DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 5

Mirror Descent

Lecturer: Jiaming Liang September 19, 2023

1 Conjugate functions

Definition 1. Let f : R" — [—00, 00| be an extended real-valued function. The conjugate function
of f is defined as

(@) = max{ (e, ) — £)}.
Theorem 1. Let f be a closed and convex function. Then, the biconjugate function f** = f.

Theorem 2. Let f be a closed and convexr function. Then, for any x,y € R", the following
statements are equivalent:

(i) (x,y) = f(x) + [ (y);
(i) y € Of (x);
(i1i) x € Of*(y).
Corollary 1. Let f be a closed and convex function. Then, for any x,y € R™,
0f (x) = Argmax {(z,y) — f*(9)}
and
0f*(y) = Argmax z{(y, ) — f(2)}.
Proposition 1. Let f be a closed and strictly convex function. Then, f* is differentiable, and for
any y € R,
Vf*(y) = argmax o {{y, z) — f(z)}.

The concept of strong convexity extends and parametrizes the notion of strict convexity. A
strongly convex function is also strictly convex, but not vice versa.
An extremely useful connection between smoothness and strong convexity is given in the con-

jugate correspondence theorem.

Theorem 3. If f is closed and p-strongly convez, then f* is (1/u)-smooth. On the other hand, if
f is L-smooth, then f* is (1/L)-strongly convex.

It is worth noting that in this case, for every y € R",
V) = (V) ) (1)
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2 Mirror descent
We are interested in the same convex nonsmooth optimization problem as in Lecture 4

min f(x

i /(@)

where @ is a closed convex set. Recall that the convergence rate by the projected subgradient
method is

MR
i N — f < —=.
ouin flzi) = f. < N

One of the basic assumptions made in Lecture 4 is that the underlying space is Euclidean,
meaning that || - | = \/(-,-). In order to establish the above dimension-free convergence rate, we
need to make another assumption that the objective function f and the constraint set Q) are well-
behaved in the Euclidean norm: that means for all points z € @) and all subgradients f'(x) € 0f(x),
we have [|z|| and ||f/(x)| are independent of the ambient dimension n. If this assumption is
not met then we lose the dimension-free convergence rate. For instance, () is the unit simplex
A, ={z R} :Y " z(i) =1} and f has subgradients bounded in {o-norm, e.g., || f'(z)]los < 1.
Then, || f'(z)]|eo < v/7 and R < v/2, so the convergence rate becomes

: V2n
Ogrflg,ﬁl,lf(m —fi < T
But if we use mirror descent in this lecture, the convergence rate will be improved to O(y/log(n)/k).
This improvement relies on changing the space to be non-Euclidean.
In non-Euclidean spaces, = € E and f’(x) € E*, hence the subgradient method

Th1 = projg (xr — hif' (1))

does not make sense. This issue motivates us to generalize the projected subgradient method to
better suite the non-Euclidean setting.

Let us take another look at the projected subgradient method. It can be equivalently written
as

s = angminseq { Fo0) + (/00— ) + g llo — aulB). 2)

The idea in the non-Euclidean case is to replace the Euclidean distance function %Hx — x|l by a
different “distance”. This non-Euclidean distance is the Bregman divergence.

Definition 2. For an arbitrary norm || - || in E, the dual norm equipped in E* is defined as

Isll. = max {{s,a) : [lo <1}, s € E"
z€E
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By the Cauchy-Schwartz inequality, for x € E and s € E*, we have
(s,2) < ||/l

E.g., let || - || be the £)-norm and || - ||« be the ¢; norm where 1 < p,q < oo and % + % =1, then by
Holder’s inequality
(s, ) < |lszlly < l|zllpllsllg, V& €E,s € EY,

i.e.,
n n n 1/p n 1/q
S < Yt < (Lhar) - (Shar)
k=1 k=1 k=1 k=1
Let w : R™ — (—o0, 0] be a proper closed convex function satisfying
e w is differentiable on int(domw) = W¢;
e () C dom (w);
e w is p-strongly convex on @ w.r.t. | - || (here || - || is an arbitrary norm in E).

Definition 3. For a function w satisfying the above assumptions, the Bregman divergence associ-
ated with w s the fucntion D, : domw x W° — R given by

Dy(2,y) := w(z) —w(y) — (Vw(y), z —y).
The function w s called the distance generating fucntion.
A few properties of D,,: let x € Q and y € Q N W°, then
e Dy(z,y) > 5|z — y||? for every z € Q and y € Q N W
e Dy(z,y) >0;
e Dy(z,y) =0 if and only if x = y;
o Dy(x,y) = Dy~ (z*,y*) where w* is the Fenchel conjugate and z* = Vw(z) and y* = Vw(y).

Bregman divergence does not satisfy symmetry nor triangle inequality, and hence it is not a
metric.
Now we replace the Euclidean distance in (2) by the Bregman divergence, then we obtain an

iteration of the mirror descent

T4l = argmin g {f(xk) + {f'(xr),® — x1) + };Dw(x,xk)} . (3)
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(Note that Lemma 9.7 and Theorem 9.8 of Amir Beck’s book guarantees that xxy1 € Q N W?,
hence Vw(z11) exists in the next iteration and mirror descent is well-defined.) Hence, zj411 =

projg(yk+1) and yg41 satisfies
0= £/@) + 5 (Vi) ~ Vao).
where we use the fact that VD, (z,y) = Vw(z) — Vw(y). Thus,
vt = (V)™ (Vw(ag) = hif'(ar)) = Vo (Vo(oe) = hif'(24)

where the second equality is due to (1). Below is another way to derive the formula for yj 4
. , 1
Yr+1 = argmin gern § f (k) + (f (21), 2 — 25) + h*ka(%l‘k)
= argmin gepn { (i f'(@r) — Vw(zy), z) + w(z)}
= argmas e {(—hif(zx) + Veo(zr), 2) — w(z)}
= Vw* (Vw(a:k) — hkf/(.ka)) .

