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1 Dual proximal method

Consider the problem

min{f(x) + h(Ax) : x ∈ Rn}

where A ∈ Rm×n and

• h is closed and convex;

• f is closed and µ-strongly convex;

• there exist x̂ ∈ ri (dom f) and ẑ ∈ ri (domh) such that Ax̂ = ẑ.

Strong duality holds in this case.

1.1 Dual problem

Consider an equivalent problem

min
x,z∈Rn

f(x) + h(z)

s.t. Ax− z = 0.

We define the Lagrangian as

L(x, z; y) = f(x) + h(z)− y⊤(Ax− z), (1)

and the dual function is

d(y) = inf
x,z
L(x, z; y)

= inf
x

{
f(x)− y⊤Ax

}
+ inf

z

{
h(z) + y⊤z

}
= − sup

x

{
(A⊤y)⊤x− f(x)

}
− sup

z

{
(−y)⊤z − h(z)

}
= −f∗(A⊤y)− h∗(−y),
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where f∗ and h∗ denote the conjugates of f and h, respectively. Thus, the dual problem is

max
y∈Rn

d(y).

We consider the dual problem in its minimization form

min
y∈Rm

F (y) +H(y) (2)

where

F (y) = f∗(A⊤y), H(y) = h∗(−y).

Example. Use Lagrangian to find the dual of the following linear programming

minimize c⊤x

subject to Ax = b

Cx ≤ d.

Associating dual variables λ ≥ 0 and ν, the Lagrangian is

L(x, λ, ν) = c⊤x+ λ⊤(Cx− d) + ν⊤(Ax− b)

=
(
c⊤ + λ⊤C + ν⊤A

)
x− dλ⊤ − ν⊤b,

which is an affine function of x. It follows that the dual function is given by

d(λ, ν) = inf
x
L(x, λ, ν) =

{
−λ⊤d− ν⊤b, c+ C⊤λ+A⊤ν = 0

−∞, otherwise.

The dual problem is
maximize d(λ, ν)

subject to λ ≥ 0.

After making the implicit constraints explicit, we obtain

maximizeλ,ν −λ⊤d− ν⊤b

subject to c+ C⊤λ+A⊤ν = 0

λ ≥ 0.

Now, we have introduced the dual problem. Let us revisit the proximal gradient method studied

in Lecture 6. Indeed, the method is a primal-dual method and provides a primal-dual convergence

guarantee.

Theorem 1. Consider the problem min{ϕ(x) = f(x) + h(x) : x ∈ Rn} in Lecture 5 and apply the

proximal gradient mehtod, then we have the primal-dual gap bounded as follows,

ϕ̂(x̄k+1) + f∗(ȳk) + ĥ∗(−ȳk) ≤
2d20
λk

,

where the notation is clear from the proof and skipped in the statement.
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Proof. Recall from the proof of Theorem 5 in Lecture 6 that for every x ∈ domh,

ℓf (x;xk) + h(x) +
1

2λ
∥x− xk∥2 ≥ ϕ(xk+1) +

1

2λ
∥x− xk+1∥2. (3)

Taking x = x∗0, which is the closest point in the solution set to x0, and using the convexity of f ,

we have

ϕ∗ +
1

2λ
∥x∗0 − xk∥2 ≥ ϕ(xk+1) +

1

2λ
∥x∗0 − xk+1∥2,

so

∥xk+1 − x∗0∥ ≤ ∥xk − x∗0∥ ≤ ∥x0 − x∗0∥ := d0.

It follows from the triangle inequality that

∥xk − x0∥ ≤ ∥xk − x∗0∥+ ∥x0 − x∗0∥ ≤ 2d0.

We also have for every x ∈ Rn,

ℓf (x;xk) ≤ f(x), yk := ∇f(xk) = ∇ℓf (x;xk).

Then, using Theorem 2 of Lecture 5, we have

ℓf (x;xk) = −(ℓf (·;xk))∗(yk) + ⟨yk, x⟩ ≤ −f∗(yk) + ⟨yk, x⟩.

It thus follows from (3) that

ϕ(xk+1) + f∗(yk) + ⟨−yk, x⟩ − h(x) ≤ 1

2λ
∥x− xk∥2 −

1

2λ
∥x− xk+1∥2.

