk−1∥2

≤ 1

2λk
∥x̃k − xk−1∥2 −

1

2λk
∥xk − xk−1∥2 +

1

λk
⟨xk−1 − xk, x̃k − xk⟩+ εk

=
1

2λk
∥x̃k − xk∥2 + εk

≤ σ

2λk
∥x̃k − xk−1∥2 +

δk
λk
,
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where the last inequality follows from (2).

(c) This is obvious in view of the definition of Γk.

(d) For any x ∈ domh, it is easy to see that

min
x

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
= λkΓk(xk) +

1

2
∥xk − xk−1∥2

= λkΓk(x) +
1

2
∥x− xk−1∥2 −

1

2
∥x− xk∥2.

Taking x = x̃k in the above identity, we have

min
x

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
= λkΓk(x̃k) +

1

2
∥x̃k − xk−1∥2 −

1

2
∥x̃k − xk∥2

= λkϕ(x̃k) +
1

2

(
∥x̃k − xk−1∥2 − ∥x̃k − xk∥2 − 2λkεk

)
≥ λkϕ(x̃k) +

1− σ

2
∥x̃k − xk−1∥2 − δk,

where the second identity is due to the definition of Γk and the inequality is due to (2).

Lemma 2. For k ≥ 1, the IPP framework satisfies

λk[ϕ(x̃k)− ϕ∗] +
1− σ

2
∥x̃k − xk−1∥2 ≤ δk +

1

2
∥xk−1 − x∗∥2 −

1

2
∥xk − x∗∥2.

Proof. Using Lemma 1(a) and (d), we have

λkϕ(x) +
1

2
∥x− xk−1∥2 ≥ λkΓk(x) +

1

2
∥x− xk−1∥2

= min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
+

1

2
∥x− xk∥2

≥ λkϕ(x̃k) +
1− σ

2
∥x̃k − xk−1∥2 − δk +

1

2
∥x− xk∥2. (3)

It is worth noting that the above inequality generalizes Lemma 1(b) since rearranging gives

ϕ(x̃k) +
1

2λk
∥x̃k − xk−1∥2 − ϕ(x)− 1

2λk
∥x− xk−1∥2 ≤

σ

2λk
∥x̃k − xk−1∥2 +

δk
λk

− 1

2λk
∥x− xk∥2.

Take x = x∗ in (3), we have

λkϕ∗ +
1

2
∥xk−1 − x∗∥2 ≥ λkϕ(x̃k) +

1− σ

2
∥x̃k − xk−1∥2 − δk +

1

2
∥xk − x∗∥2.

Therefore, the lemma follows from rearranging the terms.
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Theorem 2. Let
k∑

i=1

λi = Λk, x̂k =

∑k
i=1 λix̃i
Λk

.

Then, we have

ϕ(x̂k)− ϕ∗ ≤
∑k

i=1 δi
Λk

+
∥x0 − x∗∥2

2Λk
.

Proof. Summing the inequality in Lemma 2 from k = 1 to k and dividing by Λk, we have∑k
i=1 λi[ϕ(x̃i)− ϕ∗]

Λk
≤
∑k

i=1 δi
Λk

+
1

2Λk
∥x0 − x∗∥2.

It follows from the convexity of ϕ and the definition of x̂k that

ϕ(x̂k)− ϕ∗ ≤
∑k

i=1 λi[ϕ(x̃i)− ϕ∗]

Λk
.

The conclusion immediately follows from the above two inequalities.

Corollary 1. If λk = λ and δk = 0 for every k ≥ 1, then

min
1≤i≤k

ϕ(x̃i)− ϕ∗ ≤
∥x0 − x∗∥2

2λk
.

2.3 Proximal gradient method as an example

In this subsection, we assume f is L-smooth, then we show that the proximal gradient (PG) method

with stepsize λk ≤ σ/L for some σ ∈ (0, 1] is an instance of the IPP framework. We begin with an

iteration of the PG method

xk = argmin
x∈Rn

{
ℓf (x;xk−1) + h(x) +

1

2λk
∥x− xk−1∥2

}
. (4)

The optimality condition is

xk−1 − xk
λk

∈ ∂[ℓf (·;xk−1) + h(·)](xk),

which means for every x ∈ domh,

ϕ(x) ≥ ℓf (x;xk−1) + h(x)

≥ ℓf (xk;xk−1) + h(xk) +
1

λk
⟨xk−1 − xk, x− xk⟩

= ϕ(xk) +
1

λk
⟨xk−1 − xk, x− xk⟩ − εk
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where the first inequality is due to the convexity of f and εk is defined as

εk := f(xk)− ℓf (xk;xk−1).

