DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 8

Frank-Wolfe Method
Lecturer: Jiaming Liang October 3, 2023

1 Frank-Wolfe method

Consider the problem min{ f(x) : x € @} where f is convex and) C dom f is convex and compact.
We also assume f is differentiable over dom f. One method can be employed is the projected
gradient method

Tpy1 = Projo(xr — tV f(wr)),

which is equivalent to

. 1
Tjy1 = argmin {Ef(x;xk) + FH&: —apl?rx € Q} .
k

In this lecture, we will present an alternative approach that does not require the projection operator
projg. The idea is to minimize the linearization of f (without the quadratic term) over Q

yr = argmin {{¢(z; 1) : x € Q} = argmin {(V f(xy),z) 1z € Q},
and then take a convex combination
Thy1 = Tk + t(yp — k), tr €[0,1].

This algorithm is called Frank-Wolfe method, a.k.a., conditional gradient method.

Algorithm 1 Frank-Wolfe method
Input: Initial point 29 € Q)
for £ > 0 do
Step 1. Compute yj, = argmin e (y, V. f(xk)).
Step 2. Choose t, € [0,1] and set 11 = x + ti(yp — k).
end for

This is a projection-free method since we minimize a linear function over (). In many case,
linear optimization over () is simpler than projection onto Q).

Frank-Wolfe method satisfies an even more important property: it produces sparse iterates.
More precisely, consider the situation where Q C R™ is a polytope, that is the convex hull of a
finite set of points (vertices). Then Carathéodory’s theorem states that any point € @ C R™ can

Frank-Wolfe Method-1

be written as a convex combination of at most n + 1 vertices of (). On the other hand, by step 2 of
Frank-Wolfe, one knows that the k-th iterate x; can be written as a convex combination of k£ + 1
vertices (assuming that xg is a vertex). Thanks to the dimension-free rate of convergence, we are
interested in the regime where k < n, and thus we see that the iterates of Frank-Wolfe are very
sparse in their vertex representation.

Let us consider the general composite opimization problem.

min{¢(z) := f(z) + h(z)}. (1)
e h is closed and convex and dom h is compact;
e f is closed and convex, dom h C dom f, and f is L-smooth over some set dom h, i.e.,

IVf(x) =Vl < Lllx —yll, Vr,yedomh;

e the optimal set X, is nonempty.

It is not difficult to deduce that the last condition is implied by the first two conditions.

The three properties of Frank-Wolfe method are projection-free (prox-free), norm-free, and
sparse iterates.

In the rest of the lecture, we will consider the following generalized Frank-Wolfe method.

Algorithm 2 Generalized Frank-Wolfe method
Input: Initial point x¢g € domh
for £ > 0 do
Step 1. Compute yj, = argmin yern{(y, Vf(zx)) + h(y)}.
Step 2. Choose t; € [0,1] and set x4 = (1 — tg)xp + tpYg.
end for

2 Convergence analysis
Definition 1. The Wolfe gap is the function S(x) : dom f — R given by

S(x) = max{(Vf(z),z —y) + h(x) — h(y)}.

yER
Lemma 1. The following statements hold:
(a) S(x) >0 for any x € dom f;
(b) S(xs) =0 if and only if —V f(xx) € Oh(xy), that is, if and only if x, is a stationary point of
(1).

Frank-Wolfe Method-2

The above lemma gives the importance of the Wolfe gap S(x), which can be (and is indeed)
used to analyze the convergence of Frank-Wolfe for nonconvex optimization.

Lemma 2. Let x € domh and t € [0,1]. Then, we have

2
S~ N+ 1y) < o) — 15(2) + -y — .)

where y = argmin ,egn {(u, Vf(2)) + h(u)}.

Proof. Let 7 = (1 — t)x + ty. Then, using the smoothness of f and the convexity of h, we easily
show

¢a™) = f(2") + h(z™)

2
< J@) 9 F@), 7~) + -y — ol + g(a)

2
< f@) =tV f(z),z—y) + %Hy —al” + (1~ t)g(z) +tg(y)
2
= o(x) —t[(Vf(z),z —y) +9(x) —g(y)] + %Hy —a|f?

2
= o) — 15(2) + S5 lly — .

Note that so far, we do not use the convexity of f yet.
Three stepsize rules

1) predefined diminishing stepsize:

J— 2 .
AR

B =min< 1, —S () 50
Ly lye — x|

3) exact minimization/line search:

2) adaptive stepsize:

Nk € argmin 4o 1)@ ((1 —)k + tyr) -

The intuition of the adaptive stepsize is f; minimizes the right-hand side of (2) w.r.t. ¢ € [0, 1]
when z = x. It is clear the exact minimization rule chooses t; = 1 to minimize the left-hand side
of (2). The intuition of the first rule oy is more involved and is given in Section 3.

The following lemma uses the convexity of f for the first time.