Averaging over the iterations and using convexity, we have

ϕ(x̄k+1) + f∗(ȳk) + ⟨−ȳk, x⟩ − h(x) ≤ 1

2λk
∥x− x0∥2.

Maximizing x over B(x0, 2d0), we have

ϕ(x̄k+1) + f∗(ȳk) + max
x∈B(x0,2d0)

{⟨−ȳk, x⟩ − h(x)} ≤ 1

2λk
max

x∈B(x0,2d0)
∥x− x0∥2 =

2d20
λk

.

Since

max
x∈B(x0,2d0)

{⟨−ȳk, x⟩ − h(x)} = max
x∈Rn

{⟨−ȳk, x⟩ − ĥ(x)} = ĥ∗(−ȳk)

where ĥ(x) = h(x) + IB(x),

ϕ(x̄k+1) + f∗(ȳk) + ĥ∗(−ȳk) ≤
2d20
λk

.

Since x̄k+1 ∈ B(x0, 2d0),

ϕ̂(x̄k+1) + f∗(ȳk) + ĥ∗(−ȳk) ≤
2d20
λk

.

Note that x∗ ∈ B(x0, 2d0), to solve the problem min{ϕ(x) : x ∈ Rn}, it suffices to solve

min
x∈Rn

{ϕ̂(x) = f(x) + ĥ(x)}.
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1.2 Dual proximal method

Let us go back to problem (2) and examine its properties.

Lemma 1. We have F is convex and LF -smooth where LF = ∥A∥2/µ and H is closed and convex.

Proof. Since f is µ-strongly convex, by conjugacy, we know f∗ is (1/µ)-smooth. Thus, for any

y1, y2 ∈ Rm, we have

∥∇F (y1)−∇F (y2)∥ = ∥A∇f∗(A⊤y1)−A∇f∗(A⊤y2)∥
≤ ∥A∥∥∇f∗(A⊤y1)−∇f∗(A⊤y2)∥

≤ ∥A∥
µ

∥A⊤(y1 − y2)∥

≤ ∥A∥2

µ
∥y1 − y2∥.

By conjugacy and the fact that convexity preserves under composition of a convex function and a

linear mapping, we know both F and H are convex.

Since the dual problem (2) is the sum of a convex smooth function F (y) and a convex composite

function H(y), which has a proximal mapping because of the assumption on h and the Moreau

decomposition theorem. This is exactly the setting for the proximal gradient method, we thus

apply the method to (2).

Algorithm 1 Dual proximal method

Input: Initial point y0 ∈ Rm

for k ≥ 0 do

Compute yk+1 = proxλH (yk − λ∇F (yk)).
end for

Since F is convex and LF -smooth and H is closed and convex, invoking Theorem 5 of Lecture 6,

we obtain the convergence rate of the dual sequence.

Theorem 2. Choose λ ∈ (0, 1/LF ]. Then, Algorithm 1 generates a sequence of points {yk} satis-

fying

d∗ − d(yk) ≤
∥y0 − y∗∥2

2λk
, ∀k ≥ 1.

Lemma 2. The dual iteration yk+1 = proxλH (yk − λ∇F (yk)) can be equivalently rewritten as

xk+1 = argmax x∈Rn{⟨x,A⊤yk⟩ − f(x)}, (4)

yk+1 = yk − λAxk+1 + λ prox 1
λ
h

(
Axk+1 −

1

λ
yk

)
. (5)
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Proof. Note that the dual proximal update can be written as

yk+1 = min
y∈Rm

{
ℓF (y; yk) +H(y) +

1

2λ
∥y − yk∥2

}
.

Its optimality condition is

0 ∈ ∇F (yk) + ∂H(yk+1) +
yk+1 − yk

λ
. (6)

It follows from Proposition 1 of Lecture 5 and (4) that

∇F (yk) = A∇f∗(A⊤yk) = A argmax x{⟨A⊤yk, x⟩ − f(x)} (4)
= Axk+1.

Define

zk+1 =
yk+1 − yk

λ
+∇F (yk) =

yk+1 − yk
λ

+Axk+1. (7)

Then, it follows from the optimality condition (6) that

−zk+1 ∈ ∂H(yk+1) = −∂h∗(−yk+1).

