DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 6

Proximal Gradient Method
Lecturer: Jiaming Liang September 26, 2023

1 Proximal operator

Definition 1. Given a function f, the proximal mapping of f is given by
. 1 2 n
prox s (x) = argmin ,egn § f(u) + iHu —z||*p, VreR™

Note that if f is closed and convex then prox () is a singleton for any x € R".
Example: soft-thresholding, for some A > 0, the proximal mapping for the one-dimensional
function A| - | is

proxy.|(y) = Ta(y) = [ly| — Al+sgn(y) = {0, lyl <A

Hence, the proximal mapping for f(z) = \||z||1 is
Ta(@) = (Th (25))j-; = [lz] = A1]4+ © sgn(x)
where ©® denotes componentwise multiplication.

Theorem 1. Let Q C R"™ be nonempty. Then, prox;,, (z) = projg(x) for any x € R". Let Q@ C R"
be a nonempty closed convex set. Then, prox;, (x) = projg(z) is a singleton for any x € R™.

Theorem 2. Let f be a closed and convex function. Then for any x,y € R™, we have
(i) || prox(z) — prox,(y)||* < (prox;(z) — prox;(y), — y);
(i) || prox(z) — prox;(y)[| < [l — y.

Proof. (a) Let u = prox(z) and v = prox;(y). It follows from the defintion of proximal mapping
that

. 1
= argnin ez { ) + o — 7}

and

x—u € df(u).
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The inclusion is equivalent to
fw) > f(u) + (xr —u,w—u) YweR"

Taking w = v, we have

f) > f(u) + (z — u,v — u).
Following the same argument for v = prox(y), we have

fu) = f(v) +(y —v,u—v)
Adding the above two inequalities, we obtain

0>(y—x+u—v,u—uv)),

i.e.,
(@ —y,u—v) 2 [lu—ol.

Plugging u = prox(z) and v = prox(y) into the above inequality, we prove (a).
(b) This statement simply follows from (a) using the Cauchy-Schwarz inequality. O
2 DMoreau envelope

Theorem 3. (Moreau decomposition) Let f be a closed and convex function. Then for any
x € R™, we have
prox¢(x) + prox . (r) = .

Proof. Let u = proxy(x). It is equivalent to  —u € df(u). Using Theorem 2 of Lecture 5, we have
u € Op«(z — u), which is equivalent to # — u = prox s« (). Therefore,

prox;(z) + proxs«(r) =u+x —u = .
0

Theorem 4. (extended Moreau decomposition) Let f be a closed and convex function and
A > 0. Then for any x € R™, we have

prox, ¢(z) + Aproxy-1 .« (v/A) = .

Definition 2. Let f be a closed and convex function and p > 0. The Moreau envelope of f is

M (o) = min { (0 + 5 = ol
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The parameter p is called the smoothing parameter.
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Figure 1: Moreau envelope

Properties

o M ]’f () < f(z), plot, geometric interpretation: Moreau envelope M J’f is an envelope under-
neath f that smoothifies f but may not convexifies f

VM]’;L(QS) = ; (z — proxuf(:p))

o VM ]‘f is i-Lipschitz continuous, M J‘f is i—smooth

1

2
IVALF () = VME)I? = 5 [l prox, () =+ prox, s (v)]
1 2 2
= — (llz =9Il + [[prox, s (@) = prox,,; (v)|* = 2(prox; (w) = prox(y).= — y))

1
< (e =yl = lprox,s @) = prox,, ;)|

1 2
< = llz =yl
112

o M ;f maintians convexity if f is convex. This is because partial minimization g(x) = min, f(z,y)

preserves convexity.

3 Proximal gradient method

3.1 Composite optimization

min{¢(z) := f(z) + h(z)}
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e h is closed and convex;

e f is closed and convex, dom f is convex, domh C int(dom f), and f is L-smooth over

int(dom f);

e the optimal set X, is nonempty.

3.2 Proximal gradient

Algorithm 1 Proximal gradient method

Input: Initial point g € domh
for £ > 0 do

Compute zjy1 = proxy, (zr — hef'(xr)).
end for

Theorem 5. Functions f and h are as assumed in Subsection 3.1. Choose X € (0,1/L]. Then, the
proximal gradient method generates a sequence of points {xy} satisfying

|z — @]
—fe < > 1.
fxr) — f < NE Vk > 1

Proof. 1t is easy to verify that one iteration of the proximal gradient method can be written as

. 1
ser = min {os(ein) +a) + ol -l

Using Theorem 5 of Lecture 3 and the fact that the above objective function is (1/)\)-strongly
convex, we have for every x € dom h,

1 1 1
Cplasag) + h(@) + ol — akl® > L (e o) + hang) + oy leeen — al® + o5l — 2 |
2\ 2\ 2\
L 1
2 (@i on) + h(zpen) + Sllzpe - k]| + ol = ||

1
> f(Tps1) + h(wpgr) + 5”55 — 2%,

where the second inequality is due to A < 1/L and the last inequality is due to Lemma 1(ii) of
Lecture 3. It then follows from the convexity of f that

1 1
f(z)+ h(z) + ﬁHx — x| > f(@py1) + h(@psr) + ﬁ”ﬂf — 1|

Taking z = xy, we have
1
Flaw) + h(@r) 2 f@rn) + Mann) + 5y low - 2l > f@ri) + hlze)
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which shows that the function value of the iterates is a nonincreasing sequence. Taking x = z,, we
have 1 1

f(@s) + h(ze) + ﬁ”v’ﬂk — zu|* > f(@rg1) + P(2rs1) + ﬁ”xkﬂ — z.|]%,
i.e.,

(f +h) (1) — (f + h)(24) < %ka P - %

Summing the above inequality and using the monotinicity of {(f + h)(zx)}, we obtain

lps — a2

k—1
1 1
RIS+ R) (@) = (F+ R ()] < ) (F + h) (i) = (F + h) () < oy llwo — ) - oyl = %,
i=0
Thus, the claim of the theorem follows. O
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