DSCC 435 Optimization for Machine Learning Lecture 3

Gradient Methods

Lecturer: Jiaming Liang September 7, 2023

1 Convex smooth functions

1.1 Smoothness

Definition 1. A function is called L-smooth on R™ if its gradient is L-Lipschitz continuous on R,
1.e.,

IVf(x) =Viwll < Liz—yl, foral zyeR"
Lemma 1. The following statements are equivalent:
(i) f is L-smooth;

(ii) for all z,y € R™,
F) = F@) — (VI @)y~ 2) < Sl — ol

(111) for all x,y € R™,
fle) +(Vf(@),y —x) + %va(x) = VIWI* < fy);

(iv) for all x,y € R™, ,
TIVF(@) = VI <(Vf(x) = VIy),z —y);

(v) for all x,y € R",
(V@) =V f(y),x—y) < Lllz -y,

Proof. (i) = (ii)

1
f() — f(2) — (Vf(2).y — x) = /0 (Vf (@ +7(y — 7)) — VF(x),y — z)dr
1
< [ zrly—alPar = Sly =l

(i) = (iii)
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Fix 29 € R™ and consider ¢(y) = f(y) —(V f (z0) ,y). Note that the optimal solution is y. = xo.
Using (ii), we have

6 (0) = min 6(o) < min {605) + (Vo(s).2 — ) + e~ 1?}

—min { o) ~ Vo + 57 = 60) - 5 IV60)1

Hence, (iii) holds in view of V¢(y) = Vf(y) — V£ (z0).
(ili) = (iv)
We obtain (iv) by adding two copies of (iii) with = and y interchanged.
(iv) = ()
This is simply by (iv) and Cauchy-Schwarz inequality.
(i) = (v)
We obtain (v) by adding two copies of (ii) with x and y interchanged.
(v) = (ii)

F() — f(&) — (Vf(a)y —z) = /0 (Vi@ +(y - 2) - Vf(@),y - )dr

! 2 L 2
< [ rlly = alfPar = 5y - sl
0

1.2 Gradient method

Algorithm 1 Gradient method
Input: Initial point x¢y € R™
for kK« 0,---,K—1do
Step 1. Choose hi > 0.
Step 2. Compute xp11 = xp — hiVf(zg).
end for

Output: zg

Theorem 1. Assume f is convex and L-smooth and choose hy = h € (0,2/L) for every k > 0.
Then, the Gradient Method generates a sequence of points {xy} satisfying

2Uf(z0) = follro — . I
R e R A e ey AN
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Proof. Let ry, := ||z — x«||. Then, we get
riar = llok — 22 — KV f ()|
=17 — 20 (Vf (2) , 2 — 22) + B2 |V f (21) ||

=17 — 2h (Vf (z) — Vf(@s), 2 — 2:) + B2 |V f ()|

Using Lemma 1(iv), we have

2
R <rd-n(F-0) IV @I
Therefore, r, < ro. Using Lemma 1(i), we have

Fonan) < F (@) + (V5 (or) s = ) + 5 onas — 2
= [ @) - alIVS @)l

where o = h(1 — Lh/2). This inequality gives the descent property of the function value. Define
Ak = f(xk) - f* Then)

A <AV (xr), xr = xe) < [V (@) <ro[VF ()]

Thus,

@

A1 < Ay — A,

o
Dividing the above inequality by Aji1Ag, we have
1 1 « Ak 1 (&%

> —+ 3 > —+ .

Ak+1 Ak ’FO Ak+1 Ak 7"0

Summing up these inequalities, we obtain
1 S 1 n ak
Ar T Ag 7‘8 ’
The conclusion follows by inverting the above inequalities. O

Choosing h = 1/L maximizes h(2— Lh) and hence the denominator, so it is the optimal stepsize.
We have the following convergence rate of the Gradient Method:

B 2L[f(x0) — fulllzo — .
flzg) = f« < L[zo — 2|2 + kLf (@0) — fo]’

vk > 0.
Again, using the smoothness of f, we have

L L
F @0) < fu+(VF (@), 30 = 5 + 5 w0 = wull® = £+ 5 1o — .

