Subgradient Methods

Lecturer: Jiaming Liang

1 Subgradient

Definition 1. Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a proper function and let $x \in \operatorname{dom}(f)$. A vector $g \in \mathbb{R}^{n}$ is called a subgradient of f at x if

$$
f(y) \geq f(x)+\langle g, y-x\rangle \quad \forall y \in \mathbb{R}^{n} .
$$

We denote a subgradient of f at x by $f^{\prime}(x)$.
Definition 2. The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by $\partial f(x)$:

$$
\partial f(x) \equiv\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \quad \forall y \in \mathbb{R}^{n}\right\} .
$$

If f is convex, then $\partial f(x) \neq \emptyset$. If f is convex and smooth, then $\partial f(x)=\{\nabla f(x)\}$.

2 Localization ideas

We are now interested in the following optimization problem

$$
\min _{x \in Q} f(x)
$$

where Q is a closed convex set, and the function f is convex on \mathbb{R}^{n} but may not necessarily be smooth. As compared with the smooth problem, our goal is more challenging. Indeed, even in the simplest situation, when $Q \equiv \mathbb{R}^{n}$, the subgradient seems to be a poor replacement for the gradient of a smooth function. For example, we cannot be sure that the value of the objective function is decreasing in the direction $-f^{\prime}(x)$. We cannot expect that $f^{\prime}(x) \rightarrow 0$ as x approaches the solution of our problem (e.g., the absolute function).

Let us fix some optimal solution x_{*}. It follows from the convexity of f that

$$
f\left(x_{*}\right) \geq f(x)+\left\langle f^{\prime}(x), x_{*}-x\right\rangle \quad \forall x \in Q,
$$

and hence that

$$
\left\langle f^{\prime}(x), x_{*}-x\right\rangle \leq f\left(x_{*}\right)-f(x) \leq 0
$$

This implies that for a fixed point $x \in Q$, the optimal solution $x_{*} \in Q$ lies in the half-space

$$
H_{x}^{-}=\left\{y \in \mathbb{R}^{n}:\left\langle f^{\prime}(x), y-x\right\rangle \leq 0\right\} .
$$

Definition 3. Let $\left\{x_{i}\right\}_{i=0}^{\infty}$ be a sequence in Q. Define

$$
S_{k}=\left\{x \in Q \mid\left\langle f^{\prime}\left(x_{i}\right), x-x_{i}\right\rangle \leq 0, i=0 \ldots k\right\} .
$$

We call S_{k} the localization set generated by the sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$. It is obvious that $x_{*} \in S_{k}$ and $S_{k+1} \subset S_{k}$. With more search points x_{k}, we can shrink the localization set and hence localize the optimal solution x_{*}. This is also the key idea in the cutting-plane/Kelly's method, method of centers of gravity, ellipsoid method, and many others.

Definition 4. For some fixed $\bar{x} \in \mathbb{R}^{n}$ and any $x \in \mathbb{R}^{n}$ with $f^{\prime}(x) \neq 0$, define

$$
v_{f}(\bar{x} ; x)=\frac{1}{\left\|f^{\prime}(x)\right\|}\left\langle f^{\prime}(x), x-\bar{x}\right\rangle .
$$

If $f^{\prime}(x)=0$, then define $v_{f}(\bar{x} ; x)=0$.
Geometrically, for a fixed $x \in \mathbb{R}^{n}$ with $f^{\prime}(x) \neq 0$ and any $\bar{x} \in H_{x}^{-}, v_{f}(\bar{x}, x)$ is the distance from point \bar{x} to the hyperplane

$$
H_{x}=\left\{y \in R^{n}:\left\langle f^{\prime}(x), y-x\right\rangle=0\right\} .
$$

Indeed, consider the point

$$
\begin{equation*}
\bar{x}_{p}=\bar{x}+v_{f}(\bar{x}, x) \frac{f^{\prime}(x)}{\left\|f^{\prime}(x)\right\|} . \tag{1}
\end{equation*}
$$

Then

$$
\left\langle f^{\prime}(x), \bar{x}_{p}-x\right\rangle=\left\langle f^{\prime}(x), \bar{x}-x\right\rangle-v_{f}(\bar{x}, x)\left\|f^{\prime}(x)\right\|=0
$$

and $\left\|\bar{x}_{p}-\bar{x}\right\|=v_{f}(\bar{x}, x)$. Note that $\bar{x}_{p} \in H_{x}$ and it is the projection of \bar{x} onto H_{x}.
Let

$$
v_{i}=v_{f}\left(x_{*} ; x_{i}\right)(\geq 0), \quad v_{k}^{*}=\min _{0 \leq i \leq k} v_{i} .
$$

