DSCC/CSC 435 \& ECE 412 Optimization for Machine Learning	Lecture 5	
	Mirror Descent	
Lecturer: Jiaming Liang		September 19, 2023

1 Conjugate functions

Definition 1. Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ be an extended real-valued function. The conjugate function of f is defined as

$$
f^{*}(x)=\max _{y}\{\langle x, y\rangle-f(y)\} .
$$

Theorem 1. Let f be a closed and convex function. Then, the biconjugate function $f^{* *}=f$.
Theorem 2. Let f be a closed and convex function. Then, for any $x, y \in \mathbb{R}^{n}$, the following statements are equivalent:
(i) $\langle x, y\rangle=f(x)+f^{*}(y)$;
(ii) $y \in \partial f(x)$;
(iii) $x \in \partial f^{*}(y)$.

Corollary 1. Let f be a closed and convex function. Then, for any $x, y \in \mathbb{R}^{n}$,

$$
\partial f(x)=\operatorname{Argmax} \tilde{y}\left\{\langle x, \tilde{y}\rangle-f^{*}(\tilde{y})\right\}
$$

and

$$
\partial f^{*}(y)=\operatorname{Argmax}_{\tilde{x}}\{\langle y, \tilde{x}\rangle-f(\tilde{x})\} .
$$

Proposition 1. Let f be a closed and strictly convex function. Then, f^{*} is differentiable, and for any $y \in \mathbb{R}^{n}$,

$$
\nabla f^{*}(y)=\operatorname{argmax}_{x}\{\langle y, x\rangle-f(x)\} .
$$

The concept of strong convexity extends and parametrizes the notion of strict convexity. A strongly convex function is also strictly convex, but not vice versa.

An extremely useful connection between smoothness and strong convexity is given in the conjugate correspondence theorem.

Theorem 3. If f is closed and μ-strongly convex, then f^{*} is $(1 / \mu)$-smooth. On the other hand, if f is L-smooth, then f^{*} is $(1 / L)$-strongly convex.

It is worth noting that in this case, for every $y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\nabla f^{*}(y)=(\nabla f)^{-1}(y) \tag{1}
\end{equation*}
$$

Mirror Descent-1

2 Mirror descent

We are interested in the same convex nonsmooth optimization problem as in Lecture 4

$$
\min _{x \in Q} f(x)
$$

where Q is a closed convex set. Recall that the convergence rate by the projected subgradient method is

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{M R}{\sqrt{k}}
$$

One of the basic assumptions made in Lecture 4 is that the underlying space is Euclidean, meaning that $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$. In order to establish the above dimension-free convergence rate, we need to make another assumption that the objective function f and the constraint set Q are wellbehaved in the Euclidean norm: that means for all points $x \in Q$ and all subgradients $f^{\prime}(x) \in \partial f(x)$, we have $\|x\|$ and $\left\|f^{\prime}(x)\right\|$ are independent of the ambient dimension n. If this assumption is not met then we lose the dimension-free convergence rate. For instance, Q is the unit simplex $\Delta_{n}=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x(i)=1\right\}$ and f has subgradients bounded in ℓ_{∞}-norm, e.g., $\left\|f^{\prime}(x)\right\|_{\infty} \leq 1$. Then, $\left\|f^{\prime}(x)\right\|_{\infty} \leq \sqrt{n}$ and $R \leq \sqrt{2}$, so the convergence rate becomes

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{\sqrt{2 n}}{\sqrt{k}}
$$

But if we use mirror descent in this lecture, the convergence rate will be improved to $\mathcal{O}(\sqrt{\log (n) / k})$. This improvement relies on changing the space to be non-Euclidean.

In non-Euclidean spaces, $x \in \mathbb{E}$ and $f^{\prime}(x) \in \mathbb{E}^{*}$, hence the subgradient method

$$
x_{k+1}=\operatorname{proj}_{Q}\left(x_{k}-h_{k} f^{\prime}\left(x_{k}\right)\right)
$$

does not make sense. This issue motivates us to generalize the projected subgradient method to better suite the non-Euclidean setting.