Hence, PG satisfies the inclusion (1) of IPP with

x̃k = xk, εk = f(xk)− ℓf (xk;xk−1), δk = 0.

Moreover, it follows from the assumption that f is L-smooth that

εk = f(xk)− ℓf (xk;xk−1) ≤
L

2
∥xk − xk−1∥2 =

L

2
∥x̃k − xk−1∥2 ≤

σ

2λk
∥x̃k − xk−1∥2.

Hence, the inequality (2) of IPP is also satisfied. Now, we have shown PG is an instance of IPP.

Next, let us show the convergence of PG using the general convergence guarantee of IPP. It

follows from (4) and L-smoothness of f that

ϕ(xk−1) ≥ ℓf (xk;xk−1) + h(xk) +
1

λk
∥xk − xk−1∥2

≥ ϕ(xk) +

(
1

λk
− L

2

)
∥xk − xk−1∥2

≥ ϕ(xk) +
2− σ

2λk
∥xk − xk−1∥2 ≥ ϕ(xk) +

1

2λk
∥xk − xk−1∥2,

where the second last inequality is due to λk ≤ σ/L and the last inequality is due to σ ≤ 1. Suppose

λk = λ = σ/L, then it follows from Corollary 1 that

ϕ(xk)− ϕ∗ = min
1≤i≤k

ϕ(x̃i)− ϕ∗ ≤
∥x0 − x∗∥2

2λk
=
L∥x0 − x∗∥2

2σk
.

3 Monotone operators and generalized IPP framework

Consider a point-to-set map T , and our goal is to find a point x∗ such that zero belongs to the set

T (x∗), i.e.,

0 ∈ T (x∗).

This task generally includes optimization and other problems with convex structures.

Definition 1. Consider a point-to-set map T : Rn ⇒ Rn, the graph of T is

GrT = {(x, v) : v ∈ T (x)}.

Definition 2. T is monotone if for every (x, v) ∈ GrT and (x̃, ṽ) ∈ GrT , we have

⟨x̃− x, ṽ − v⟩ ≥ 0.
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Figure 1: maximal monotone

Definition 3. T is maximal monotone if T is monotone and for any monotone T̃ such that Gr T̃ ⊂
GrT , we have T = T̃ (i.e., GrT = Gr T̃ ).

Examples

(a) f is a closed convex function then T = ∂f is maximal monotone. Also, x∗ is an optimal

solution to min{f(x) : x ∈ Rn} ⇐⇒ 0 ∈ ∂f(x∗) = T (x∗).

(b) Q ⊆ Rn is a closed convex set, then T = NQ = ∂IQ is maximal monotone where

NQ(x) = {n : ⟨n, x̃− x⟩ ≤ 0, ∀x̃ ∈ Q}.

Figure 2: nonmonotone

3.1 Generalizd proximal point method

Our goal is find z∗ such that

0 ∈ T (z∗),

which is equivalent to for some λ > 0

0 ∈ λT (z∗).
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Figure 3: monotone-but-not-maximal

This is the same as

z∗ ∈ z∗ + λT (z∗) = (I + λT )(z∗),

and hence the fixed point problem

z∗ = (I + λT )−1(z∗).

The following lemma indeed shows that the inverse map (I + λT )−1 is contracive and unique.

Lemma 3. Assume T is monotone and λ > 0. Let

z1 ∈ (I + λT )(w1), z2 ∈ (I + λT )(w2), (5)

then

∥w1 − w2∥ ≤ ∥z1 − z2∥. (6)

The mapping (I + λT )−1 is unique. As a result, there exists a unique z∗ such that 0 ∈ T (z∗).

Proof. It follows from (5) that

z1 − w1 ∈ λT (w1), z2 − w2 ∈ λT (w2).

Since λT is monotone, we have

⟨z1 − w1 − (z2 − w2), w1 − w2⟩ ≥ 0,

and hene

⟨z1 − z2, w1 − w2⟩ ≥ ∥w1 − w2∥2.