Using Theorem 2 of Lecture 5, we have

∂h(zk+1) ∋ −yk+1.

Hence,

0 ∈ yk+1 + ∂h(zk+1).

Equivalently, by (7), we have

0 ∈ ∂h(zk+1) + yk + λzk+1 − λAxk+1.

It is interesting to see that the above inclusion is also the optimality condition of

zk+1 = argmin z∈Rm

{
h(z) + ⟨z, yk⟩+

λ

2
∥z −Axk+1∥2

}
.

Using Definition 1 of Lecture 6, we have

zk+1 = prox 1
λ
h

(
Axk+1 −

1

λ
yk

)
.

Finally, it follows from (7) and the above formula for zk+1 that (5) holds.
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Note: The proof of Lemma 2 can be simplified using the extended Moreau decomposition. This

alternative proof is left as a homework problem.

Using Lemma 2, we can rewrite Algorithm 1 in its primal form.

Algorithm 2 Dual proximal method (primal form)

Input: Initial point y0 ∈ Rm

for k ≥ 0 do

Compute xk+1 = argmax x∈Rn{⟨x,A⊤yk⟩ − f(x)}.
Compute yk+1 = yk − λAxk+1 + λ prox 1

λ
h

(
Axk+1 − 1

λyk
)
.

end for

It is clear from the proof of Lemma 2 that the dual proximal method has another presentation

in the alternating minimization form using the z sequence.

Algorithm 3 Dual proximal method (alternating minimization form)

Input: Initial point y0 ∈ Rm

for k ≥ 0 do

Compute xk+1 = argmin x∈Rn{f(x)− ⟨x,A⊤yk⟩}.
Compute zk+1 = argmin z∈Rm

{
h(z) + ⟨z, yk⟩+ λ

2∥z −Axk+1∥2
}
.

Compute yk+1 = yk − λAxk+1 + λzk+1.

end for

In fact, Algorithm 3 can be understood from the augmented Lagrangian perspective. Recall

the Lagrange function L(x, z; y) is defined in (1). We define the augmented Lagrange function as

follows

Lλ(x, z; y) := L(x, z; y) +
λ

2
∥Ax− z∥2 = f(x) + h(z)− y⊤(Ax− z) +

λ

2
∥Ax− z∥2.

Then, we rewrite Algorithm 3 as

xk+1 = argmin x∈RnL(x, zk; yk),

zk+1 = argmin z∈RmLλ(xk+1, z; yk),

yk+1 = yk − λ(Axk+1 − zk+1) = yk + λ∇yL(xk+1, zk+1; y).

With the understanding that the dual proximal method is the proximal gradient method applied

to the dual problem in mind, we also note that the dual ascent method is the subgradient method

applied to the dual problem, and the augmented Lagrangian method is the proximal point method

applied to the dual problem.
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2 Duality between Frank-Wolfe and mirror descent

We present a fascinating connection between Frank-Wolfe and mirror descent, that is, Frank-Wolfe

applied to the dual problem is equivalent to mirror descent applied to the primal problem. We

consider the following primal and dual problems.

Primal

min
x∈Rn

{ϕ(x) := f(Ax) + h(x)}

and dual

max
y∈C

{ψ(y) := −h∗(−A⊤y)− f∗(y)}.

Assume f : Rm → R is Lipschitz continuous everywhere and h : Rn → (−∞,∞] is µ-strongly

convex, and A ∈ Rm×n. This implies that dom f∗ is bounded. Define

R = max
y1,y2∈dom f∗

∥A⊤(y1 − y2)∥∗ = diam(A⊤dom f∗). (8)

Applying Frank-Wolf from Lecture 8 to the dual problem, we have the following dual Frank-

Wolfe method.

Algorithm 4 Frank-Wolfe method for dual problem

Input: Initial point y0 ∈ dom f∗

for k ≥ 0 do

Step 1. Compute xk = argmin x∈Rn{⟨x,A⊤yk⟩+ h(x)} = ∇(h∗)(−A⊤yk).

Step 2. Compute ȳk ∈ Argmax y∈C{⟨y,Axk⟩ − f∗(y)} = ∂f(Axk).

Step 3. Choose tk ∈ [0, 1] and set yk+1 = (1− tk)yk + tkȳk.

end for

Applying Theorem 1 of Lecture 8 directly gives the following convergence result for the dual

problem.

