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1 Frank-Wolfe method

Consider the problem min{f(x) : x ∈ Q} where f is convex and Q ⊆ dom f is convex and compact.

We also assume f is differentiable over dom f . One method can be employed is the projected

gradient method

xk+1 = projQ(xk − tk∇f(xk)),

which is equivalent to

xk+1 = argmin

{
`f (x;xk) +

1

2tk
‖x− xk‖2 : x ∈ Q

}
.

In this lecture, we will present an alternative approach that does not require the projection operator

projQ. The idea is to minimize the linearization of f (without the quadratic term) over Q

yk = argmin {`f (x;xk) : x ∈ Q} = argmin {〈∇f(xk), x〉 : x ∈ Q} ,

and then take a convex combination

xk+1 = xk + tk(yk − xk), tk ∈ [0, 1].

This algorithm is called Frank-Wolfe method, a.k.a., conditional gradient method.

Algorithm 1 Frank-Wolfe method

Input: Initial point x0 ∈ Q
for k ≥ 0 do

Step 1. Compute yk = argmin y∈Q〈y,∇f(xk)〉.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = xk + tk(yk − xk).

end for

This is a projection-free method since we minimize a linear function over Q. In many case,

linear optimization over Q is simpler than projection onto Q.

Frank-Wolfe method satisfies an even more important property: it produces sparse iterates.

More precisely, consider the situation where Q ⊂ Rn is a polytope, that is the convex hull of a

finite set of points (vertices). Then Carathéodory’s theorem states that any point x ∈ Q ⊂ Rn can
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be written as a convex combination of at most n+ 1 vertices of Q. On the other hand, by step 2 of

Frank-Wolfe, one knows that the k-th iterate xk can be written as a convex combination of k + 1

vertices (assuming that x0 is a vertex). Thanks to the dimension-free rate of convergence, we are

interested in the regime where k � n, and thus we see that the iterates of Frank-Wolfe are very

sparse in their vertex representation.

Let us consider the general composite opimization problem.

min{φ(x) := f(x) + h(x)}. (1)

• h is closed and convex and domh is compact;

• f is closed and convex, domh ⊆ dom f , and f is L-smooth over some set domh, i.e.,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ domh;

• the optimal set X∗ is nonempty.

It is not difficult to deduce that the last condition is implied by the first two conditions.

The three properties of Frank-Wolfe method are projection-free (prox-free), norm-free, and

sparse iterates.

In the rest of the lecture, we will consider the following generalized Frank-Wolfe method.

Algorithm 2 Generalized Frank-Wolfe method

Input: Initial point x0 ∈ domh

for k ≥ 0 do

Step 1. Compute yk = argmin y∈Rn{〈y,∇f(xk)〉+ h(y)}.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = (1− tk)xk + tkyk.

end for

2 Convergence analysis

Definition 1. The Wolfe gap is the function S(x) : dom f → R given by

S(x) = max
y∈Rn
{〈∇f(x), x− y〉+ h(x)− h(y)}.

Lemma 1. The following statements hold:

(a) S(x) ≥ 0 for any x ∈ dom f ;

(b) S(x∗) = 0 if and only if −∇f(x∗) ∈ ∂h(x∗), that is, if and only if x∗ is a stationary point of

(1).
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The above lemma gives the importance of the Wolfe gap S(x), which can be (and is indeed)

used to analyze the convergence of Frank-Wolfe for nonconvex optimization.

Lemma 2. Let x ∈ domh and t ∈ [0, 1]. Then, we have

φ((1− t)x+ ty) ≤ φ(x)− tS(x) +
t2L

2
‖y − x‖2, (2)

where y = argmin u∈Rn{〈u,∇f(x)〉+ h(u)}.

Proof. Let x+ = (1− t)x+ ty. Then, using the smoothness of f and the convexity of h, we easily

show

φ(x+) = f(x+) + h(x+)

≤ f(x)− t〈∇f(x), x− y〉+
t2L

2
‖y − x‖2 + g(x+)

≤ f(x)− t〈∇f(x), x− y〉+
t2L

2
‖y − x‖2 + (1− t)g(x) + tg(y)

= φ(x)− t [〈∇f(x), x− y〉+ g(x)− g(y)] +
t2L

2
‖y − x‖2

= φ(x)− tS(x) +
t2L

2
‖y − x‖2.