It follows from the Cauchy-Schwarz inequality that (6) holds. Assume for the contrary that w1 ̸= w2

and

z ∈ (I + λT )(w1), z ∈ (I + λT )(w2).

Clearly, it follows from (6) that

∥w1 − w2∥ ≤ ∥z − z∥ = 0.
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So

w1 = w2.

Moreover, z∗ is a unique fixed point

z∗ = (I + λT )−1(z∗).

Following the argument before this lemma, we can show that 0 ∈ T (z∗).

The fixed-point iteration

xk = (I + λkT )
−1(xk−1),

i.e.,

xk−1 ∈ (I + λkT )(xk),

motivates us the following proximal point-type method

xk−1 − xk
λk

∈ T (xk).

Algorithm 3 Generalized proximal point framework

Input: Initial point x0 ∈ domh

for k ≥ 1 do

Step 1. Choose λk > 0.

Step 2. Compute xk such that
xk−1 − xk

λk
∈ T (xk).

end for

Lemma 4. For every k ≥ 1, we have

1

2
∥xk − xk−1∥2 ≤

1

2
∥xk−1 − x∗∥2 −

1

2
∥xk − x∗∥2.

Proof. Clearly, we have
xk−1 − xk

λk
∈ T (xk), 0 ∈ T (x∗).

It follows from Definition 2 that

⟨xk−1 − xk
λk

, xk − x∗⟩ ≥ 0,

and hence

⟨xk−1 − xk, xk − x∗⟩ ≥ 0.

Inexact Proximal Point Framework-9



This is equivalent to

1

2
∥xk − xk−1∥2 ≤

1

2
∥xk−1 − x∗∥2 −

1

2
∥xk − x∗∥2.

Theorem 3. There exists i ≤ k such that

∥vi∥2 ≤
∥x0 − x∗∥2

λ2i k
,

where

vi =
xi−1 − xi

λi
.

3.2 Generalizd inexact proximal point framework

We introduce the ε-enlargement of a monotone operator, which can be viewed as a generalization

of the ε-subdifferential.

Definition 4. The ε-enlargement of T denoted by T ε is defined as

T ε(x̃) = {ṽ : ⟨x̃− x, ṽ − v⟩ ≥ −ε, ∀(x, v) ∈ GrT}.

Now, we are ready to present the generalized IPP framework.

Algorithm 4 Generalized inexact proximal point framework

Input: Initial point x0 ∈ domh and scalar σ ∈ (0, 1)

for k ≥ 1 do

Step 1. Choose λk > 0 and δk ≥ 0.

Step 2. Compute (xk, x̃k, εk) such that

xk−1 − xk
λk

∈ T εk(x̃k),

∥xk − x̃k∥2 + 2λkεk ≤ σ∥x̃k − xk−1∥2 + δk. (7)

end for

3.3 Pointwise convergence

The following lemma is a generalization of Lemma 1.

Lemma 5. Define vk = (xk−1 − xk)/λk and

Γk(x) = ⟨vk, x− x̃k⟩ − εk.

Then, the following statements hold:
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(a) for every x∗ ∈ T−1(0), we have

Γk(x∗) ≤ 0;

(b)

xk = argmin

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
;

(c)

min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
≥ 1− σ

2
∥x̃k − xk−1∥2 − δk.

Proof. (a) We know vk ∈ T εk(x̃k). For (x∗, 0) ∈ GrT , we have

⟨vk − 0, x̃k − x∗⟩ ≥ −εk.

By definition, we have Γk(x∗) ≤ 0.

(b) This is obvious by the definition of Γk.

(c) For any x ∈ domh, we have

min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
= λkΓk(xk) +

1

2
∥xk − xk−1∥2

= λkΓk(x) +
1

2
∥x− xk−1∥2 −

1

2
∥x− xk∥2.

Taking x = x̃k, we obtain

min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
= λkΓk(x̃k) +

1

2
∥x̃k − xk−1∥2 −

1

2
∥x̃k − xk∥2

=
1

2

(
∥x̃k − xk−1∥2 − ∥x̃k − xk∥2 − 2λkεk

)
≥ 1− σ

2
∥x̃k − xk−1∥2 − δk,

where the second identity follows from the definition of Γk and the inequality is due to (7).