We have the following result.
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Corollary 1. Assume f is convex and L-smooth and choose hy, = h = 1/L for every k > 0. Then,

2L||xo — x*|]2

vk > 0.
k—|—4 } =

flzr) = fe <

Theorem 2. If f is continuously diffrentialble and conver on R™ and V f(x.) = 0, then x, is the
global minimum of f on R™.

Proof. 1t follows from the convexity of f that for every x € R™,

F(@) > f @)+ (Vf (@) ,0— ) = f ().

Hence, it is also interesting in finding a point with a small norm of the gradient:
IVf(z)] <e.

(See PS1 for more results.)

2 Strongly convex and smooth functions
Definition 2. A proper extended real-valued function f is p-strongly convex if and only if
FO@+(1=Ny) S M@) + 1= NF) = A0 = NGz —yl* foral zyeR")e0,1]

Definition 3. A continuously differentiable function f is p-strongly conver on R™ if for any x,y €

R"™ we have
) = f(@) + (Vf(2),y —2) + Slla =yl

Definition 4. A twice continuously differentiable function f is p-strongly convexr on R™ if and only

if for any © € R™ we have
V2 f(x) = pl.

Lemma 2. If a continuously differentiable function f is p-strongly convex on R™, then we have

(i) for all z,y € R™,
) < F@) +(V(2).y — o) + 21MHVf<x> Vi)

(ii) for all z,y € R™,
(VF() — Vi) —y) < ;uwm — VW)
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(iii) for all x,y € R,
pllz =yl < [IVF(z) = VIl

Proof. The proof is left as a HW problem. 0

Lemma 3. Assume f is u-strongly convexr and L-smooth. For every x,y € R™, we have

1
_ N> o2t _ 2
(V@) =Viy),z—y) = H+LH$ yll” + thLHVf(I) Vil
Proof. The proof is left as a HW problem. O

We are now ready to estimate the performance of the Gradient Method on the class of strongly
convex functions.

Theorem 3. Assume f is p-strongly convexr and L-smooth and choose 0 < h <2/(u+ L). Then,
the Gradient Method generates a sequence {xy} such that

2hpL \"
o= ul? < (1= 222) o = .
If h=2/(np+ L), then

k
-1
o=zl < (257) oo = ]

k+1
and o
L (k-1 9
- *<* — L% ) kZ
fa = fo< 5 (55) leo-al? ez
where k = L/ .
Proof. Let ry := ||z — x4||. Then, we get

121 = ok — 24 — RV f (23) ||
=1} = 2h (V[ (), 2% — 2:) + K2 |V f (z1)|?
=12 — 20 (VS (x1) — Vf(2s), 2 — z2) + B2 |V f (z2)]*

Using Lemma 3, we have

2huL 2
i < <1 - M‘FL> i+ h (h - H+L> IV f ()|

It follows from the assumption that 0 < h < 2/(u + L) that
2hu L
2oo<[1—-=E2) 2
Th+1 = ( T L) Tk

So the first conclusion holds by applying the above inequality recursively. The second conclusion
holds by plugging in h = 2/(u + L). The last conclusion follows from Lemma 1(ii) and the second
conclusion. O
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Note that the fastest rage of convergence is achieved for h = 2/(u + L). In this case, we have

k
o< (o _
2k — 2l < I |20 — @

3 Optimization with constraints

Let us consider now a smooth optimization problem with the set constraint:

ggg f(x) (1)

where @ is a closed convex set.
In the unconstrained case, the optimality condition is

Vf(x)=0.

But this condition does not work with the set constraint. Consider the following univariate mini-
mization problem:

min x.
x>0

Here Q = {z € R: 2 >0} and f(z) = x. Note that z, =0 but f/'(z.) =1 > 0.

Theorem 4. Let f be convex and differentiable and @ be closed and conver. A point x, is as
solution to (1) if and only if
(Vf(z),x —2:) 20 (2)

forall x € Q.