Let us take another look at the projected subgradient method. It can be equivalently written as

$$
\begin{equation*}
x_{k+1}=\operatorname{argmin}_{x \in Q}\left\{f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 h_{k}}\left\|x-x_{k}\right\|_{2}^{2}\right\} . \tag{2}
\end{equation*}
$$

The idea in the non-Euclidean case is to replace the Euclidean distance function $\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}$ by a different "distance". This non-Euclidean distance is the Bregman divergence.

Definition 2. For an arbitrary norm $\|\cdot\|$ in \mathbb{E}, the dual norm equipped in \mathbb{E}^{*} is defined as

$$
\|s\|_{*}=\max _{x \in \mathbb{E}}\{\langle s, x\rangle:\|x\| \leq 1\}, \quad s \in \mathbb{E}^{*} .
$$

By the Cauchy-Schwartz inequality, for $x \in \mathbb{E}$ and $s \in \mathbb{E}^{*}$, we have

$$
\langle s, x\rangle \leq\|s\|_{*}\|x\| .
$$

E.g., let $\|\cdot\|$ be the ℓ_{p}-norm and $\|\cdot\|_{*}$ be the ℓ_{q} norm where $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$, then by Hölder's inequality

$$
\langle s, x\rangle \leq\|s x\|_{1} \leq\|x\|_{p}\|s\|_{q}, \quad \forall x \in \mathbb{E}, s \in \mathbb{E}^{*},
$$

i.e.,

$$
\sum_{k=1}^{n} x_{k} s_{k} \leq \sum_{k=1}^{n}\left|x_{k} s_{k}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left|s_{k}\right|^{q}\right)^{1 / q} .
$$

Let $w: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a proper closed convex function satisfying

- w is differentiable on $\operatorname{int}(\operatorname{dom} w)=W^{o}$;
- $Q \subset \operatorname{dom}(w)$;
- w is ρ-strongly convex on Q w.r.t. $\|\cdot\|$ (here $\|\cdot\|$ is an arbitrary norm in \mathbb{E}).

Definition 3. For a function w satisfying the above assumptions, the Bregman divergence associated with w is the fucntion $D_{w}: \operatorname{dom} w \times W^{o} \rightarrow \mathbb{R}$ given by

$$
D_{w}(x, y):=w(x)-w(y)-\langle\nabla w(y), x-y\rangle .
$$

The function w is called the distance generating fucntion.
A few properties of D_{w} : let $x \in Q$ and $y \in Q \cap W^{o}$, then

- $D_{w}(x, y) \geq \frac{\rho}{2}\|x-y\|^{2}$ for every $x \in Q$ and $y \in Q \cap W^{o}$;
- $D_{w}(x, y) \geq 0$;
- $D_{w}(x, y)=0$ if and only if $x=y$;
- $D_{w}(x, y)=D_{w^{*}}\left(x^{*}, y^{*}\right)$ where w^{*} is the Fenchel conjugate and $x^{*}=\nabla w(x)$ and $y^{*}=\nabla w(y)$.

Bregman divergence does not satisfy symmetry nor triangle inequality, and hence it is not a metric.

Now we replace the Euclidean distance in (2) by the Bregman divergence, then we obtain an iteration of the mirror descent

$$
\begin{equation*}
x_{k+1}=\operatorname{argmin}_{x \in Q}\left\{f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{h_{k}} D_{w}\left(x, x_{k}\right)\right\} . \tag{3}
\end{equation*}
$$

