DSCC 435 Optimization for Machine Learning	Lecture 3
Gradient Methods	
Lecturer: Jiaming Liang	

1 Convex smooth functions

1.1 Smoothness

Definition 1. A function is called L-smooth on \mathbb{R}^{n} if its gradient is L-Lipschitz continuous on \mathbb{R}^{n}, i.e.,

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \text { for all } \quad x, y \in \mathbb{R}^{n}
$$

Lemma 1. The following statements are equivalent:
(i) f is L-smooth;
(ii) for all $x, y \in \mathbb{R}^{n}$,

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle \leq \frac{L}{2}\|x-y\|^{2}
$$

(iii) for all $x, y \in \mathbb{R}^{n}$,

$$
f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq f(y)
$$

(iv) for all $x, y \in \mathbb{R}^{n}$,

$$
\frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle
$$

(v) for all $x, y \in \mathbb{R}^{n}$,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \leq L\|x-y\|^{2} .
$$

Proof. (i) \Longrightarrow (ii)

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\langle\nabla f(x+\tau(y-x))-\nabla f(x), y-x\rangle d \tau \\
& \leq \int_{0}^{1} L \tau\|y-x\|^{2} d \tau=\frac{L}{2}\|y-x\|^{2} .
\end{aligned}
$$

(ii) \Longrightarrow (iii)

Fix $x_{0} \in \mathbb{R}^{n}$ and consider $\phi(y)=f(y)-\left\langle\nabla f\left(x_{0}\right), y\right\rangle$. Note that the optimal solution is $y_{*}=x_{0}$. Using (ii), we have

$$
\begin{aligned}
\phi\left(y_{*}\right) & =\min _{x \in \mathbb{R}^{n}} \phi(x) \leq \min _{x \in \mathbb{R}^{n}}\left\{\phi(y)+\langle\nabla \phi(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2}\right\} \\
& =\min _{r \geq 0}\left\{\phi(y)-r\|\nabla \phi(y)\|+\frac{L}{2} r^{2}\right\}=\phi(y)-\frac{1}{2 L}\|\nabla \phi(y)\|^{2}
\end{aligned}
$$

Hence, (iii) holds in view of $\nabla \phi(y)=\nabla f(y)-\nabla f\left(x_{0}\right)$.
(iii) \Longrightarrow (iv)

We obtain (iv) by adding two copies of (iii) with x and y interchanged.
(iv) \Longrightarrow (i)

This is simply by (iv) and Cauchy-Schwarz inequality.
(ii) \Longrightarrow (v)

We obtain (v) by adding two copies of (ii) with x and y interchanged.
$(\mathrm{v}) \Longrightarrow$ (ii)

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\langle\nabla f(x+\tau(y-x))-\nabla f(x), y-x\rangle d \tau \\
& \leq \int_{0}^{1} \tau\|y-x\|^{2} d \tau=\frac{L}{2}\|y-x\|^{2} .
\end{aligned}
$$

1.2 Gradient method

```
Algorithm 1 Gradient method
    Input: Initial point \(x_{0} \in \mathbb{R}^{n}\)
    for \(k \leftarrow 0, \cdots, K-1\) do
        Step 1. Choose \(h_{k}>0\).
        Step 2. Compute \(x_{k+1}=x_{k}-h_{k} \nabla f\left(x_{k}\right)\).
    end for
    Output: \(x_{K}\)
```

Theorem 1. Assume f is convex and L-smooth and choose $h_{k}=h \in(0,2 / L)$ for every $k \geq 0$. Then, the Gradient Method generates a sequence of points $\left\{x_{k}\right\}$ satisfying

$$
f\left(x_{k}\right)-f_{*} \leq \frac{2\left[f\left(x_{0}\right)-f_{*}\right]\left\|x_{0}-x_{*}\right\|^{2}}{2\left\|x_{0}-x_{*}\right\|^{2}+k h(2-L h)\left[f\left(x_{0}\right)-f_{*}\right]}, \quad \forall k \geq 0 .
$$

Proof. Let $r_{k}:=\left\|x_{k}-x_{*}\right\|$. Then, we get

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|x_{k}-x_{*}-h \nabla f\left(x_{k}\right)\right\|^{2} \\
& =r_{k}^{2}-2 h\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& =r_{k}^{2}-2 h\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right), x_{k}-x_{*}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

Using Lemma 1(iv), we have

$$
r_{k+1}^{2} \leq r_{k}^{2}-h\left(\frac{2}{L}-h\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

Therefore, $r_{k} \leq r_{0}$. Using Lemma 1(i), we have

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-\alpha\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

where $\alpha=h(1-L h / 2)$. This inequality gives the descent property of the function value. Define $\Delta_{k}=f\left(x_{k}\right)-f_{*}$. Then,

$$
\Delta_{k} \leq\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle \leq r_{k}\left\|\nabla f\left(x_{k}\right)\right\| \leq r_{0}\left\|\nabla f\left(x_{k}\right)\right\|
$$

