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1 Proximal operator

Definition 1. Given a function f , the proximal mapping of f is given by

proxf (x) = argmin u∈Rn

{
f(u) +

1

2
‖u− x‖2

}
, ∀x ∈ Rn.

Note that if f is closed and convex then proxf (x) is a singleton for any x ∈ Rn.

Example: soft-thresholding, for some λ > 0, the proximal mapping for the one-dimensional

function λ| · | is

proxλ|·|(y) = Tλ(y) = [|y| − λ]+ sgn(y) =


y − λ, y ≥ λ
0, |y| < λ

y + λ, y ≤ −λ

Hence, the proximal mapping for f(x) = λ‖x‖1 is

Tλ(x) ≡ (Tλ (xj))
n
j=1 = [|x| − λ1]+ � sgn(x)

where � denotes componentwise multiplication.

Theorem 1. Let Q ⊆ Rn be nonempty. Then, proxIQ(x) = projQ(x) for any x ∈ Rn. Let Q ⊆ Rn

be a nonempty closed convex set. Then, proxIQ(x) = projQ(x) is a singleton for any x ∈ Rn.

Theorem 2. Let f be a closed and convex function. Then for any x, y ∈ Rn, we have

(i) ‖proxf (x)− proxf (y)‖2 ≤ 〈proxf (x)− proxf (y), x− y〉;

(ii) ‖proxf (x)− proxf (y)‖ ≤ ‖x− y‖.

Proof. (a) Let u = proxf (x) and v = proxf (y). It follows from the defintion of proximal mapping

that

u = argminw∈Rn

{
f(w) +

1

2
‖w − x‖2

}
and

x− u ∈ ∂f(u).
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The inclusion is equivalent to

f(w) ≥ f(u) + 〈x− u,w − u〉 ∀w ∈ Rn.

Taking w = v, we have

f(v) ≥ f(u) + 〈x− u, v − u〉.

Following the same argument for v = proxf (y), we have

f(u) ≥ f(v) + 〈y − v, u− v〉

Adding the above two inequalities, we obtain

0 ≥ 〈y − x+ u− v, u− v〉,

i.e.,

〈x− y, u− v〉 ≥ ‖u− v‖2.

Plugging u = proxf (x) and v = proxf (y) into the above inequality, we prove (a).

(b) This statement simply follows from (a) using the Cauchy-Schwarz inequality.

2 Moreau envelope

Theorem 3. (Moreau decomposition) Let f be a closed and convex function. Then for any

x ∈ Rn, we have

proxf (x) + proxf∗(x) = x.

Proof. Let u = proxf (x). It is equivalent to x−u ∈ ∂f(u). Using Theorem 2 of Lecture 5, we have

u ∈ ∂f∗(x− u), which is equivalent to x− u = proxf∗(x). Therefore,

proxf (x) + proxf∗(x) = u+ x− u = x.

Theorem 4. (extended Moreau decomposition) Let f be a closed and convex function and

λ > 0. Then for any x ∈ Rn, we have

proxλf (x) + λ proxλ−1f∗(x/λ) = x.

Definition 2. Let f be a closed and convex function and µ > 0. The Moreau envelope of f is

Mµ
f (x) = min

u

{
f(u) +

1

2µ
‖u− x‖2

}
.
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The parameter µ is called the smoothing parameter.

Figure 1: Moreau envelope

Properties

• Mµ
f (x) ≤ f(x), plot, geometric interpretation: Moreau envelope Mµ

f is an envelope under-

neath f that smoothifies f but may not convexifies f

•
∇Mµ

f (x) =
1

µ

(
x− proxµf (x)

)
• ∇Mµ

f is 1
µ -Lipschitz continuous, Mµ

f is 1
µ -smooth

‖∇Mµ
f (x)−∇Mµ

f (y)‖2 =
1

µ2
∥∥x− proxµf (x)− y + proxµf (y)

∥∥2
=

1

µ2

(
‖x− y‖2 +

∥∥proxµf (x)− proxµf (y)
∥∥2 − 2〈proxf (x)− proxf (y), x− y〉

)
≤ 1

µ2

(
‖x− y‖2 −

∥∥proxµf (x)− proxµf (y)
∥∥2)

≤ 1

µ2
‖x− y‖2

• Mµ
f maintians convexity if f is convex. This is because partial minimization g(x) = miny f(x, y)

preserves convexity.

3 Proximal gradient method

3.1 Composite optimization

min{φ(x) := f(x) + h(x)}
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• h is closed and convex;

• f is closed and convex, dom f is convex, domh ⊆ int(dom f), and f is L-smooth over

int(dom f);

• the optimal set X∗ is nonempty.

3.2 Proximal gradient

Algorithm 1 Proximal gradient method

Input: Initial point x0 ∈ domh

for k ≥ 0 do

Compute xk+1 = proxh (xk − hkf ′(xk)).
end for

Theorem 5. Functions f and h are as assumed in Subsection 3.1. Choose λ ∈ (0, 1/L]. Then, the

proximal gradient method generates a sequence of points {xk} satisfying

f (xk)− f∗ ≤
‖x0 − x∗‖2

2λk
, ∀k ≥ 1.

Proof. It is easy to verify that one iteration of the proximal gradient method can be written as

xk+1 = min
x∈Rn

{
`f (x;xk) + h(x) +

1

2λ
‖x− xk‖2

}
.

Using Theorem 5 of Lecture 3 and the fact that the above objective function is (1/λ)-strongly

convex, we have for every x ∈ domh,

`f (x;xk) + h(x) +
1

2λ
‖x− xk‖2 ≥ `f (xk+1;xk) + h(xk+1) +

1

2λ
‖xk+1 − xk‖2 +

1

2λ
‖x− xk+1‖2

≥ `f (xk+1;xk) + h(xk+1) +
L

2
‖xk+1 − xk‖2 +

1

2λ
‖x− xk+1‖2

≥ f(xk+1) + h(xk+1) +
1

2λ
‖x− xk+1‖2,

where the second inequality is due to λ ≤ 1/L and the last inequality is due to Lemma 1(ii) of

Lecture 3. It then follows from the convexity of f that

f(x) + h(x) +
1

2λ
‖x− xk‖2 ≥ f(xk+1) + h(xk+1) +

1

2λ
‖x− xk+1‖2.

Taking x = xk, we have

f(xk) + h(xk) ≥ f(xk+1) + h(xk+1) +
1

2λ
‖xk+1 − x∗‖2 ≥ f(xk+1) + h(xk+1)
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which shows that the function value of the iterates is a nonincreasing sequence. Taking x = x∗, we

have

f(x∗) + h(x∗) +
1

2λ
‖xk − x∗‖2 ≥ f(xk+1) + h(xk+1) +

1

2λ
‖xk+1 − x∗‖2,

i.e.,

(f + h)(xk+1)− (f + h)(x∗) ≤
1

2λ
‖xk − x∗‖2 −

1

2λ
‖xk+1 − x∗‖2.

Summing the above inequality and using the monotinicity of {(f + h)(xk)}, we obtain

k [(f + h)(xk)− (f + h)(x∗)] ≤
k−1∑
i=0

(f + h)(xi+1)− (f + h)(x∗) ≤
1

2λ
‖x0 − x∗‖2 −

1

2λ
‖xk − x∗‖2.

Thus, the claim of the theorem follows.
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