(Note that Lemma 9.7 and Theorem 9.8 of Amir Beck's book guarantees that $x_{k+1} \in Q \cap W^{o}$, hence $\nabla w\left(x_{k+1}\right)$ exists in the next iteration and mirror descent is well-defined.) Hence, $x_{k+1}=$ $\operatorname{proj}_{Q}\left(y_{k+1}\right)$ and y_{k+1} satisfies

$$
0=f^{\prime}\left(x_{k}\right)+\frac{1}{h_{k}}\left(\nabla w\left(y_{k+1}\right)-\nabla w\left(x_{k}\right)\right),
$$

where we use the fact that $\nabla_{x} D_{w}(x, y)=\nabla w(x)-\nabla w(y)$. Thus,

$$
y_{k+1}=(\nabla w)^{-1}\left(\nabla w\left(x_{k}\right)-h_{k} f^{\prime}\left(x_{k}\right)\right)=\nabla w^{*}\left(\nabla w\left(x_{k}\right)-h_{k} f^{\prime}\left(x_{k}\right)\right)
$$

where the second equality is due to (1). Below is another way to derive the formula for y_{k+1}

$$
\begin{aligned}
y_{k+1} & =\operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{h_{k}} D_{w}\left(x, x_{k}\right)\right\} \\
& =\operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{\left\langle h_{k} f^{\prime}\left(x_{k}\right)-\nabla w\left(x_{k}\right), x\right\rangle+w(x)\right\} \\
& =\operatorname{argmax}_{x \in \mathbb{R}^{n}}\left\{\left\langle-h_{k} f^{\prime}\left(x_{k}\right)+\nabla w\left(x_{k}\right), x\right\rangle-w(x)\right\} \\
& =\nabla w^{*}\left(\nabla w\left(x_{k}\right)-h_{k} f^{\prime}\left(x_{k}\right)\right) .
\end{aligned}
$$

Figure 1: Mirror descent
The search point x_{k} is mapped from the primal space into the dual space using ∇w, the gradient step is then performed in the dual space $\nabla w\left(x_{k}\right)-h_{k} f^{\prime}\left(x_{k}\right)$, and the point thus obtained is finally mapped back into the primal space using ∇w^{*}. The distance generating function w is also called the mirror map. See Figure 1 for an illustration.

```
Algorithm 1 Mirror descent
    Input: Initial point \(x_{0} \in Q \cap W^{o}\)
    for \(k \geq 0\) do
        Step 1. Choose \(h_{k}>0\).
        Step 2. Comput \(y_{k+1}=\nabla w^{*}\left(\nabla w\left(x_{k}\right)-h_{k} f^{\prime}\left(x_{k}\right)\right)\).
        Step 3. Compute \(x_{k+1}=\operatorname{proj}_{Q}\left(y_{k+1}\right)\).
    end for
```

Lemma 1. For every $k \geq 0$,

$$
h_{k} f^{\prime}\left(x_{k}\right)+\nabla w\left(x_{k+1}\right)-\nabla w\left(x_{k}\right)+N_{Q}\left(x_{k+1}\right) \ni 0
$$

or

$$
f^{\prime}\left(x_{k}\right)+\frac{\nabla w\left(x_{k+1}\right)-\nabla w\left(x_{k}\right)}{h_{k}}+n_{k}=0, \quad n_{k} \in N_{Q}\left(x_{k+1}\right),
$$

where $N_{Q}\left(x_{k+1}\right)$ is the normal cone of Q at x_{k+1}

$$
N_{Q}\left(x_{k+1}\right)=\left\{g \in \mathbb{R}^{n}: 0 \geq\left\langle g, x-x_{k+1}\right\rangle, \quad \forall x \in Q\right\} .
$$

Proof. The iteration (3) can be reformulated as

$$
x_{k+1}=\operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{h_{k}} D_{w}\left(x, x_{k}\right)+I_{Q}(x)\right\},
$$

where $I_{Q}(\cdot)$ is the indicator functino of Q, i.e.,

$$
I_{Q}(x)= \begin{cases}0, & \text { if } x \in Q \\ \infty, & \text { otherwise }\end{cases}
$$

