DSCC/CSC 435 \& ECE 412 Optimization for Machine Learning Lecture 6

Proximal Gradient Method

Lecturer: Jiaming Liang
September 26, 2023

1 Proximal operator

Definition 1. Given a function f, the proximal mapping of f is given by

$$
\operatorname{prox}_{f}(x)=\operatorname{argmin}_{u \in \mathbb{R}^{n}}\left\{f(u)+\frac{1}{2}\|u-x\|^{2}\right\}, \quad \forall x \in \mathbb{R}^{n} .
$$

Note that if f is closed and convex then $\operatorname{prox}_{f}(x)$ is a singleton for any $x \in \mathbb{R}^{n}$.
Example: soft-thresholding, for some $\lambda>0$, the proximal mapping for the one-dimensional function $\lambda|\cdot|$ is

$$
\operatorname{prox}_{\lambda \mid \cdot}(y)=\mathcal{T}_{\lambda}(y)=[|y|-\lambda]_{+} \operatorname{sgn}(y)= \begin{cases}y-\lambda, & y \geq \lambda \\ 0, & |y|<\lambda \\ y+\lambda, & y \leq-\lambda\end{cases}
$$

Hence, the proximal mapping for $f(x)=\lambda\|x\|_{1}$ is

$$
\mathcal{T}_{\lambda}(x) \equiv\left(\mathcal{T}_{\lambda}\left(x_{j}\right)\right)_{j=1}^{n}=[|x|-\lambda \mathbf{1}]_{+} \odot \operatorname{sgn}(x)
$$

where \odot denotes componentwise multiplication.
Theorem 1. Let $Q \subseteq \mathbb{R}^{n}$ be nonempty. Then, $\operatorname{prox}_{I_{Q}}(x)=\operatorname{proj}_{Q}(x)$ for any $x \in \mathbb{R}^{n}$. Let $Q \subseteq \mathbb{R}^{n}$ be a nonempty closed convex set. Then, $\operatorname{prox}_{I_{Q}}(x)=\operatorname{proj}_{Q}(x)$ is a singleton for any $x \in \mathbb{R}^{n}$.
Theorem 2. Let f be a closed and convex function. Then for any $x, y \in \mathbb{R}^{n}$, we have
(i) $\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left\langle\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y), x-y\right\rangle$;
(ii) $\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\| \leq\|x-y\|$.

Proof. (a) Let $u=\operatorname{prox}_{f}(x)$ and $v=\operatorname{prox}_{f}(y)$. It follows from the defintion of proximal mapping that

$$
u=\operatorname{argmin}_{w \in \mathbb{R}^{n}}\left\{f(w)+\frac{1}{2}\|w-x\|^{2}\right\}
$$

and

$$
x-u \in \partial f(u)
$$

The inclusion is equivalent to

$$
f(w) \geq f(u)+\langle x-u, w-u\rangle \quad \forall w \in \mathbb{R}^{n} .
$$

Taking $w=v$, we have

$$
f(v) \geq f(u)+\langle x-u, v-u\rangle .
$$

Following the same argument for $v=\operatorname{prox}_{f}(y)$, we have

$$
f(u) \geq f(v)+\langle y-v, u-v\rangle
$$

Adding the above two inequalities, we obtain

$$
0 \geq\langle y-x+u-v, u-v\rangle,
$$

i.e.,

$$
\langle x-y, u-v\rangle \geq\|u-v\|^{2} .
$$

Plugging $u=\operatorname{prox}_{f}(x)$ and $v=\operatorname{prox}_{f}(y)$ into the above inequality, we prove (a).
(b) This statement simply follows from (a) using the Cauchy-Schwarz inequality.

2 Moreau envelope

Theorem 3. (Moreau decomposition) Let f be a closed and convex function. Then for any $x \in \mathbb{R}^{n}$, we have

$$
\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)=x .
$$

Proof. Let $u=\operatorname{prox}_{f}(x)$. It is equivalent to $x-u \in \partial f(u)$. Using Theorem 2 of Lecture 5, we have $u \in \partial_{f^{*}}(x-u)$, which is equivalent to $x-u=\operatorname{prox}_{f^{*}}(x)$. Therefore,

$$
\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)=u+x-u=x .
$$

Theorem 4. (extended Moreau decomposition) Let f be a closed and convex function and $\lambda>0$. Then for any $x \in \mathbb{R}^{n}$, we have

$$
\operatorname{prox}_{\lambda f}(x)+\lambda \operatorname{prox}_{\lambda^{-1} f^{*}}(x / \lambda)=x .
$$

Definition 2. Let f be a closed and convex function and $\mu>0$. The Moreau envelope of f is

$$
M_{f}^{\mu}(x)=\min _{u}\left\{f(u)+\frac{1}{2 \mu}\|u-x\|^{2}\right\} .
$$

The parameter μ is called the smoothing parameter.