Thus,

$$
v_{k}^{*}=\max \left\{r \in \mathbb{R}_{++}:\left\langle f^{\prime}\left(x_{i}\right), x-x_{i}\right\rangle \leq 0, i=0 \ldots k, \forall x \in B_{2}\left(x_{*}, r\right)\right\}
$$

This is the radius of the maximal ball centered at x_{*}, which is contained in the localization set S_{k}.
Lemma 1. If a convex function f is M-Lipschitz continuous on $B_{2}(\bar{x}, R)$ with constant $M>0$, then

$$
f(x)-f(\bar{x}) \leq M v_{f}(\bar{x} ; x)
$$

for all $x \in \mathbb{R}^{n}$ with $0 \leq v_{f}(\bar{x} ; x) \leq R$. Moreover,

$$
\min _{0 \leq i \leq k} f\left(x_{i}\right)-f_{*} \leq M v_{k}^{*}
$$

Proof. Consider \bar{x}_{p} as in (1) which lies in H_{x}, then

$$
f\left(\bar{x}_{p}\right) \geq f(x)+\left\langle f^{\prime}(x), \bar{x}_{p}-x\right\rangle=f(x) .
$$

If f is Lipschitz continuous on $B_{2}(\bar{x}, R)$ and $0 \leq v_{f}(\bar{x} ; x) \leq R$, then $\bar{x}_{p} \in B_{2}(\bar{x}, R)$. Hence,

$$
f(x)-f(\bar{x}) \leq f\left(\bar{x}_{p}\right)-f(\bar{x}) \leq M\left\|\bar{x}_{p}-\bar{x}\right\|=M v_{f}(\bar{x} ; x) .
$$

Thus, we have

$$
f\left(x_{i}\right)-f\left(x_{*}\right) \leq M v_{f}\left(x_{*} ; x_{i}\right)=M v_{i} .
$$

Therefore,

$$
\min _{0 \leq i \leq k} f\left(x_{i}\right)-f_{*}=\min _{0 \leq i \leq k}\left[f\left(x_{i}\right)-f_{*}\right] \leq M \min _{0 \leq i \leq k} v_{i}=M v_{k}^{*} .
$$

3 Subgradient methods

3.1 Normalized variant

```
Algorithm 1 Subradient method (normalized)
    Input: Initial point \(x_{0} \in Q\)
    for \(k \geq 0\) do
        Step 1. Choose \(h_{k}>0\).
        Step 2. Compute \(x_{k+1}=\operatorname{proj}_{Q}\left(x_{k}-h_{k} \frac{f^{\prime}\left(x_{k}\right)}{\left\|f^{\prime}\left(x_{k}\right)\right\|}\right)\).
    end for
```

Theorem 1. Assume f is convex and M-Lipschitz continuous on $B_{2}\left(x^{*}, R\right)$ with $R \geq\left\|x_{0}-x_{*}\right\|$ and choose $h_{k}>0$ for every $k \geq 0$. Then, the Subgradient Method (normalized) generates a sequence of points $\left\{x_{k}\right\}$ satisfying

$$
\min _{0 \leq i \leq k} f\left(x_{i}\right)-f_{*} \leq M \frac{R^{2}+\sum_{i=0}^{k-1} h_{i}^{2}}{2 \sum_{i=0}^{k-1} h_{i}}, \quad \forall k \geq 0
$$

Proof. Fact: (See PS1 (P2)(d)) for any two points $x \in Q$ and $y \in \mathbb{R}^{n}$, we have

$$
\left\|x-\operatorname{proj}_{Q}(y)\right\|^{2}+\left\|\operatorname{proj}_{Q}(y)-y\right\|^{2} \leq\|x-y\|^{2} .
$$

Let $r_{k}:=\left\|x_{k}-x_{*}\right\|$. Using the above inequality and convexity, we have

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|\operatorname{proj}_{Q}\left(x_{k}-h_{k} \frac{f^{\prime}\left(x_{k}\right)}{\left\|f^{\prime}\left(x_{k}\right)\right\|}\right)-x_{*}\right\|^{2} \\
& \leq\left\|x_{k}-h_{k} \frac{f^{\prime}\left(x_{k}\right)}{\left\|f^{\prime}\left(x_{k}\right)\right\|}-x_{*}\right\|^{2} \\
& =r_{k}^{2}-2 h_{k}\left\langle\frac{f^{\prime}\left(x_{k}\right)}{\left\|f^{\prime}\left(x_{k}\right)\right\|}, x_{k}-x_{*}\right\rangle+h_{k}^{2} \\
& =r_{k}^{2}-2 h_{k} v_{k}+h_{k}^{2} .
\end{aligned}
$$

Summing up these inequalities for $i=0, \ldots, k-1$, we get

$$
r_{0}^{2}+\sum_{i=0}^{k-1} h_{i}^{2} \geq 2 \sum_{i=0}^{k-1} h_{i} v_{i}+r_{k}^{2} \geq 2 v_{k-1}^{*} \sum_{i=0}^{k-1} h_{i} .
$$

Thus,

$$
v_{k-1}^{*} \leq \frac{R^{2}+\sum_{i=0}^{k-1} h_{i}^{2}}{2 \sum_{i=0}^{k-1} h_{i}} .
$$

Since $v_{k-1}^{*} \leq v_{0} \leq\left\|x_{0}-x_{*}\right\| \leq R$, the conclusion follows form Lemma 1 .

