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1 Subgradient

Definition 1. Let f : Rn → (−∞,∞] be a proper function and let x ∈ dom(f). A vector g ∈ Rn

is called a subgradient of f at x if

f(y) ≥ f(x) + 〈g, y − x〉 ∀y ∈ Rn.

We denote a subgradient of f at x by f ′(x).

Definition 2. The set of all subgradients of f at x is called the subdifferential of f at x and is

denoted by ∂f(x):

∂f(x) ≡ {g ∈ Rn : f(y) ≥ f(x) + 〈g, y − x〉 ∀y ∈ Rn} .

If f is convex, then ∂f(x) 6= ∅. If f is convex and smooth, then ∂f(x) = {∇f(x)}.

2 Localization ideas

We are now interested in the following optimization problem

min
x∈Q

f(x)

where Q is a closed convex set, and the function f is convex on Rn but may not necessarily be

smooth. As compared with the smooth problem, our goal is more challenging. Indeed, even in the

simplest situation, when Q ≡ Rn, the subgradient seems to be a poor replacement for the gradient

of a smooth function. For example, we cannot be sure that the value of the objective function is

decreasing in the direction −f ′(x). We cannot expect that f ′(x)→ 0 as x approaches the solution

of our problem (e.g., the absolute function).

Let us fix some optimal solution x∗. It follows from the convexity of f that

f(x∗) ≥ f(x) + 〈f ′(x), x∗ − x〉 ∀x ∈ Q,

and hence that

〈f ′(x), x∗ − x〉 ≤ f(x∗)− f(x) ≤ 0.

This implies that for a fixed point x ∈ Q, the optimal solution x∗ ∈ Q lies in the half-space

H−x = {y ∈ Rn : 〈f ′(x), y − x〉 ≤ 0}.
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Definition 3. Let {xi}∞i=0 be a sequence in Q. Define

Sk =
{
x ∈ Q |

〈
f ′(xi), x− xi

〉
≤ 0, i = 0 . . . k

}
.

We call Sk the localization set generated by the sequence {xi}∞i=0. It is obvious that x∗ ∈ Sk

and Sk+1 ⊂ Sk. With more search points xk, we can shrink the localization set and hence localize

the optimal solution x∗. This is also the key idea in the cutting-plane/Kelly’s method,

method of centers of gravity, ellipsoid method, and many others.

Definition 4. For some fixed x̄ ∈ Rn and any x ∈ Rn with f ′(x) 6= 0, define

vf (x̄;x) =
1

‖f ′(x)‖
〈f ′(x), x− x̄〉.

If f ′(x) = 0, then define vf (x̄;x) = 0.

Geometrically, for a fixed x ∈ Rn with f ′(x) 6= 0 and any x̄ ∈ H−x , vf (x̄, x) is the distance from

point x̄ to the hyperplane

Hx = {y ∈ Rn : 〈f ′(x), y − x〉 = 0}.

Indeed, consider the point

x̄p = x̄ + vf (x̄, x)
f ′(x)

‖f ′(x)‖
. (1)

Then

〈f ′(x), x̄p − x〉 = 〈f ′(x), x̄− x〉 − vf (x̄, x)‖f ′(x)‖ = 0

and ‖x̄p − x̄‖ = vf (x̄, x). Note that x̄p ∈ Hx and it is the projection of x̄ onto Hx.

Let

vi = vf (x∗;xi) (≥ 0), v∗k = min
0≤i≤k

vi.

Thus,

v∗k = max
{
r ∈ R++ :

〈
f ′ (xi) , x− xi

〉
≤ 0, i = 0 . . . k, ∀x ∈ B2 (x∗, r)

}
.

This is the radius of the maximal ball centered at x∗, which is contained in the localization set Sk.

Lemma 1. If a convex function f is M -Lipschitz continuous on B2(x̄, R) with constant M > 0,

then

f(x)− f(x̄) ≤Mvf (x̄;x)

for all x ∈ Rn with 0 ≤ vf (x̄;x) ≤ R. Moreover,

min
0≤i≤k

f (xi)− f∗ ≤Mv∗k.
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Proof. Consider x̄p as in (1) which lies in Hx, then

f(x̄p) ≥ f(x) + 〈f ′(x), x̄p − x〉 = f(x).

If f is Lipschitz continuous on B2(x̄, R) and 0 ≤ vf (x̄;x) ≤ R, then x̄p ∈ B2(x̄, R). Hence,

f(x)− f(x̄) ≤ f(x̄p)− f(x̄) ≤M‖x̄p − x̄‖ = Mvf (x̄;x).

Thus, we have

f(xi)− f(x∗) ≤Mvf (x∗;xi) = Mvi.

Therefore,

min
0≤i≤k

f (xi)− f∗ = min
0≤i≤k

[f (xi)− f∗] ≤M min
0≤i≤k

vi = Mv∗k.

3 Subgradient methods

3.1 Normalized variant

Algorithm 1 Subradient method (normalized)

Input: Initial point x0 ∈ Q

for k ≥ 0 do

Step 1. Choose hk > 0.