Note that so far, we do not use the convexity of f yet.

Three stepsize rules

1) predefined diminishing stepsize:

αk =
2

k + 2
;

2) adaptive stepsize:

βk = min

{
1,

S (xk)

Lf ‖yk − xk‖2

}
;

3) exact minimization/line search:

ηk ∈ argmin t∈[0,1]φ ((1− t)xk + tyk) .

The intuition of the adaptive stepsize is βk minimizes the right-hand side of (2) w.r.t. t ∈ [0, 1]

when x = xk. It is clear the exact minimization rule chooses tk = ηk to minimize the left-hand side

of (2). The intuition of the first rule αk is more involved and is given in Section 3.

The following lemma uses the convexity of f for the first time.
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Lemma 3. For any x ∈ dom f , we have

S(x) ≥ φ(x)− φ∗.

Proof. Let y = argmin u∈Rn{〈u,∇f(x)〉+ h(u)}. Then, we easily show

S(x) = 〈∇f(x), x− y〉+ h(x)− h(y)

= 〈∇f(x), x〉+ h(x)− [〈∇f(x), y〉+ h(y)]

≤ 〈∇f(x), x〉+ h(x)− [〈∇f(x), x∗〉+ h(x∗)]

= 〈∇f(x), x− x∗〉+ h(x)− h(x∗)

≥ f(x)− f(x∗) + h(x)− h(x∗)

= φ(x)− φ∗.

Theorem 1. The generalized Frank-Wolfe method with any of the three stepsize rules satisfies

φ(xk)− φ∗ ≤
2LD2

k
(3)

where D is the diameter of domh.

Proof. Using Lemma 2 with t = tk and x = xk, we have

φ((1− tk)xk + tkyk) ≤ φ(xk)− tkS(xk) +
t2kL

2
‖yk − xk‖2.

1) If the predefined stepsize is used, i.e., tk = αk, then

φ((1− αk)xk + αkyk) ≤ φ(xk)− αkS(xk) +
α2
kL

2
‖yk − xk‖2.

2) If the adaptive stepsize is used, i.e., tk = βk, then

βk = argmin t∈[0,1]

{
−tS (xk) +

t2L

2
‖yk − xk‖2

}
,

and hence

φ((1− βk)xk + βkyk) ≤ φ(xk)− βkS(xk) +
β2kL

2
‖yk − xk‖2

≤ φ(xk)− αkS(xk) +
α2
kL

2
‖yk − xk‖2.
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3) If the exact minimization/line search is used, i.e., tk = ηk, then

φ((1− ηk)xk + ηkyk) ≤ φ((1− αk)xk + αkyk)

≤ φ(xk)− αkS(xk) +
α2
kL

2
‖yk − xk‖2.

In any case, we have

φ(xk+1) ≤ φ(xk)− αkS(xk) +
α2
kL

2
‖yk − xk‖2.

Using Lemma 3, we have

φ(xk+1) ≤ φ(xk)− αk[φ(xk)− φ∗] +
α2
kL

2
‖yk − xk‖2.

φ(xk+1)− φ∗ ≤ (1− αk)[φ(xk)− φ∗] +
α2
kLD

2

2
.

We prove (3) by induction. It follows from the definition of αk and the above inequality with k = 0

that α0 = 1 and

φ(x1)− φ∗ ≤
LD2

2
.

Thus, (3) holds with k = 0. Suppose (3) holds for some k ≥ 0.

φ(xk+1)− φ∗ ≤ (1− αk)[φ(xk)− φ∗] +
α2
kLD

2

2

=
k

k + 2
[φ(xk)− φ∗] +

2LD2

(k + 2)2

≤ k

k + 2

2LD2

k
+

2LD2

(k + 2)2

=
2(k + 3)LD2

(k + 2)2
≤ 2LD2

k + 1
.

