DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 7

Accelerated Gradient Methods
Lecturer: Jiaming Liang September 28, 2023

1 Accelerated composite gradient framework

We are interested in solving

min{¢(z) := f(z) + h(z)}
e h is closed and convex;

e f is closed and convex, domh C dom f, and f is L-smooth over some set ) satisfying
Q O dom h;

e the optimal set X, is nonempty.

Algorithm 1 Accelerated composite gradient (ACG) framework

Input: Initial point xg € dom h, set yg = 9, Ag =0

for £ > 0 do
Step 1. Choose L > 0 and compute
1++/1+4L A A
ap = TV S A = A+ ay, iﬁkZM (1)
2Ly, A1
Step 2. Compute zry1 and yiy1 using one of the rules listed below.
end for
Definition 1. Define
. - : .5 Ly, ~ 2. n
y(Zy; Ly) = argmin < £¢(x; &) + h(x) + 7“33 —Zg|*:x eR (2)
" 2(£() ~ £5(53)
. Yy) —cfp\y;x
Cly; 7) = - : 3)
ly — 2|2
We say the positive parameter Ly, is a good local curvature of f at Ty, if
C(y(@k; Li); Tk) < L. (4)
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We will now describe three possible rules for computing the iterates x; 1 and yiy1 in step 2 of

the above framework.

(i)

(i)

(iii)

(FISTA rule) This rule sets y]{H = y(Zg; L) where y(Zg; Li) is defined in (2) and Ly > 0 is
a good upper curvature of f at zj, and computes xpy1 as

;o A1 g Ay,
Ty = Pa <%yk+1 - ak@/k> . (5)

FISTA rule was first introduced by Nesterov when h is the indicator function of a nonempty
closed convex set and was later extended to general composite closed convex functions by
Beck and Teboulle.

(AT rule) This rule computes

. N 1
s = argmin o 1w 1) + (0] + g - ®
and
o Aryr +apzTr .
Ye+1 = T (7)

This rule was introduced by Auslender and Teboulle.

(LLM rule) This rule sets yx11 = ygﬂ as in the FISTA rule and and x;y1 as in the AT rule.
LLM rule was introduced by Lu, Lan and Monteiro.

Lemma 1. For every k > 0, we define

Fi(w) = L(w; Tx) + h(u), (8)
(W) = Al ) + L@ — gl w = yl)- (9)

Then the following statements hold for every k > 0:

(a) i minorizes x, (Yi,1) = W Wli),

. - L - . L _
min {fyk(u) + igHu — kaQ} = min {fyk(u) + —kHu — a:kHQ} ,
u 2 u 2

and these minimization problems have y,{_i_l as unique optimal solution;

(b) for every u € dom h, Fx(u) < ¢(u);

(c) 95£+1 = argmin {apyi(u) + [Ju — z]|?/2 1w € Q};

(d) {z¢}, {y,{}, and {yi'} are contained in H, while {xi} and {Zx} lie in Q.
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Lemma 2. The following statements about scalars ap and Ax hold for every k > 0:

1=0

Proof. (a) It is easy to see that ay as in (1) is the solution of

((I) Ak-l—l = Lkaz;

(b)

.-lkM—‘
5

Lkai — A — Ak = 0.
Using the second relation in (1), we have
Apr1 = A +ap = Lka%.

(b) It follows from the first two relations in (1) that

1+ IF4L,4;\ /2 1424\ /2 1
VAigr = 4 > A+ —F— > VA A+ —=.
i < * 2L, ) MY VL

Hence, we have

k—1 k—
VAR > Ao+ Z
2:0 vLi :0
where the equality is due to Ag = 0. O

Proposition 1. For every k > 0, assume that Ly is a good local curvature. Then, for every k > 0
and u € dom h, the following inequality holds for every rule

Anlolen) — 6] + 3 Ju — zial” < Aclolys) — 6] + glu—ael®. (10)

Proof. We first show (10) holds for the FISTA rule. For the ease of notation, we omit the
superscript “f” in the proof for the FISTA rule. Using Lemma 1(c), the fact that ayye(u)+4|ju—zy|>
is 1-strongly convex, and Theorem 5 of Lecture 3, we have for every u € dom h,

1 1 1
Apve(yr) + arye(u) + 5”“ —ap]* - §Hu — 21 l? > Arve(yr) + arve(Te1) + §ka+1 — a2

) 1 A7
> App1 Ve (k1) + 5

. - . Ly, . -
GQH I9k+1 — Zkl1? = Apgr [ (k1) + ?Hyk+1 — || (11)
k
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where Jx11 = (Aryr + arxr+1)/Ak+1 and the second inequality is due to the convexity of v, and
the equality is due to Lemma 2(a). It follows from Lemma 1(a) and the assumption that Ly is a
good local curvature that

Ly,

R R - Ly, -
Vi (Ur+1) + 7||yk+1 — 2|1 > We(yh1) + 7||yk+1 — F)?

