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1 Accelerated composite gradient framework

We are interested in solving

min{ϕ(x) := f(x) + h(x)}

• h is closed and convex;

• f is closed and convex, domh ⊆ dom f , and f is L-smooth over some set Ω satisfying

Ω ⊃ domh;

• the optimal set X∗ is nonempty.

Algorithm 1 Accelerated composite gradient (ACG) framework

Input: Initial point x0 ∈ domh, set y0 = x0, A0 = 0

for k ≥ 0 do

Step 1. Choose Lk > 0 and compute

ak =
1 +

√
1 + 4LkAk

2Lk
, Ak+1 = Ak + ak, x̃k =

Akyk + akxk
Ak+1

(1)

Step 2. Compute xk+1 and yk+1 using one of the rules listed below.

end for

Definition 1. Define

y(x̃k;Lk) := argmin

{
ℓf (x; x̃k) + h(x) +

Lk

2
∥x− x̃k∥2 : x ∈ Rn

}
(2)

and

C(y; x̃) :=
2 [f(y)− ℓf (y; x̃)]

∥y − x̃∥2
. (3)

We say the positive parameter Lk is a good local curvature of f at x̃k, if

C(y(x̃k;Lk); x̃k) ≤ Lk. (4)
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We will now describe three possible rules for computing the iterates xk+1 and yk+1 in step 2 of

the above framework.

(i) (FISTA rule) This rule sets yfk+1 = y(x̃k;Lk) where y(x̃k;Lk) is defined in (2) and Lk > 0 is

a good upper curvature of f at x̃k, and computes xk+1 as

xfk+1 = PΩ

(
Ak+1

ak
yfk+1 −

Ak

ak
yk

)
. (5)

FISTA rule was first introduced by Nesterov when h is the indicator function of a nonempty

closed convex set and was later extended to general composite closed convex functions by

Beck and Teboulle.

(ii) (AT rule) This rule computes

xak+1 = argmin
u∈Rn

{
ak [ℓf (u; x̃k) + h(u)] +

1

2
∥u− xk∥2

}
(6)

and

yak+1 =
Akyk + akxk+1

Ak+1
. (7)

This rule was introduced by Auslender and Teboulle.

(iii) (LLM rule) This rule sets yk+1 = yak+1 as in the FISTA rule and and xk+1 as in the AT rule.

LLM rule was introduced by Lu, Lan and Monteiro.

Lemma 1. For every k ≥ 0, we define

γ̃k(u) := ℓf (u; x̃k) + h(u), (8)

γk(u) := γ̃k(y
f
k+1) + Lk⟨x̃k − yfk+1, u− yfk+1⟩. (9)

Then the following statements hold for every k ≥ 0:

(a) γk minorizes γ̃k, γ̃k(y
f
k+1) = γk(y

f
k+1),

min
u

{
γ̃k(u) +

Lk

2
∥u− x̃k∥2

}
= min

u

{
γk(u) +

Lk

2
∥u− x̃k∥2

}
,

and these minimization problems have yfk+1 as unique optimal solution;

(b) for every u ∈ domh, γ̃k(u) ≤ ϕ(u);

(c) xfk+1 = argmin
{
akγk(u) + ∥u− xk∥2/2 : u ∈ Ω

}
;

(d) {xak}, {y
f
k}, and {yak} are contained in H, while {xfk} and {x̃k} lie in Ω.
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Lemma 2. The following statements about scalars ak and AK hold for every k ≥ 0:

(a) Ak+1 = Lka
2
k;

(b)

Ak ≥ 1

4

(
k−1∑
i=0

1√
Li

)2

.

Proof. (a) It is easy to see that ak as in (1) is the solution of

Lka
2
k − ak −Ak = 0.

Using the second relation in (1), we have

Ak+1 = Ak + ak = Lka
2
k.

(b) It follows from the first two relations in (1) that

√
Ai+1 =

(
Ai +

1 +
√
1 + 4LiAi

2Li

)1/2

≥
(
Ai +

1 + 2
√
LiAi

2Li

)1/2

≥
√
Ai +

1

2
√
Li

.

Hence, we have √
Ak ≥

√
A0 +

k−1∑
i=0

1

2
√
Li

=
k−1∑
i=0

1

2
√
Li

,

where the equality is due to A0 = 0.

Proposition 1. For every k ≥ 0, assume that Lk is a good local curvature. Then, for every k ≥ 0

and u ∈ domh, the following inequality holds for every rule

Ak+1[ϕ(yk+1)− ϕ(u)] +
1

2
∥u− xk+1∥2 ≤ Ak[ϕ(yk)− ϕ(u)] +

1

2
∥u− xk∥2. (10)

Proof. We first show (10) holds for the FISTA rule. For the ease of notation, we omit the

superscript “f” in the proof for the FISTA rule. Using Lemma 1(c), the fact that akγk(u)+
1
2∥u−xk∥2

is 1-strongly convex, and Theorem 5 of Lecture 3, we have for every u ∈ domh,

Akγk(yk) + akγk(u) +
1

2
∥u− xk∥2 −

1

2
∥u− xk+1∥2 ≥ Akγk(yk) + akγk(xk+1) +

1

2
∥xk+1 − xk∥2

≥ Ak+1γk(ŷk+1) +
1

2

A2
k+1

a2k
∥ŷk+1 − x̃k∥2 = Ak+1

[
γk(ŷk+1) +

Lk

2
∥ŷk+1 − x̃k∥2

]
(11)
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where ŷk+1 = (Akyk + akxk+1)/Ak+1 and the second inequality is due to the convexity of γk, and

the equality is due to Lemma 2(a). It follows from Lemma 1(a) and the assumption that Lk is a

good local curvature that

γk(ŷk+1) +
Lk

2
∥ŷk+1 − x̃k∥2 ≥ γk(yk+1) +

Lk

2
∥yk+1 − x̃k∥2

= γ̃k(yk+1) +
Lk

2
∥yk+1 − x̃k∥2

≥ ϕ(yk+1).