Lemma 6. For every k ≥ 1, we have

−λkΓk(x∗) +
1− σ

2
∥x̃k − xk−1∥2 ≤ δk +

1

2
∥x∗ − xk−1∥2 −

1

2
∥x∗ − xk∥2.

Proof. Using Lemma 5 (c), we have

λkΓk(x) +
1

2
∥x− xk−1∥2 = min

{
λkΓk(x) +

1

2
∥x− xk−1∥2

}
+

1

2
∥x− xk∥2

≥ 1− σ

2
∥x̃k − xk−1∥2 − δk +

1

2
∥x− xk∥2.
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Taking x = x∗, we have

1− σ

2
∥x̃k − xk−1∥2 ≤ δk +

1

2
∥xk−1 − x∗∥2 −

1

2
∥xk − x∗∥2 + λkΓk(x∗).

The conclusion of the lemma follows by rearranging the terms.

From now on, for simplicity, let us consider the cae δk = 0 for every k ≥ 1, i.e., the smooth

case.

Lemma 7. Let

vk =
xk−1 − xk

λk
, θk = max

{
2λkεk
σ

,
λ2k∥vk∥2

(1 +
√
σ)2

}
, (8)

then

θk ≤ ∥x̃k − xk−1∥2.

Proof. It follows from (7) with δk = 0 that

∥xk − x̃k∥2 + 2λkεk ≤ σ∥x̃k − xk−1∥2. (9)

Hence, we have

∥x̃k − xk−1 + λkvk∥ = ∥x̃k − xk∥ ≤
√
σ∥x̃k − xk−1∥.

Using the triangle inequality, we have

λk∥vk∥ ≤ (1 +
√
σ)∥x̃k − xk−1∥.

It follows from (9) that

2λkεk ≤ σ∥x̃k − xk−1∥2.

Using the above two inequalities and the defition of θk, we conclude the lemma holds.

Given (ρ̄, ε̄) ∈ R2
++, using the generalized IPP framework, we want to find (x̃, v, ε) satisfying

v ∈ T ε(x̃), ∥v∥ ≤ ρ̄, ε ≤ ε̄.

Theorem 4. (Pointwise convergence) The generalized IPP framework satisfies

min
1≤i≤k

θi ≤
∥x0 − x∗∥2

(1− σ)k
. (10)

Then, there exists i ≤ k such that

εi ≤
σ∥x0 − x∗∥2

2λi(1− σ)k
, ∥vi∥2 ≤

(1 +
√
σ)2∥x0 − x∗∥2

λ2i (1− σ)k
. (11)
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Proof. It follows from Lemma 5(a) and Lemma 6 that

1− σ

2
∥x̃k − xk−1∥2 ≤

1

2
∥x∗ − xk−1∥2 −

1

2
∥x∗ − xk∥2.

Summing the above inequality, we have

1− σ

2

k∑
i=1

∥x̃i − xi−1∥2 ≤
1

2
∥x0 − x∗∥2 −

1

2
∥xk − x∗∥2. (12)

Using Lemma 7, we obtain

k min
1≤i≤k

θi ≤
k∑

i=1

θi ≤
k∑

i=1

∥x̃i − xi−1∥2 ≤
∥x0 − x∗∥2

1− σ
.

Finally, (11) follows from the definition of θk in (8) and (10).

3.4 Ergodic convergence

In this subsection, we are interested in establishing the convergence of the generalized IPP frame-

work based on the averge of iterates, i.e., the ergodic convergence.

Lemma 8. Assume for i = 1, . . . , k, ui ∈ T εi(yi), αi ≥ 0, and
∑k

i=1 αi = 1. Let

ua =
k∑

i=1

αiui, ya =
k∑

i=1

αiyi

εa =
k∑

i=1

αi(εi + ⟨ui − ua, yi − ya⟩).

Then, we have

ua ∈ T εa(ya), εa ≥ 0.

Lemma 9. Define

Λk =

k∑
i=1

λi, x̃ak =

∑k
i=1 λix̃i
Λk

, vak =

∑k
i=1 λivi
Λk

, (13)

and

εak =

∑k
i=1 λi(εi + ⟨vi, x̃i − x̃ak⟩)

Λk
=

−
∑k

i=1 λiΓi(x̃
a
k)

Λk
. (14)

Then, we have

vak ∈ T εak(x̃ak).
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Theorem 5. (Ergodic convergence) For every k ≥ 1, we have

∥vak∥ ≤ 2∥x0 − x∗∥
Λk

, εak ≤
∥x̃ak − x0∥2

2Λk
≤

(
2 +

√
σ√

1−σ

)2
∥x0 − x∗∥2

2Λk
.