Figure 1: Moreau envelope

Properties

- $M_{f}^{\mu}(x) \leq f(x)$, plot, geometric interpretation: Moreau envelope M_{f}^{μ} is an envelope underneath f that smoothifies f but may not convexifies f

$$
\nabla M_{f}^{\mu}(x)=\frac{1}{\mu}\left(x-\operatorname{prox}_{\mu f}(x)\right)
$$

- ∇M_{f}^{μ} is $\frac{1}{\mu}$-Lipschitz continuous, M_{f}^{μ} is $\frac{1}{\mu}$-smooth

$$
\begin{aligned}
\left\|\nabla M_{f}^{\mu}(x)-\nabla M_{f}^{\mu}(y)\right\|^{2} & =\frac{1}{\mu^{2}}\left\|x-\operatorname{prox}_{\mu f}(x)-y+\operatorname{prox}_{\mu f}(y)\right\|^{2} \\
& =\frac{1}{\mu^{2}}\left(\|x-y\|^{2}+\left\|\operatorname{prox}_{\mu f}(x)-\operatorname{prox}_{\mu f}(y)\right\|^{2}-2\left\langle\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y), x-y\right\rangle\right) \\
& \leq \frac{1}{\mu^{2}}\left(\|x-y\|^{2}-\left\|\operatorname{prox}_{\mu f}(x)-\operatorname{prox}_{\mu f}(y)\right\|^{2}\right) \\
& \leq \frac{1}{\mu^{2}}\|x-y\|^{2}
\end{aligned}
$$

- M_{f}^{μ} maintians convexity if f is convex. This is because partial minimization $g(x)=\min _{y} f(x, y)$ preserves convexity.

3 Proximal gradient method

3.1 Composite optimization

$$
\min \{\phi(x):=f(x)+h(x)\}
$$

- h is closed and convex;
- f is closed and convex, $\operatorname{dom} f$ is convex, $\operatorname{dom} h \subseteq \operatorname{int}(\operatorname{dom} f)$, and f is L-smooth over $\operatorname{int}(\operatorname{dom} f)$;
- the optimal set X_{*} is nonempty.

3.2 Proximal gradient

```
Algorithm 1 Proximal gradient method
    Input: Initial point \(x_{0} \in \operatorname{dom} h\)
    for \(k \geq 0\) do
        Compute \(x_{k+1}=\operatorname{prox}_{h}\left(x_{k}-h_{k} f^{\prime}\left(x_{k}\right)\right)\).
    end for
```

Theorem 5. Functions f and h are as assumed in Subsection 3.1. Choose $\lambda \in(0,1 / L]$. Then, the proximal gradient method generates a sequence of points $\left\{x_{k}\right\}$ satisfying

$$
f\left(x_{k}\right)-f_{*} \leq \frac{\left\|x_{0}-x_{*}\right\|^{2}}{2 \lambda k}, \quad \forall k \geq 1 .
$$

Proof. It is easy to verify that one iteration of the proximal gradient method can be written as

$$
x_{k+1}=\min _{x \in \mathbb{R}^{n}}\left\{\ell_{f}\left(x ; x_{k}\right)+h(x)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2}\right\} .
$$

Using Theorem 5 of Lecture 3 and the fact that the above objective function is $(1 / \lambda)$-strongly convex, we have for every $x \in \operatorname{dom} h$,

$$
\begin{aligned}
\ell_{f}\left(x ; x_{k}\right)+h(x)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2} & \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2} \\
& \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+h\left(x_{k+1}\right)+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2} \\
& \geq f\left(x_{k+1}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2},
\end{aligned}
$$

where the second inequality is due to $\lambda \leq 1 / L$ and the last inequality is due to Lemma 1 (ii) of Lecture 3. It then follows from the convexity of f that

$$
f(x)+h(x)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2} \geq f\left(x_{k+1}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2} .
$$

Taking $x=x_{k}$, we have

$$
f\left(x_{k}\right)+h\left(x_{k}\right) \geq f\left(x_{k+1}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{*}\right\|^{2} \geq f\left(x_{k+1}\right)+h\left(x_{k+1}\right)
$$

which shows that the function value of the iterates is a nonincreasing sequence. Taking $x=x_{*}$, we have

$$
f\left(x_{*}\right)+h\left(x_{*}\right)+\frac{1}{2 \lambda}\left\|x_{k}-x_{*}\right\|^{2} \geq f\left(x_{k+1}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{*}\right\|^{2},
$$

i.e.,

$$
(f+h)\left(x_{k+1}\right)-(f+h)\left(x_{*}\right) \leq \frac{1}{2 \lambda}\left\|x_{k}-x_{*}\right\|^{2}-\frac{1}{2 \lambda}\left\|x_{k+1}-x_{*}\right\|^{2} .
$$

Summing the above inequality and using the monotinicity of $\left\{(f+h)\left(x_{k}\right)\right\}$, we obtain

$$
k\left[(f+h)\left(x_{k}\right)-(f+h)\left(x_{*}\right)\right] \leq \sum_{i=0}^{k-1}(f+h)\left(x_{i+1}\right)-(f+h)\left(x_{*}\right) \leq \frac{1}{2 \lambda}\left\|x_{0}-x_{*}\right\|^{2}-\frac{1}{2 \lambda}\left\|x_{k}-x_{*}\right\|^{2}
$$

Thus, the claim of the theorem follows.

