DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 4

Subgradient Methods
Lecturer: Jiaming Liang September 14, 2023

1 Subgradient

Definition 1. Let f : R" — (—o0, 0] be a proper function and let x € dom(f). A wvector g € R"
1s called a subgradient of f at x if

fy) = fx)+{g,y —x) VyeR™
We denote a subgradient of f at = by f'(x).
Definition 2. The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by Of(x):
Of(x)={g eR": f(y) = f(z) + {9,y —x) VyeR"}.
If f is convex, then df(z) # 0. If f is convex and smooth, then df(x) = {Vf(z)}.

2 Localization ideas

We are now interested in the following optimization problem
min f(z
min f(z)

where @ is a closed convex set, and the function f is convex on R™ but may not necessarily be
smooth. As compared with the smooth problem, our goal is more challenging. Indeed, even in the
simplest situation, when () = R"”, the subgradient seems to be a poor replacement for the gradient
of a smooth function. For example, we cannot be sure that the value of the objective function is
decreasing in the direction —f’(x). We cannot expect that f’(z) — 0 as x approaches the solution
of our problem (e.g., the absolute function).

Let us fix some optimal solution x,. It follows from the convexity of f that

fl@) = f(@) + (f'(), 2 —2) Vo eQ,

and hence that
(f'(x), 20 — x) < fzs) — f(x) <O0.

This implies that for a fixed point x € ), the optimal solution x, € @ lies in the half-space

Hy ={y e R": (f'(x),y —x) <0}
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Definition 3. Let {xz;};°, be a sequence in Q. Define
Se={reQ|{f(z),x—)<0,i=0...k}.

We call Sy, the localization set generated by the sequence {z;};-,. It is obvious that =, € Sj
and Sk11 C Sg. With more search points xy, we can shrink the localization set and hence localize
the optimal solution z,. This is also the key idea in the cutting-plane/Kelly’s method,
method of centers of gravity, ellipsoid method, and many others.

Definition 4. For some fizred T € R"™ and any x € R™ with f'(x) # 0, define

T; T :71 "),z —Z
KA T A

If f'(x) =0, then define vy(z;x) = 0.

Geometrically, for a fixed € R™ with f/(z) # 0 and any & € H,, vf(Z,z) is the distance from
point T to the hyperplane

H:v :{yERn : (f’(x),y—:v) :0}

Indeed, consider the point /
:zp:f:Jrvf(i,x)H;,Eg”. (1)
Then
(f'(2), 2 —2) = (f'(2),2 — @) —vy(z,2)[|f'(2)[| = O
and ||z, — Z|| = vy(Z, x). Note that z, € H, and it is the projection of Z onto H,.
Let

vi = vy (T525) (> 0), v = Ogliigk (S

Thus,
vp =max {r e Ry : (f (z;), 2 — ;) <0, i=0...k, Vo € By (zs,7)}.

This is the radius of the maximal ball centered at x,, which is contained in the localization set Sj.

Lemma 1. If a convex function f is M-Lipschitz continuous on Bo(Z,R) with constant M > 0,
then

f(x) = (&) < Muy(Z; 7)

for all x € R™ with 0 < v¢(Z;2) < R. Moreover,

min f (x;) — f. < Mu;.
Ogigkf(l) f*_ k
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Proof. Consider Z,, as in (1) which lies in H,, then
f@p) = f(@) + (f'(2), Zp — ) = f(x).
If f is Lipschitz continuous on B(Z, R) and 0 < v¢(Z;2) < R, then Z, € Bo(Z, R). Hence,
f(x) = f(z) < f(7p) — f(Z) < M7 — | = Muys(z;2).

Thus, we have
f(xi) = f(zs) < MUf(JU*;JUi) = Mu;.

Therefore,

. N _ . N < M mi Mok
Orélilgkf (xz) fx 0211‘1216 [f (xl) f*} > Oglilgk (% Vg

3 Subgradient methods

3.1 Normalized variant

Algorithm 1 Subradient method (normalized)
Input: Initial point xg € Q
for £ > 0 do
Step 1. Choose hg > 0.
Step 2. Compute 41 = projg (azk — hk&%;”)
end for

Theorem 1. Assume f is conver and M -Lipschitz continuous on Bz (z*, R) with R > ||zg — x|
and choose hy > 0 for every k > 0. Then, the Subgradient Method (normalized) generates a
sequence of points {x} satisfying

2 k=142
min f (2;) — f« < Mw

, < =0 Ty > (),
0<i<k 25 1h,

Proof. Fact: (See PS1 (P2)(d)) for any two points x €  and y € R", we have

|z — projo(y)|I* + || projo(y) — ylI* < [lz — y|*.
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Let ry := ||z — z«||. Using the above inequality and convexity, we have

2

. f! ()
(e ‘ e <$’f T )
I () 2
<||wp — hp———%= — T4
£/ (x|
!
2 [ () 2
=r; —2hp( ———, 2 — Ty )+ h
T < T > ¢
= 7“]%, — 2hgv + h%
Summing up these inequalities for ¢ = 0,...,k — 1, we get

k—1 k—1 k—1
rE 4+ hI>2Y hwvi+rf > 205, ) hi.
=0 =0 =0

Thus,
2 k=172
oE < R+ 32 hi
k-1 = k-1 :
2 Zi:O hi
Since v;_; <wg < ||lzg — z4]] < R, the conclusion follows form Lemma 1.

Two stepsize rules:

1. given a fixed number of iterations K > 1,

2. given a solution accuracy € > 0,

€
hy=—, k>0.
k M =

For option 1, using Theorem 1, we have

MR

. N < ME

op_y S ) = f < VK
For option 2, using Theorem 1, we have

M?R?* ¢

min f (z) - f. <

0<i<K-—1 20K 2

Observation: the two options are equivalent in order to find an e-solution.
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3.2 Unnormalized variant

Algorithm 2 Subradient method (unnormalized)

Input: Initial point 9 € Q
for £ > 0 do

Step 1. Choose hy.

Step 2. Compute xy11 = projg (x — hi f'(z))-
end for

Theorem 2. (Polyak stepsize) Suppose we know f, (and we do in certain cases). Assume f is
convex and M -Lipschitz continuous on By (x*, R) with R > ||zg — x.|| and choose

flxr) — fs

AV L}
1 ()|
Then, the Subgradient Method (unnormalized) generates a sequence of points {xy} satisfying
MR
i ) — [« < —, Vk>0.
oZin, f(@i) = fe < i >
Proof. Let ry := ||z — x4||. Recall: for any two points x € @ and y € R", we have

Iz = projq ()| + || projg(y) — yll < [l —yl*.

Using the above inequality and convexity, we have

i1 = |[projg (zk — huf'(zx)) — m*HQ
< |k — haf"(x) — .||
=1} — 2hy (f' (xn) o — ) + B3 || (an)||?
<rf = 2hlf(ax) — £+ B | F )]

It follows from the Polyak’s stepsize rule of h; that

[f (z) = £i]?

1f! () ]2
and hence that rpy1 < rp < rg < R. It follows from the Lipschitz continuity assumption and
Theorem 3.61 of AB that [|f'(x)|| < M that

2 2 [f($k)—f*]2< 2 [f(xk)—f*]Q

P2 <2 <2 ) = S
S P ST ’ M2

2 2
Thyt ST —

and By
M2 '

r,%ﬁr%—
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Finally, we have

2 k—1
: N < N £12 < 1202 < M2 R2
k OgIz‘ngll?—lf(xl) f*] < ~70[f($1) fol? < M*r5 < M*R*,
and
MR
i ) fo< =
oslggflf(xl) fes N
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