Proof. Indeed, if (2) is true, then

f(@) = f(ae) + (VI (@), 2 = 24) = f(2)

for all x € ). On the other hand, let z, be a solution to (1). Assume that there exists some x € @
such that
(Vf(zye),x —x4) <O.

Consider the function
6(a) = fla,+ale—.)), aelo, 1.
Note that
$(0) = f(zs), ¢'(0) =(Vf(2s),x —zs) <O
Therefore, for o small enough we have

fl@e+a(z — x.)) = d(a) < $(0) = f(z.).

This is a contradiction. O
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The next statement is often addressed as the growth property of strongly convex functions.

Theorem 5. If f is p-strongly convex, then for any x € @, we have
f@) = fla) + Ellw =
Proof. Indeed, by strong convexity and Theorem 4, we have
f(@) 2 f(@) + (V) x = 2.) + Sz — o
> fla) + Sl — .
O

Theorem 6. Let f be p-strongly convex with p > 0 and the set Q is closed and convex. Then there
exists a unique solution x, to (1).

Proof. The proof is left as a HW problem. O

3.1 Minimization over simple sets

Let us consider the following minimization problem over a set

min f (x)

where f is p-strongly convex and L-smooth, and @ is a closed convex set. We assume that @ is
simple enough so that projection onto @ is easy to compute.

Definition 5. Let Q) be a closed set and xg € R™. Define

rojo(xg) = argmin ||x — x|

projg(zo) g min | ol
We call pron(aro) the Fuclidean projection of the point xy onto the set Q.
Lemma 4. For any two points x1 and xo € R™, we have
[ projg (1) — projg(@2)|| < [[z1 — z2||.

Proof. The proof is left as a HW problem. O
Theorem 7. Let x, be an optimal solution to (1). Then, for any h > 0, we have

projo (s — hV f(x4)) = ..

Proof. The proof is left as a HW problem. O
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Examples

e nonnegative orthant Q = R,

projo(z) = [z]4;

box @ = Box[¢, u],
projg(z) = (min {max {x;, £;} ,ui})i_; ;

affine set Q = {x € R" : Az = b},

projo(z) = — A" (AAT)71 (Az —b);

lg ball Q = B||,||2[C, 7'},

r

pron(x) =c+ (x —¢);

max {||lx — ¢||2, 7}

half-space Q = {x calx < a},

[aTz — a N
projo(z) = = — W&.

Algorithm 2 Gradient method for simple set
Input: Initial point g € Q
for k< 0,--- , K—1do
Step 1. Choose hy.
Step 2. Compute xy11 = projg (v — hiV f(zk))-

end for
Output: zg

Theorem 8. Assume f is p-strongly convex and L-smooth and choose hy = h € (0,2/(u + L)].
Then, the Gradient Method generates a sequence {xy} such that

k
ok — @l < (1= ph)* flag — ..

k
—1
TR ( ) T

If h=2/(n+ L), then

k+1
and o
L (k-1 9
fa) -t 5 (557) -
where k = L/ .
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Proof. Let ry, := ||z — x«||. Then, using Theorem 7 and step 2 of Algorithm 2, we get

12,1 = ||projg (e — hV f(xx)) — projg(z. — AV f ()|
< g, — @ — B[V f (1) — V f(@0)]|?
=1} — 2h (Vf(xp) = Vf(zs), 2 — z:) + h? |V (@) — V()|

where the inequality is due to Lemma 4. Using Lemma 3, we have
2hpulL 2
2 2 2
ri 1 < | 1l———)rg+h|h———]||Vflaxr) — V(x|
k:+1—< MJFL) k: ( M+L>” f(@e) = V(]

Using Lemma 2(iii), we have
plle =yl <[V f(z) =Vl
and the assumption that 0 < h < 2/(u+ L), we further have

2hpL 2
Mgt < <1 - ,u—i—iuL +u’h <h - /H—L>> ri = (1= uh)?rf.

So the first conclusion holds by applying the above inequality recursively. The second conclusion
holds by plugging in h = 2/(u+ L). The last conclusion follows from the second conclusion, Lemma
1(ii), and Theorem 4. O

Note that the convergence rate here is the same as in the unconstrained one.
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