Frank-Wolfe Method-3

Lemma 3. For any z € dom f, we have

Proof. Let y = argmin yern{(u, Vf(z)) + h(u)}. Then, we easily show

Theorem 1. The generalized Frank-Wolfe method with any of the three stepsize rules satisfies

LD?
Sar) — 60 < 2 3)

where D 1is the diameter of dom h.
Proof. Using Lemma 2 with ¢ = t;, and x = zy, we have

2
(1 — tr)wr + tryr) < ¢(xr) — tiS(zp) + %Hyk —)%

1) If the predefined stepsize is used, i.e., tx = oy, then

2L
B((1 =)k + o) < Bla) — S () + "L gy — i

2) If the adaptive stepsize is used, i.e., ty = B, then

_ 2L 9
B = argmin ejo,1) § —t5 (vx) + Y lye — zell” ¢,
and hence
BiL 2
o((1 = Br)xk + Bryr) < d(xx) — BrS(xr) + THyk — x|
o2
< o(xk) — g S(w) + %Hyk — x|

Frank-Wolfe Method-4

3) If the exact minimization/line search is used, i.e., tx = 7, then

A((1 = mi)xr + meyr) < A((1 — o) zr + oryr)
2L

< ¢(wk) — apS(zy) + %Hyk — ||
In any case, we have
2L 9
P(ap+1) < Plan) — awS(zx) + ==y — 2"
Using Lemma 3, we have
ajL 2
Bnsr) < Blax) — nlglar) — 0. + By — .
o LD?

Har+1) = ¢4 < (1= ap)[lan) — o] + =

We prove (3) by induction. It follows from the definition of oy, and the above inequality with k£ = 0
that g = 1 and

LD?
P(x1) — dx < 9
Thus, (3) holds with £ = 0. Suppose (3) holds for some k£ > 0.
oz LD?
Papr1) — b < (1= ap)lp(ar) — du] + - 5
k 2LD?
= m[¢(xk) — ¢i] + (i 1 2)

ok 2LD2+ 2LD?
T k+2 k (k+2)?
2(k + 3)LD? - 2LD?
(k+2)2 ~ k+1°

3 Frank-Wolfe as an ACG method without acceleration

In this section, we explore an alternative presentation of the Frank-Wolfe method from the per-
spective of the accelerated composite gradient (ACG) framework with the AT rule (see Lecture
7). We show that Frank-Wolfe is very close ACG except that we minimize a linear approximation
instead of a quadratic approximation as in ACG. Hence, we only get O(1/k) convergence rate but
not O(1/k?) as in ACG.

Frank-Wolfe Method-5

Algorithm 3 Alternative presentation of Frank-Wolfe

Input: Initial point xg € dom h, set yo = xp, A9 =0
for £ > 0 do
Step 1. Compute

14+ 1+ 4LAg
2L ’

ay = App1 = A +ayp,

Step 2. Compute

yr, = argmin {{¢(u; xy) + h(u)}
’MGR"

and
Apxy, + aryg

Tk1 =
Ay

end for

Note that the sequences {aj} and { Ay} are the same as those in Lecture 7 with Ly = L. Hence,

Lemma 2 of Lecture 7 holds here. That is

2 k?
Ak+1 = Lak, Ak > 4L'
Theorem 2. For every k > 1, we have

2LD?
k

Proof. Let v(-) = £f(-;x) + h(-). Using (5), (6), and (7), we have

1 1
Apve(rr) + apyi(u) + §Hyk — x| > Apvi (k) + anve(ye) + §Hyk — 2 ?

Ag1L
2

> Appvk(Tpgr) +

> App10(xr41)

L
k41 — 2kl]* = Aprr |6 (Trr1) + = 1Tk — e
2

(7)

where the last inequality is due to the smoothness of f. Taking u = x, and using the fact that

v < ¢, we have

1
Apr10(xp41) < Apye(or) + apye(es) + §||yk — |2

1
< Apd(or) + arpds + §|ka — x|

Rearranging the terms and using the boundedness of dom h, we have

Ap1[d(Try1) — ¢u] < Aplp(ar) — ¢ + 5

Frank-Wolfe Method-6

Finally, we have

kD? kD?
which together with the bound on Aj implies that
kD? _ 2LD?
P(zr) — ¢ < 5A Sk

O]

To conclude this section, we finally shed some light on the intuition of the predefined stepsize
aj from the perspective of ACG.

Lemma 4. For every k > 0, let

A
t = AL
a
Then, we have for every k > 0,
(a)
14 /1448
let1 = ST S
(b) to =1 and
k42
> =

Proof. (a) Recall that we have
Ak+1 =Ap+a = La%.

Hence, it follows
Lag,y — app1 — Apg1 =0

I < Ap+o)2 A (Ak+1)2 _0
Lag14 Lay41 a ‘

Bt — =0

and

In terms of i, it reads

Therefore, the solution ¢, satisfies statement (a).
(b) First, it follows from the definition that

ao ao

to

Frank-Wolfe Method-7

It easily follows from (a) that

1+ /144t 1+

tonq =
k+1 9 = 9 ;

and hence that
2tk > 14 2tk.

So we have
2Up >k + 2t =k + 2.

O]

A final remark is that following from the above bound on t;, we can derive slightly tighter
bounds on Aj. Since

A kE+2
Lay, = k+1—tk2L7
ar 2
we have ()2 (k)2 (k:)2 12
La; + 2 +1
Api1 = Laz = > A > T
k1 = Lk L = 4L kK AL <AL’
o (k+3)k _ k2
1 +3
A = > —2 k+1)] = >
E=0a0+ ...+ ag 1_2L[+ + (k+1)] I 21l

Frank-Wolfe Method-8