Two stepsize rules:

1. given a fixed number of iterations $K \geq 1$,

$$
h_{k}=\frac{R}{\sqrt{K}}, \quad k=0, \ldots, K-1 ;
$$

2. given a solution accuracy $\varepsilon>0$,

$$
h_{k}=\frac{\varepsilon}{M}, \quad k \geq 0 .
$$

For option 1, using Theorem 1, we have

$$
\min _{0 \leq i \leq K-1} f\left(x_{i}\right)-f_{*} \leq \frac{M R}{\sqrt{K}}
$$

For option 2, using Theorem 1, we have

$$
\min _{0 \leq i \leq K-1} f\left(x_{i}\right)-f_{*} \leq \frac{M^{2} R^{2}}{2 \varepsilon K}+\frac{\varepsilon}{2} .
$$

Observation: the two options are equivalent in order to find an ε-solution.

3.2 Unnormalized variant

```
Algorithm 2 Subradient method (unnormalized)
    Input: Initial point \(x_{0} \in Q\)
    for \(k \geq 0\) do
        Step 1. Choose \(h_{k}\).
        Step 2. Compute \(x_{k+1}=\operatorname{proj}_{Q}\left(x_{k}-h_{k} f^{\prime}\left(x_{k}\right)\right)\).
    end for
```

Theorem 2. (Polyak stepsize) Suppose we know f_{*} (and we do in certain cases). Assume f is convex and M-Lipschitz continuous on $B_{2}\left(x^{*}, R\right)$ with $R \geq\left\|x_{0}-x_{*}\right\|$ and choose

$$
h_{k}=\frac{f\left(x_{k}\right)-f_{*}}{\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}}, \quad k \geq 0 .
$$

Then, the Subgradient Method (unnormalized) generates a sequence of points $\left\{x_{k}\right\}$ satisfying

$$
\min _{0 \leq i \leq k} f\left(x_{i}\right)-f_{*} \leq \frac{M R}{\sqrt{k}}, \quad \forall k \geq 0
$$

Proof. Let $r_{k}:=\left\|x_{k}-x_{*}\right\|$. Recall: for any two points $x \in Q$ and $y \in \mathbb{R}^{n}$, we have

$$
\left\|x-\operatorname{proj}_{Q}(y)\right\|^{2}+\left\|\operatorname{proj}_{Q}(y)-y\right\| \leq\|x-y\|^{2} .
$$

Using the above inequality and convexity, we have

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|\operatorname{proj}_{Q}\left(x_{k}-h_{k} f^{\prime}\left(x_{k}\right)\right)-x_{*}\right\|^{2} \\
& \leq\left\|x_{k}-h_{k} f^{\prime}\left(x_{k}\right)-x_{*}\right\|^{2} \\
& =r_{k}^{2}-2 h_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{*}\right\rangle+h_{k}^{2}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2} \\
& \leq r_{k}^{2}-2 h_{k}\left[f\left(x_{k}\right)-f_{*}\right]+h_{k}^{2}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

It follows from the Polyak's stepsize rule of h_{k} that

$$
r_{k+1}^{2} \leq r_{k}^{2}-\frac{\left[f\left(x_{k}\right)-f_{*}\right]^{2}}{\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}}
$$

and hence that $r_{k+1}<r_{k}<r_{0} \leq R$. It follows from the Lipschitz continuity assumption and Theorem 3.61 of AB that $\left\|f^{\prime}\left(x_{k}\right)\right\| \leq M$ that

$$
r_{k+1}^{2} \leq r_{k}^{2}-\frac{\left[f\left(x_{k}\right)-f_{*}\right]^{2}}{\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}} \leq r_{k}^{2}-\frac{\left[f\left(x_{k}\right)-f_{*}\right]^{2}}{M^{2}}
$$

and

$$
r_{k}^{2} \leq r_{0}^{2}-\frac{\sum_{i=0}^{k-1}\left[f\left(x_{i}\right)-f_{*}\right]^{2}}{M^{2}}
$$

Subgradient Methods-5

Finally, we have

$$
k\left[\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*}\right]^{2} \leq \sum_{i=0}^{k-1}\left[f\left(x_{i}\right)-f_{*}\right]^{2} \leq M^{2} r_{0}^{2} \leq M^{2} R^{2},
$$

and

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{M R}{\sqrt{k}}
$$