Proof. First, it follows from Lemma 6 with δk = 0 and x = x∗ that ∥xk − x∗∥ ≤ ∥x0 − x∗∥. By the

definition of vak in (13), we have

Λkv
a
k =

k∑
i=1

λivi =
k∑

i=1

(xi−1 − xi) = x0 − xk,

and hence

Λk∥vak∥ = ∥x0 − xk∥ ≤ ∥x0 − x∗∥+ ∥x∗ − xk∥ ≤ 2∥x0 − x∗∥,

which proves the first inequality in the theorem. Using (14) and Lemma 6 with δk = 0 and x = x̃ak
(after summation), we have

Λkε
a
k = −

k∑
i=1

λiΓi(x̃
a
k) ≤

1

2
∥x̃ak − x0∥2,

which proves the first inequality for εak in the theorem. By (12), we also have

max
1≤i≤k

∥x̃i − xi−1∥ ≤ ∥x0 − x∗∥√
1− σ

.

Finally, we have

∥x̃ak − x0∥ ≤ max
1≤i≤k

∥x̃i − x0∥

≤ max
1≤i≤k

(∥x̃i − xi∥+ ∥x0 − xi∥)

≤ max
1≤i≤k

∥x̃i − xi∥+ 2∥x0 − x∗∥

≤ max
1≤i≤k

√
σ∥x̃i − xi−1∥+ 2∥x0 − x∗∥

≤
√
σ∥x0 − x∗∥√

1− σ
+ 2∥x0 − x∗∥,

where the second last inequality is due to (7). With this inequality, we complete the proof of the

inequality of εak.

4 Saddle point, Chambolle-Pock

Given K̂ : C ×D 7→ R closed convex-concave and C ×D ⊆ Rn × Rm convex, define

p(x) = max
y∈D

K̂(x, y), d(y) = min
x∈C

K̂(x, y).

Inexact Proximal Point Framework-14



Note that we have p(x) ≥ d(y) for all (x, y) ∈ C ×D.

Saddle point: (x∗, y∗) ∈ C ×D s.t. p (x∗) = d (y∗). Finding a saddle point (x∗, y∗) is equivalent to

minx,y F (x, y) = p(x)− d(y). Note that F (x, y) ≥ 0 and F (x∗, y∗) = 0.

ε-saddle point: (x̄, ȳ) ∈ C ×D s.t. p(x̄)− d(ȳ) ≤ ε or equivalently

0 ∈ ∂ε[K̂(·, y)− K̂(x, ·)](x̄, ȳ).

For ε = 0, this is the problem 0 ∈ T (z) where

T (z) = T (x, y) := ∂[K̂(·, y)− K̂(x, ·)](x, y).

4.1 Smooth composite structure

Assume

K̂(x, y) = K(x, y) + g1(x)− g2(y).

where g1 is closed and convex over C, g2 is closed and convex over D, and K is a real-valued

function differentiable on C ×D and ∇K is L-Lipschitz. Here,

T (z) =

(
∇xK(x, y)

−∇yK(x, y)

)
︸ ︷︷ ︸

=F (z)

+

(
∂g1(x)

∂g2(x)

)
︸ ︷︷ ︸

=∂g(z)

where g(z) = g(x, y) = g1(x) + g2(y).

4.2 Chambolle-Pock’s method, a.k.a., primal-dual hybrid gradient

Consider the problem

(P) min
x

max
y

⟨Kx, y⟩+G(x)− F ∗(y)

where G is closed and convex over Rn, F is closed and convex over Rm, and K : Rn 7→ Rm is linear.

The problem (P ) is equivalent to

min
x
F (Kx) +G(x),

and has the dual formulation

max
x

min
y

⟨Kx, y⟩+G(x)− F ∗(y) = ψ(x, y),

or equivalently

max
y

−G∗ (−K∗y)− F ∗(y).

Furthermore, let us assume that ∃ (x∗, y∗) ∈ Rn × Rm such that

−Kx∗ + ∂F ∗ (y∗) ∋ 0, K∗y∗ + ∂G (x∗) ∋ 0
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or equivalently

(0, 0) ∈ ∂ [ψ (·, y∗)− ψ (x∗, ·)] (x∗, y∗) .