Theorem 3. For every k ≥ 1, we have

ψ∗ − ψ(yk) ≤
2R2

µ(k + 1)
.

2.1 Mirror descent

Consider the primal problem

min
x∈Rn

{ϕ(x) := f(Ax) + h(x)},

we present the following special mirror descent method for the primal problem.
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Algorithm 5 Mirror descent for primal problem

Input: Given y0 ∈ dom f∗, set initial point x0 = ∇(h∗)(−A⊤y0) and h
′(x0) = −A⊤y0.

for k ≥ 0 do

Step 1. Choose tk ∈ [0, 1] and compute xk+1 = argmin x∈Rn

{
ℓϕ(x;xk) +

1
tk
Dh(x, xk)

}
.

Step 2. Set h′(xk+1) = (1− tk)h
′(xk)− tkA

⊤f ′(Axk).

end for

Note that we linearize the whole primal function ϕ and use the µ-strongly convex function h as

the distance generating function.

The following theorem show that the dual Frank-Wolfe method is equivalent to the above mirror

descent method.

Theorem 4. If both Algorithms 4 and 5 use the same subgradient oracle of f , i.e., ȳk = f ′(Axk)

where f ′(Axk) is the one used in Step 1 of Algorithm 5, then given the same initial point y0 ∈
dom f∗, both algorithms generate same iterates {xk}.

Proof. It follows from Step 1 of Algorithm 5 that

0 ∈ tk

(
A⊤f ′(Axk) + h′(xk)

)
+ ∂h(xk+1)− h′(xk),

and hence that

0 ∈ −(1− tk)h
′(xk) + tkA

⊤f ′(Axk) + ∂h(xk+1).

This is equivalent to

∂h(xk+1) ∋ (1− tk)h
′(xk)− tkA

⊤f ′(Axk).

Using Theorem 3 of Lecture 3, we have

xk+1 ∈ ∂h∗
(
(1− tk)h

′(xk)− tkA
⊤f ′(Axk)

)
.

Since h is strongly convex, we know h∗ is smooth and ∂h∗ = ∇h∗. This means xk+1 is unique

xk+1 = ∇h∗
(
(1− tk)h

′(xk)− tkA
⊤f ′(Axk)

)
. (9)

Next, we consider Algorithm 4 and prove that −A⊤yk from Algorithm 4 is equal to h′(xk) from

Algorithm 5, i.e.,

−A⊤yk = h′(xk). (10)

We prove this relation by induction. It clearly holds for k = 0 in view of the input of Algorithm 5.

Suppose (10) holds for some k ≥ 0. Then, it follows from Step 3 of Algorithm 4 and the assumption

that ȳk = f ′(Axk) that

−A⊤yk+1 = −(1− tk)A
⊤yk − tkA

⊤ȳk = (1− tk)h
′(xk)− tkA

⊤f ′(Axk) = h′(xk+1),
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where the last identity is due to Step 2 of Algorithm 5. Hence, we prove (10).

Now, using Step 2 of Algorithm 5 and (10), we conclude that (9) is equivalent to

xk+1 = ∇h∗
(
−A⊤yk+1

)
,

which agrees with Step 1 of Algorithm 4. Therefore, we finally prove that dual Frank-Wolfe and

mirror descent are equivalent.

Convergence of Algorithm 5 is left as a homework problem.

3 Dual averaging

Recall from Lecture 5 that an iteration of the mirror descent reads as

xk+1 = argmin x∈Q

{
f(xk) + ⟨f ′(xk), x− xk⟩+

1

ak
Dw(x, xk)

}
, (11)

or xk+1 = projQ(yk+1) and yk+1 satisfies

∇w(yk+1) = ∇w(xk)− akf
′(xk).

Nesterov’s dual averaging method is a lazy version of mirror descent, where xk+1 = projQ(yk+1)

and yk+1 satisfies

∇w(yk+1) = ∇w(yk)− akf
′(xk), ∇w(y0) = 0.

That is, different form mirror descent, which goes back and forth between primal and dual spaces,

dual averaging simply averages the dual variables (i.e., gradients), and takes the inverse mirror map

as in mirror descent only if asked for a point in the primal (i.e., yk+1). Clearly,

∇w(yk+1) = −
k∑

i=0

aif
′(xi).