Step 2. Compute xk+1 = projQ

(
xk − hk

f ′(xk)
‖f ′(xk)‖

)
.

end for

Theorem 1. Assume f is convex and M -Lipschitz continuous on B2 (x∗, R) with R ≥ ‖x0 − x∗‖
and choose hk > 0 for every k ≥ 0. Then, the Subgradient Method (normalized) generates a

sequence of points {xk} satisfying

min
0≤i≤k

f (xi)− f∗ ≤M
R2 +

∑k−1
i=0 h2i

2
∑k−1

i=0 hi
, ∀k ≥ 0.

Proof. Fact: (See PS1 (P2)(d)) for any two points x ∈ Q and y ∈ Rn, we have

‖x− projQ(y)‖2 + ‖ projQ(y)− y‖2 ≤ ‖x− y‖2.
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Let rk := ‖xk − x∗‖. Using the above inequality and convexity, we have

r2k+1 =

∥∥∥∥projQ

(
xk − hk

f ′(xk)

‖f ′(xk)‖

)
− x∗

∥∥∥∥2
≤
∥∥∥∥xk − hk

f ′(xk)

‖f ′(xk)‖
− x∗

∥∥∥∥2
= r2k − 2hk

〈
f ′(xk)

‖f ′(xk)‖
, xk − x∗

〉
+ h2k

= r2k − 2hkvk + h2k.

Summing up these inequalities for i = 0, . . . , k − 1, we get

r20 +

k−1∑
i=0

h2i ≥ 2
k−1∑
i=0

hivi + r2k ≥ 2v∗k−1

k−1∑
i=0

hi.

Thus,

v∗k−1 ≤
R2 +

∑k−1
i=0 h2i

2
∑k−1

i=0 hi
.

Since v∗k−1 ≤ v0 ≤ ‖x0 − x∗‖ ≤ R, the conclusion follows form Lemma 1.

Two stepsize rules:

1. given a fixed number of iterations K ≥ 1,

hk =
R√
K

, k = 0, . . . ,K − 1;

2. given a solution accuracy ε > 0,

hk =
ε

M
, k ≥ 0.

For option 1, using Theorem 1, we have

min
0≤i≤K−1

f (xi)− f∗ ≤
MR√
K

.

For option 2, using Theorem 1, we have

min
0≤i≤K−1

f (xi)− f∗ ≤
M2R2

2εK
+

ε

2
.

Observation: the two options are equivalent in order to find an ε-solution.
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3.2 Unnormalized variant

Algorithm 2 Subradient method (unnormalized)

Input: Initial point x0 ∈ Q

for k ≥ 0 do

Step 1. Choose hk.

Step 2. Compute xk+1 = projQ (xk − hkf
′(xk)).

end for

Theorem 2. (Polyak stepsize) Suppose we know f∗ (and we do in certain cases). Assume f is

convex and M -Lipschitz continuous on B2 (x∗, R) with R ≥ ‖x0 − x∗‖ and choose

hk =
f(xk)− f∗
‖f ′(xk)‖2

, k ≥ 0.

Then, the Subgradient Method (unnormalized) generates a sequence of points {xk} satisfying

min
0≤i≤k

f (xi)− f∗ ≤
MR√

k
, ∀k ≥ 0.

Proof. Let rk := ‖xk − x∗‖. Recall: for any two points x ∈ Q and y ∈ Rn, we have

‖x− projQ(y)‖2 + ‖projQ(y)− y‖ ≤ ‖x− y‖2.

Using the above inequality and convexity, we have

r2k+1 =
∥∥projQ

(
xk − hkf

′(xk)
)
− x∗

∥∥2
≤
∥∥xk − hkf

′(xk)− x∗
∥∥2

= r2k − 2hk
〈
f ′ (xk) , xk − x∗

〉
+ h2k

∥∥f ′ (xk)
∥∥2

≤ r2k − 2hk[f(xk)− f∗] + h2k
∥∥f ′ (xk)

∥∥2 .
It follows from the Polyak’s stepsize rule of hk that

r2k+1 ≤ r2k −
[f(xk)− f∗]

2

‖f ′(xk)‖2
,

and hence that rk+1 < rk < r0 ≤ R. It follows from the Lipschitz continuity assumption and

Theorem 3.61 of AB that ‖f ′(xk)‖ ≤M that

r2k+1 ≤ r2k −
[f(xk)− f∗]

2

‖f ′(xk)‖2
≤ r2k −

[f(xk)− f∗]
2

M2
,

and

r2k ≤ r20 −
∑k−1

i=0 [f(xi)− f∗]
2

M2
.
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Finally, we have

k

[
min

0≤i≤k−1
f(xi)− f∗

]2
≤

k−1∑
i=0

[f(xi)− f∗]
2 ≤M2r20 ≤M2R2,

and

min
0≤i≤k−1

f(xi)− f∗ ≤
MR√

k
.
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