MD
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w=¢

Figure 1: Mirror descent

The search point xj, is mapped from the primal space into the dual space using Vw, the gradient
step is then performed in the dual space Vw(xy) — hif/ (), and the point thus obtained is finally
mapped back into the primal space using Vw*. The distance generating function w is also called

the mirror map. See Figure 1 for an illustration.

Mirror Descent-4



Algorithm 1 Mirror descent
Input: Initial point g € Q N W?°
for £ > 0 do
Step 1. Choose h; > 0.
Step 2. Comput yi11 = Vw* (Vw(zg) — hif'(zx))-
Step 3. Compute 71 = projo(Ye+1)-
end for

Lemma 1. For every k > 0,
hif' (zr) + Vw(zgs1) — Vw(zg) + No(zp11) 20

or
Vw(z — Vw(x
f(xk) + ( kH;Lk (1) +np =0, ng € Ng(xpi1),

where Ng(zx41) is the normal cone of Q at xj41

No(zpy1) ={9 € R": 0> (9,2 — xp41), YoeQ}.

Proof. The iteration (3) can be reformulated as

Th41 = Argmin pegn {f(ka) + (f'(zp), & — zp) + ;Dw(fv,xk) + IQ(!IJ)} ;

where Ig(-) is the indicator functino of @, i.e.,

IQ(JU):{O’ ifx e,

oo, otherwise.

The optimality condition reads as

0€ Vf(a) + 5 (Vulon) = Vulon) + dlolei)

S

=V f(zr) + I

(Va(eia) — V) + Nol@er)-

O]

Lemma 2. (Three points lemma) Let w be a function satisfying the conditions above Definition
3. For every zg,z € W° and x € domw, we have

Dy (x,20) — Duw(2, 20) — (VDy(2, 20),x — 2) = Dy(x, 2).
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Lemma 3. Assume that || f'(z)]|« < M for every x € Q Ndomw. For every k >0 and x € domw,
we have 5 o
hy M

Dw($,$k) - Dw(xvxk+1) > - E

+ byl f () — f(2)]-
Proof. Using Lemmas 1 and 2, the Cauchy-Schwarz inequality, we have

Dy(x,21) — Dy(2, 23 41) = Du(Thg1, 2x) — (VDu(Thg1, ), Thg1 — T)
= Dy (2g+1, 28) + (Vw(zg) — V(i) 2o — @)
= Dy (g1, z) + hae(f (k) + Nk, Thog1 — )

)

> Dy(@ht1, 2k) + hi(f'(@k), Tpy1 — )

2 ngkH — 2l + he(f (1), Tor — 2) + P f (), 21 — )
> gllwkﬂ — agl” = gl f @) s onrn — @]l + Ml (r), 2p — )
h2||sk||?
> okl o - o)
2p
i llskll?
> M ) — )
p
where the last inequality is due to the subgradient inequality. O
Theorem 4. -
D ($*,x0) + 20 Zz =0 h2
f(@k) — fe < .
Zi:O hi
where Ty s any point satisfying
k—1
. hi ZT;
f(jfk) < ZZ—O f( )

k—1
> io hi
Moreover, for a given € > 0, if hy, = h, then

Dy (s, z0) N M?h

flan) - f. < 2 —

3 Standard setups for mirror descent

Ball: The distance generating function is

w(z) = 5=l

is 1-strongly convex w.r.t. || - |2 and the associated Bregman divergence is given by
1 2
Du(e,y) = 5lle — v
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In this case, mirror descent is equivalent to projected subgradient method.
Simplex: The distance generating function is given by the negative entropy

n

w(x) = Z z (i) log ().

i=1
Note that W? = R’} | and w is 1-strongly convex w.r.t. | - |1 on A,. The associated Bregman
divergence is given by
n , n
D) = 3 (i) log T = 3 (a(i) = (i)
i=1 i=1

where the first summation is known as the relative entropy or Kullback-Leibler divergence

KL(z,y) = Y (i) log “:8
=1

The strong convexity property of w can be stated as for any =,y € Ay,
1
which is also known as the Pinsker’s inequality. The projection onto simplex A,, w.r.t. the Bregman

divergence is as simple as
T

llzoll1

proja,, (wo) =

Corollary 2. Assume || f'(2)]|cc < M, Vz € A,,. Let o = argmin zea, w(z) (in the simplex setup,

zo = (1/n,...,1/n)"). Then, mirror descent with h = ;1 / 21(;5" satisfies

2logn

Proof. We first note that since xp = argmin zca, w(x), it holds
(Vw(zp), s — x09) > 0.
Then, we have

Dy(xs, o) = w(ws) — w(xg) — (Vw(xp), e — o)
< w(xy) —w(z)

< max w(x) — min w(x).
Q?EATL CCEAn

Using the fact that
—logn <w(z) <0, VxelA,,
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we have
Dw(iU*,LUO) S logn

It follows from Theorem 4 that

B Doy (24, z0) M?h _logn M?h
£ < <
F@) = fes =) 2 = kh 2
Taking h = 371/ 21(;5", we have
2logn
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