Hence, dual averaging can be equivalently written as

xk+1 = argmin x∈Q

{
Ak+1Γ̂k+1(x) + w(x)

}
, (12)

where

Γ̂k+1 =
Ak

Ak+1
Γ̂k +

ak
Ak+1

ℓf (x;xk), Ak+1 = Ak + ak, Γ̂0 ≡ 0, Ak = 0.

If ak = λ constanst stepsize, then dual averaging is

xk+1 = argmin x∈Q

{
k∑

i=0

ℓf (x;xi) +
1

λ
w(x)

}
.
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To setup the stage, we consider the composite optimization problem min{ϕ(x) = f(x) + h(x)}
with the same assumptions on f and w as in Lecture 5 for mirror descent. We assume h is closed

and convex.

Algorithm 6 Dual averaging

Input: Initial point x0 ∈ domh, set A0 = 0 and Γ0 ≡ 0

for k ≥ 0 do

Step 1. Choose ak and compute Ak+1 = Ak + ak.

Step 2. Compute

xk+1 = argmin x∈Rn {Ak+1Γk+1(x) + w(x)} , (13)

where

Γk+1 =
Ak

Ak+1
Γk +

ak
Ak+1

γk, γk = ℓf (·;xk) + h. (14)

end for

Lemma 3. For every k ≥ 1, we have

Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ ≤ min
x∈Rn

{AkΓk(x) + w(x)} ,

where w∗ = minx∈Rn w(x), x̄1 = x1, and for every k ≥ 1,

x̄k+1 =
Ak

Ak+1
x̄k +

ak
Ak+1

xk+1.

Proof. Proof by induction. Since A0 = 0, the case k = 1 is trivial. Assume the claim is true for

some k ≥ 1. It follow form (13) and (14) that

Ak+1Γk+1(xk+1) + w(xk+1) = AkΓk(xk+1) + akγk(xk+1) + w(xk+1)

≥ AkΓk(xk) + w(xk) +
ρ

2
∥xk+1 − xk∥2 + akγk(xk+1),

where the inequality is due to the fact that the objective in (13) is ρ-strongly convex in ∥ ·∥2. Using
the induction hypothesis and (13), we have

Ak+1Γk+1(xk+1) + w(xk+1) ≥ Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ +
ρ

2
∥xk+1 − xk∥2 + akγk(xk+1)

= Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ + ak

[
γk(xk+1) +

ρ

2ak
∥xk+1 − xk∥2

]
.

Since f is M -Lipschitz continuous, we know

ϕ(xk+1)− γk(xk+1) = f(xk+1)− ℓf (xk+1;xk) ≤ 2M∥xk+1 − xk∥
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and

γk(xk+1) +
ρ

2ak
∥xk+1 − xk∥2 ≥ ϕ(xk+1)− 2M∥xk+1 − xk∥+

ρ

2ak
∥xk+1 − xk∥2 ≥ ϕ(xk+1)−

2akM
2

ρ
.

Therefore, using the definition of x̄k+1 and the convexity of ϕ, we conclude that

Ak+1Γk+1(xk+1) + w(xk+1) ≥ Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ + akϕ(xk+1)−
2a2kM

2

ρ

≥ Ak+1ϕ(x̄k+1)−
2M2

ρ

k∑
i=1

a2i + w∗,

and hence that the claim for k + 1 is proved.

Theorem 5. For every k ≥ 1, we have

ϕ(x̄k)− ϕ∗ ≤
w(x∗)− w∗

2Ak
+

2M2

ρ

∑k−1
i=1 a

2
i

Ak
.

Proof. Using Lemma 3, we have for every x ∈ Rn,

Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ ≤ min
x∈Rn

{AkΓk(x) + w(x)} ≤ AkΓk(x) + w(x).

Taking x = x∗ gives

Akϕ(x̄k)−
2M2

ρ

k−1∑
i=1

a2i + w∗ ≤ AkΓk(x∗) + w(x∗) ≤ Akϕ∗ + w(x∗)

Therefore, the theorem is proved.

If we take constant stepsize

ak = λ, Ak = kλ,

then

ϕ(yk)− ϕ∗ ≤
w(x∗)− w∗

2λk
+

2λM2

ρ
.
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