Plugging the above inequality into (11) and rearraging the terms, we have

Ak+1ϕ(yk+1) +
1

2
∥u− xk+1∥2 −

1

2
∥u− xk∥2 ≤ Akγk(yk) + akγk(u)

≤ Akγ̃k(yk) + akγ̃k(u)

≤ Akϕ(yk) + akϕ(u),

where the last two inequalities are due to the fact that γk ≤ γ̃k ≤ ϕ (see Lemma 1(a) and (b)).

Finally, we conclude that

Ak+1[ϕ(yk+1)− ϕ(u)] +
1

2
∥u− xk+1∥2 ≤ Ak[ϕ(yk)− ϕ(u)] +

1

2
∥u− xk∥2.

We next show (10) holds for the AT rule. For the ease of notation, we omit the superscript

“a” in the proof for the AT rule. Using (6), the fact that akγ̃k(u)+
1
2∥u−xk∥2 is 1-strongly convex,

and Theorem 5 of Lecture 3, we have for every u ∈ domh,

Akγ̃k(yk) + akγ̃k(u) +
1

2
∥u− xk∥2 −

1

2
∥u− xk+1∥2 ≥ Akγ̃k(yk) + akγ̃k(xk+1) +

1

2
∥xk+1 − xk∥2

≥ Ak+1γ̃k(yk+1) +
1

2

A2
k+1

a2k
∥yk+1 − x̃k∥2 = Ak+1

[
γ̃k(yk+1) +

Lk

2
∥yk+1 − x̃k∥2

]
≥ Ak+1ϕ(yk+1)

where the second inequality is due to the convexity of γk and the definition of yk+1 in (7), the

equality is due to Lemma 2(a), and the last inequality follows from the assumption that Lk is a

good local curvature. The rest of the proof is the same as that for the FISTA rule.

We finally show (10) holds for the LLM rule. Using (6), the fact that akγ̃k(u) +
1
2∥u− xk∥2 is

1-strongly convex, and Theorem 5 of Lecture 3, we have for every u ∈ domh,

Akγ̃k(yk) + akγ̃k(u) +
1

2
∥u− xk∥2 −

1

2
∥u− xk+1∥2 ≥ Akγ̃k(yk) + akγ̃k(xk+1) +

1

2
∥xk+1 − xk∥2

≥ Ak+1γ̃k(ŷk+1) +
1

2

A2
k+1

a2k
∥ŷk+1 − x̃k∥2 = Ak+1

[
γ̃k(ŷk+1) +

Lk

2
∥ŷk+1 − x̃k∥2

]
≥ Ak+1

[
γ̃k(yk+1) +

Lk

2
∥yk+1 − x̃k∥2

]
≥ Ak+1ϕ(yk+1)
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where ŷk+1 = (Akyk + akxk+1)/Ak+1 and the second inequality is due to the convexity of γk, the

equality is due to Lemma 2(a), the third inequality is due to Lemma 1(a), and the last inequality

follows from the assumption that Lk is a good local curvature. The rest of the proof is the same

as that for the FISTA rule.

In Step 1 of the ACG framework, we want to choose Lk > 0 to be a good local curvature

satisfying (4). There two standard ways to do so.

1. Constant. Suppose we know the smoothness parameter (i.e., global curvature) L, then we

can choose Lk = L for every k ≥ 0. It follows from Lemma 2(b) that

Ak ≥ 1

4

(
k−1∑
i=0

1√
Li

)2

=
k2

4L
.

2. Adaptive. For every k ≥ 0, we begin from some small L0
k > 0, check whether (4) is true

with Lk replaced by L0
k, i.e.,

C(y(x̃k;L0
k); x̃k) ≤ L0

k.

If it is true, then we set Lk = L0
k. Otherwise, we set L1

k = 2L0
k, and check whether (4) is true

with Lk replaced by L1
k and follow the previous step. The search for Lk stays in the loop until

(4) is satisfied with some Li
k, and we output Lk = Li

k. It is easy to show that the interations

of this search is bounded by log(Lk/L
0
k) and Lk ≤ 2L. Moreover, it follows from Lemma 2(b)

that

Ak ≥ 1

4

(
k−1∑
i=0

1√
Li

)2

≥ k2

8L
. (12)

Theorem 1. For every k ≥ 0, we choose Lk > 0 to be a good local curvature satisfying (4), then

we have

ϕ(yk)− ϕ∗ ≤
4L∥x0 − x∗∥2

k2
.

Proof. Using Proposition 1 and the fact that A0 = 0, we have

Ak[ϕ(yk)− ϕ∗] +
1

2
∥xk − x∗∥2 ≤

1

2
∥x0 − x∗∥2.

This inequality and (12) imply that

ϕ(yk)− ϕ∗ ≤
1

2Ak
∥x0 − x∗∥2 ≤

4L∥x0 − x∗∥2

k2
.
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