3 Frank-Wolfe as an ACG method without acceleration

In this section, we explore an alternative presentation of the Frank-Wolfe method from the per-

spective of the accelerated composite gradient (ACG) framework with the AT rule (see Lecture

7). We show that Frank-Wolfe is very close ACG except that we minimize a linear approximation

instead of a quadratic approximation as in ACG. Hence, we only get O(1/k) convergence rate but

not O(1/k2) as in ACG.
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Algorithm 3 Alternative presentation of Frank-Wolfe

Input: Initial point x0 ∈ domh, set y0 = x0, A0 = 0

for k ≥ 0 do

Step 1. Compute

ak =
1 +
√

1 + 4LAk

2L
, Ak+1 = Ak + ak (4)

Step 2. Compute

yk = argmin
u∈Rn

{`f (u;xk) + h(u)} (5)

and

xk+1 =
Akxk + akyk

Ak+1
. (6)

end for

Note that the sequences {ak} and {Ak} are the same as those in Lecture 7 with Lk = L. Hence,

Lemma 2 of Lecture 7 holds here. That is

Ak+1 = La2k, Ak ≥
k2

4L
. (7)

Theorem 2. For every k ≥ 1, we have

φ(xk)− φ∗ ≤
2LD2

k
.

Proof. Let γk(·) = `f (·;xk) + h(·). Using (5), (6), and (7), we have

Akγk(xk) + akγk(u) +
1

2
‖yk − xk‖2 ≥ Akγk(xk) + akγk(yk) +

1

2
‖yk − xk‖2

≥ Ak+1γk(xk+1) +
Ak+1L

2
‖xk+1 − xk‖2 = Ak+1

[
γk(xk+1) +

L

2
‖xk+1 − xk‖2

]
≥ Ak+1φ(xk+1)

where the last inequality is due to the smoothness of f . Taking u = x∗ and using the fact that

γk ≤ φ, we have

Ak+1φ(xk+1) ≤ Akγk(xk) + akγk(x∗) +
1

2
‖yk − xk‖2

≤ Akφ(xk) + akφ∗ +
1

2
‖yk − xk‖2.

Rearranging the terms and using the boundedness of domh, we have

Ak+1[φ(xk+1)− φ∗] ≤ Ak[φ(xk)− φ∗] +
D2

2
.
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Finally, we have

Ak[φ(xk)− φ∗] ≤ A0[φ(x0)− φ∗] +
kD2

2
=
kD2

2
,

which together with the bound on Ak implies that

φ(xk)− φ∗ ≤
kD2

2Ak
≤ 2LD2

k
.

To conclude this section, we finally shed some light on the intuition of the predefined stepsize

αk from the perspective of ACG.

Lemma 4. For every k ≥ 0, let

tk =
Ak+1

ak
.

Then, we have for every k ≥ 0,

(a)

tk+1 =
1 +

√
1 + 4t2k

2
;

(b) t0 = 1 and

tk ≥
k + 2

2
.

Proof. (a) Recall that we have

Ak+1 = Ak + ak = La2k.

Hence, it follows

La2k+1 − ak+1 −Ak+1 = 0

and

L

(
Ak+2

Lak+1

)2

− Ak+2

Lak+1
−
(
Ak+1

ak

)2

= 0.

In terms of tk, it reads

t2k+1 − tk+1 − t2k = 0.

Therefore, the solution tk+1 satisfies statement (a).

(b) First, it follows from the definition that

t0 =
A1

a0
=
a0
a0

= 1.
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It easily follows from (a) that

tk+1 =
1 +

√
1 + 4t2k

2
≥ 1 + 2tk

2
,

and hence that

2tk ≥ 1 + 2tk.

So we have

2tk ≥ k + 2t0 = k + 2.

A final remark is that following from the above bound on tk, we can derive slightly tighter

bounds on Ak. Since

Lak =
Ak+1

ak
= tk ≥

k + 2

2
,

we have

Ak+1 = La2k =
(Lak)2

L
≥ (k + 2)2

4L
, Ak ≥

(k + 1)2

4L
≥ k2

4L
,

or

Ak = a0 + . . .+ ak−1 ≥
1

2L
[2 + . . .+ (k + 1)] =

(k + 3)k

4L
≥ k2

4L
.
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