The optimality condition reads as

$$
\begin{aligned}
0 & \in \nabla f\left(x_{k}\right)+\frac{1}{h_{k}}\left(\nabla w\left(x_{k+1}\right)-\nabla w\left(x_{k}\right)\right)+\partial I_{Q}\left(x_{k+1}\right) \\
& =\nabla f\left(x_{k}\right)+\frac{1}{h_{k}}\left(\nabla w\left(x_{k+1}\right)-\nabla w\left(x_{k}\right)\right)+N_{Q}\left(x_{k+1}\right) .
\end{aligned}
$$

Lemma 2. (Three points lemma) Let w be a function satisfying the conditions above Definition 3. For every $z_{0}, z \in W^{o}$ and $x \in \operatorname{dom} w$, we have

$$
D_{w}\left(x, z_{0}\right)-D_{w}\left(z, z_{0}\right)-\left\langle\nabla D_{w}\left(z, z_{0}\right), x-z\right\rangle=D_{w}(x, z)
$$

Lemma 3. Assume that $\left\|f^{\prime}(x)\right\|_{*} \leq M$ for every $x \in Q \cap$ domw. For every $k \geq 0$ and $x \in \operatorname{dom} w$, we have

$$
D_{w}\left(x, x_{k}\right)-D_{w}\left(x, x_{k+1}\right) \geq-\frac{h_{k}^{2} M^{2}}{2 \rho}+h_{k}\left[f\left(x_{k}\right)-f(x)\right] .
$$

Proof. Using Lemmas 1 and 2, the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
D_{w}\left(x, x_{k}\right)-D_{w}\left(x, x_{k+1}\right) & =D_{w}\left(x_{k+1}, x_{k}\right)-\left\langle\nabla D_{w}\left(x_{k+1}, x_{k}\right), x_{k+1}-x\right\rangle \\
& =D_{w}\left(x_{k+1}, x_{k}\right)+\left\langle\nabla w\left(x_{k}\right)-\nabla w\left(x_{k+1}\right), x_{k+1}-x\right\rangle \\
& =D_{w}\left(x_{k+1}, x_{k}\right)+h_{k}\left\langle f^{\prime}\left(x_{k}\right)+n_{k}, x_{k+1}-x\right\rangle \\
& \geq D_{w}\left(x_{k+1}, x_{k}\right)+h_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x\right\rangle \\
& \geq \frac{\rho}{2}\left\|x_{k+1}-x_{k}\right\|^{2}+h_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+h_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x\right\rangle \\
& \geq \frac{\rho}{2}\left\|x_{k+1}-x_{k}\right\|^{2}-h_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|_{*}\left\|x_{k+1}-x_{k}\right\|+\lambda_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x\right\rangle \\
& \geq-\frac{h_{k}^{2}\left\|s_{k}\right\|_{*}^{2}}{2 \rho}+h_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x\right\rangle \\
& \geq-\frac{h_{k}^{2}\left\|s_{k}\right\|_{*}^{2}}{2 \rho}+h_{k}\left[f\left(x_{k}\right)-f(x)\right],
\end{aligned}
$$

where the last inequality is due to the subgradient inequality.

Theorem 4.

$$
f\left(\bar{x}_{k}\right)-f_{*} \leq \frac{D_{w}\left(x_{*}, x_{0}\right)+\frac{M^{2}}{2 \rho} \sum_{i=0}^{k-1} h_{i}^{2}}{\sum_{i=0}^{k-1} h_{i}}
$$

where \bar{x}_{k} is any point satisfying

$$
f\left(\bar{x}_{k}\right) \leq \frac{\sum_{i=0}^{k-1} h_{i} f\left(x_{i}\right)}{\sum_{i=0}^{k-1} h_{i}} .
$$

Moreover, for a given $\varepsilon>0$, if $h_{k}=h$, then

$$
f\left(\bar{x}_{k}\right)-f_{*} \leq \frac{D_{w}\left(x_{*}, x_{0}\right)}{k h}+\frac{M^{2} h}{2 \rho} .
$$