Algorithm 5 Chambolle-Pock method

Input: Initial point
(
x0, y0

)
∈ Rn × Rm, choose τ1, τ2 > 0, and θ = 1, and set x̄0 = x0;

for k ≥ 0 do

Compute

yk+1 = (I + τ2∂F
∗)−1

(
yk + τ2Kx̄

k
)
,

xk+1 = (I + τ1∂G)
−1
(
xk − τ1K

∗yk+1
)
,

x̄k+1 = xk+1 + θ
(
xk+1 − xk

)
.

end for

We have

xk+1 − xk

τ1
+K∗yk+1 + ∂G

(
xk+1

)
∋ 0,

yk+1 − yk

τ2
−Kx̄k + ∂F ∗

(
yk+1

)
∋ 0, (15)

x̄k+1 = 2xk+1 − xk

The above algorithm is an instance of the following framework.

Proposition 1. The Chambolle-Pock method is an instance of the following IPP framework as

long as ∥K∥2τ1τ2 ≤ σ. Given (xk, yk) and λk+1 > 0, find (xk+1, yk+1), (x̃k+1, ỹk+1), and εk+1 s.t.

xk+1 − xk
λk+1

+ τ1 [K
∗ỹk+1 + ∂G (x̃k+1)] ∋ 0, (16)

yk+1 − yk
λk+1

+ τ2 [−Kx̃k+1 + ∂F ∗ (ỹk+1)] ∋ 0. (17)

We also have, for some σ ∈ (0, 1), the inequality

1

τ1
∥xk+1 − x̃k+1∥2 +

1

τ2
∥yk+1 − ỹk+1∥2 + 2λk+1εk+1 ≤ σ

[
1

τ1
∥x̃k+1 − xk∥2 +

1

τ2
∥ỹk+1 − yk∥2

]
.

(18)

Note:

⟨z1, z2⟩ =
1

τ1
⟨x1, x2⟩n +

1

τ2
⟨y1, y2⟩m, ∥z∥2 = 1

τ1
∥x∥2n +

1

τ2
∥y∥2m.
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Proof. Superscript: Chambolle-Pock, subscript: IPP framework.

We will show that C-P method is an instance of the IPP framework with λk+1 = 1, εk+1 = 0,

and

xk+1 = x̃k+1 = xk+1, ỹk+1 = yk+1,

yk+1 = yk+1 + τ2K
(
x̄k+1 − xk+1

)
.

The proof of (16) is straightforward. The left-hand side of (17) is

yk+1 + τ2K
(
x̄k+1 − xk+1

)
− yk − τ2K

(
x̄k − xk

)
+ τ2

[
−Kxk+1 + ∂F ∗

(
yk+1

)]
= τ2

[
yk+1 − yk

τ2
+K

(
x̄k+1 − xk+1 − x̄k + xk − xk+1

)
+ ∂F ∗

(
yk+1

)]
= τ2

[
yk+1 − yk

τ2
−Kx̄k + ∂F ∗

(
yk+1

)]
,

which contains 0 in view of (15). We now prove the inequality (18). We observe that

(18) ⇐⇒ 1

τ2

∥∥∥τ2K (x̄k+1 − xk+1
)∥∥∥2 ≤ σ

[
1

τ1

∥∥∥xk+1 − xk
∥∥∥2 + 1

τ2

∥∥∥yk+1 − yk

∥∥∥2]
⇐⇒

∥∥∥K (x̄k+1 − xk+1
)∥∥∥2 ≤ σ

[
1

τ1τ2

∥∥∥xk+1 − xk
∥∥∥2 + 1

τ22

∥∥∥yk+1 − yk

∥∥∥2]
⇐= ∥K∥2

∥∥∥x̄k+1 − xk+1
∥∥∥2 ≤ σ

τ1τ2

∥∥∥xk+1 − xk
∥∥∥2

⇐⇒ ∥K∥2
∥∥∥xk+1 − xk

∥∥∥2 ≤ σ

τ1τ2

∥∥∥xk+1 − xk
∥∥∥2

⇐⇒ ∥K∥2τ1τ2 ≤ σ.

So the convergence of Chambolle-Pock follows from the convergence (pointwise/ergodic) of the

IPP framework.
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