- Ly, -
= Yie(Yrt1) + 7||yk+1 — 7|
> O(Yr+41)-

Plugging the above inequality into (11) and rearraging the terms, we have

1 1
A 10(Yr1) + iHu — e ® — 5”“ — ax|® < Apve(ye) + arye(w)

< ATk (yr) + arye(u)
< Apd(yr) + axg(u),

where the last two inequalities are due to the fact that v, < 4 < ¢ (see Lemma 1(a) and (b)).
Finally, we conclude that

Aplplyis) — 6] + 5l =zl < Alolue) — o] + g Jlu — il

We next show (10) holds for the AT rule. For the ease of notation, we omit the superscript
“a” in the proof for the AT rule. Using (6), the fact that ayx(u) + 1|ju—z|/? is 1-strongly convex,
and Theorem 5 of Lecture 3, we have for every u € dom h,

- - 1 1 5 B 1
Ak (yr) + ar(u) + §HU —ap]* - 5”“ — zp1]? > AT (yr) + arFk(@ps) + §H$k+1 — ||
A? . . Ly }
2;1 vkt — Zkl1* = Arsr | Tk (yrs1) + 7||yk+1 — &)?
i

5 1
> Ap17 (Y1) + 5

> Apt10(Yr+1)

where the second inequality is due to the convexity of 7% and the definition of yxi1 in (7), the
equality is due to Lemma 2(a), and the last inequality follows from the assumption that Ly is a
good local curvature. The rest of the proof is the same as that for the FISTA rule.

We finally show (10) holds for the LLM rule. Using (6), the fact that agyy(u) + 5 [lu — 2% is
1-strongly convex, and Theorem 5 of Lecture 3, we have for every u € dom h,

- ~ 1 1 5 5 1
Ak (yr) + are(u) + §HU —z|)? - QHU — T )® = A (k) + axFr(Trs1) + §H$k+1 — ||

RPN 1AL - < Ly, . -
> App 1Yk (k1) + 3 a; G641 — Zkl|* = At [’Yk(ykJrl) + 7”yk+1 — &)?
k

. Ly -
> Apr [T (Yrt1) + ?Hyk—&-l - ﬂsz”2] > Ak 10(Yrr1)
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where Jr11 = (Agyr + agxrps1)/Ax+1 and the second inequality is due to the convexity of v, the
equality is due to Lemma 2(a), the third inequality is due to Lemma 1(a), and the last inequality
follows from the assumption that Lj is a good local curvature. The rest of the proof is the same
as that for the FISTA rule. O

In Step 1 of the ACG framework, we want to choose Ly > 0 to be a good local curvature
satisfying (4). There two standard ways to do so.

1. Constant. Suppose we know the smoothness parameter (i.e., global curvature) L, then we
can choose Ly = L for every k > 0. It follows from Lemma 2(b) that

L\ e
> = — ] ==
w21 (3 7n) -3

2. Adaptive. For every k > 0, we begin from some small L) > 0, check whether (4) is true
with L replaced by L%, ie.,
Cly(Tx; Ly); k) < L.
If it is true, then we set Ly = L,(g. Otherwise, we set L,l€ = 2LY and check whether (4) is true
with Ly replaced by L,lf and follow the previous step. The search for Lj stays in the loop until
(4) is satisfied with some Li, and we output Ly = Li. It is easy to show that the interations
of this search is bounded by log(Ly/L?) and Ly < 2L. Moreover, it follows from Lemma 2(b)

that )
k—1
1 1 k2
Ap > - — ] > = 12
’“—4(2\@) = 8L (12)

Theorem 1. For every k > 0, we choose Ly, > 0 to be a good local curvature satisfying (4), then

we have )
o) — 6, < 022
Proof. Using Proposition 1 and the fact that Ag = 0, we have
ARlBe) — 9u] + gl — 2l < 370 — 2

This inequality and (12) imply that

1 ) _ AL|zo — .2
— by < ——||lwg — xy||? < T
B(u) — 60 < oo — a2 < =0
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