3 Standard setups for mirror descent

Ball: The distance generating function is

$$
w(x)=\frac{1}{2}\|x\|_{2}^{2}
$$

is 1 -strongly convex w.r.t. $\|\cdot\|_{2}$ and the associated Bregman divergence is given by

$$
D_{w}(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}
$$

In this case, mirror descent is equivalent to projected subgradient method.
Simplex: The distance generating function is given by the negative entropy

$$
w(x)=\sum_{i=1}^{n} x(i) \log x(i) .
$$

Note that $W^{o}=\mathbb{R}_{++}^{n}$ and w is 1 -strongly convex w.r.t. $\|\cdot\|_{1}$ on Δ_{n}. The associated Bregman divergence is given by

$$
D_{w}(x, y)=\sum_{i=1}^{n} x(i) \log \frac{x(i)}{y(i)}-\sum_{i=1}^{n}(x(i)-y(i)),
$$

where the first summation is known as the relative entropy or Kullback-Leibler divergence

$$
\mathrm{KL}(x, y)=\sum_{i=1}^{n} x(i) \log \frac{x(i)}{y(i)} .
$$

The strong convexity property of w can be stated as for any $x, y \in \Delta_{n}$,

$$
D_{w}(y, x)=\mathrm{KL}(x, y) \geq \frac{1}{2}|x-y|_{1}^{2}
$$

which is also known as the Pinsker's inequality. The projection onto simplex Δ_{n} w.r.t. the Bregman divergence is as simple as

$$
\operatorname{proj}_{\Delta_{n}}\left(x_{0}\right)=\frac{x_{0}}{\left\|x_{0}\right\|_{1}} .
$$

Corollary 2. Assume $\left\|f^{\prime}(x)\right\|_{\infty} \leq M, \forall x \in \Delta_{n}$. Let $x_{0}=\operatorname{argmin}_{x \in \Delta_{n}} w(x)$ (in the simplex setup, $\left.x_{0}=(1 / n, \ldots, 1 / n)^{\top}\right)$. Then, mirror descent with $h=\frac{1}{M} \sqrt{\frac{2 \log n}{k}}$ satisfies

$$
f\left(\bar{x}_{k}\right)-f_{*} \leq M \sqrt{\frac{2 \log n}{k}} .
$$

Proof. We first note that since $x_{0}=\operatorname{argmin}_{x \in \Delta_{n}} w(x)$, it holds

$$
\left\langle\nabla w\left(x_{0}\right), x_{*}-x_{0}\right\rangle \geq 0 .
$$

Then, we have

$$
\begin{aligned}
D_{w}\left(x_{*}, x_{0}\right) & =w\left(x_{*}\right)-w\left(x_{0}\right)-\left\langle\nabla w\left(x_{0}\right), x_{*}-x_{0}\right\rangle \\
& \leq w\left(x_{*}\right)-w\left(x_{0}\right) \\
& \leq \max _{x \in \Delta_{n}} w(x)-\min _{x \in \Delta_{n}} w(x) .
\end{aligned}
$$

Using the fact that

$$
-\log n \leq w(x) \leq 0, \quad \forall x \in \Delta_{n},
$$

we have

$$
D_{w}\left(x_{*}, x_{0}\right) \leq \log n
$$

It follows from Theorem 4 that

$$
f\left(\bar{x}_{k}\right)-f_{*} \leq \frac{D_{w}\left(x_{*}, x_{0}\right)}{k h}+\frac{M^{2} h}{2} \leq \frac{\log n}{k h}+\frac{M^{2} h}{2}
$$

Taking $h=\frac{1}{M} \sqrt{\frac{2 \log n}{k}}$, we have

$$
f\left(\bar{x}_{k}\right)-f_{*} \leq M \sqrt{\frac{2 \log n}{k}}
$$