Thus,

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\alpha}{r_{0}^{2}} \Delta_{k}^{2}
$$

Dividing the above inequality by $\Delta_{k+1} \Delta_{k}$, we have

$$
\frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}+\frac{\alpha}{r_{0}^{2}} \frac{\Delta_{k}}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}+\frac{\alpha}{r_{0}^{2}}
$$

Summing up these inequalities, we obtain

$$
\frac{1}{\Delta_{k}} \geq \frac{1}{\Delta_{0}}+\frac{\alpha k}{r_{0}^{2}}
$$

The conclusion follows by inverting the above inequalities.
Choosing $h=1 / L$ maximizes $h(2-L h)$ and hence the denominator, so it is the optimal stepsize. We have the following convergence rate of the Gradient Method:

$$
f\left(x_{k}\right)-f_{*} \leq \frac{2 L\left[f\left(x_{0}\right)-f_{*}\right]\left\|x_{0}-x_{*}\right\|^{2}}{2 L\left\|x_{0}-x_{*}\right\|^{2}+k\left[f\left(x_{0}\right)-f_{*}\right]}, \quad \forall k \geq 0 .
$$

Again, using the smoothness of f, we have

$$
f\left(x_{0}\right) \leq f_{*}+\left\langle\nabla f\left(x_{*}\right), x_{0}-x_{*}\right\rangle+\frac{L}{2}\left\|x_{0}-x_{*}\right\|^{2}=f_{*}+\frac{L}{2}\left\|x_{0}-x_{*}\right\|^{2} .
$$

We have the following result.

Gradient Methods-3

Corollary 1. Assume f is convex and L-smooth and choose $h_{k}=h=1 / L$ for every $k \geq 0$. Then,

$$
f\left(x_{k}\right)-f_{*} \leq \frac{2 L\left\|x_{0}-x_{*}\right\|^{2}}{k+4}, \quad \forall k \geq 0
$$

Theorem 2. If f is continuously diffrentialble and convex on \mathbb{R}^{n} and $\nabla f\left(x_{*}\right)=0$, then x_{*} is the global minimum of f on \mathbb{R}^{n}.

Proof. It follows from the convexity of f that for every $x \in \mathbb{R}^{n}$,

$$
f(x) \geq f\left(x_{*}\right)+\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle=f\left(x_{*}\right) .
$$

Hence, it is also interesting in finding a point with a small norm of the gradient:

$$
\|\nabla f(x)\| \leq \varepsilon .
$$

(See PS1 for more results.)

2 Strongly convex and smooth functions

Definition 2. A proper extended real-valued function f is μ-strongly convex if and only if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\lambda(1-\lambda) \frac{\mu}{2}\|x-y\|^{2} \quad \text { for all } \quad x, y \in \mathbb{R}^{n}, \lambda \in[0,1] .
$$

Definition 3. A continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n} if for any $x, y \in$ \mathbb{R}^{n} we have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|x-y\|^{2} .
$$

Definition 4. A twice continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n} if and only if for any $x \in \mathbb{R}^{n}$ we have

$$
\nabla^{2} f(x) \succeq \mu I .
$$

Lemma 2. If a continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n}, then we have
(i) for all $x, y \in \mathbb{R}^{n}$,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 \mu}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

(ii) for all $x, y \in \mathbb{R}^{n}$,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \leq \frac{1}{\mu}\|\nabla f(x)-\nabla f(y)\|^{2} ;
$$

(iii) for all $x, y \in \mathbb{R}^{n}$,

$$
\mu\|x-y\| \leq\|\nabla f(x)-\nabla f(y)\| .
$$

Proof. The proof is left as a HW problem.
Lemma 3. Assume f is μ-strongly convex and L-smooth. For every $x, y \in \mathbb{R}^{n}$, we have

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|^{2} .
$$

Proof. The proof is left as a HW problem.
We are now ready to estimate the performance of the Gradient Method on the class of strongly convex functions.

Theorem 3. Assume f is μ-strongly convex and L-smooth and choose $0 \leq h \leq 2 /(\mu+L)$. Then, the Gradient Method generates a sequence $\left\{x_{k}\right\}$ such that

$$
\left\|x_{k}-x_{*}\right\|^{2} \leq\left(1-\frac{2 h \mu L}{\mu+L}\right)^{k}\left\|x_{0}-x_{*}\right\|^{2}
$$

If $h=2 /(\mu+L)$, then

$$
\left\|x_{k}-x_{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|x_{0}-x_{*}\right\|
$$

and

$$
f\left(x_{k}\right)-f_{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x_{0}-x_{*}\right\|^{2}, \quad \forall k \geq 0
$$

where $\kappa=L / \mu$.
Proof. Let $r_{k}:=\left\|x_{k}-x_{*}\right\|$. Then, we get

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|x_{k}-x_{*}-h \nabla f\left(x_{k}\right)\right\|^{2} \\
& =r_{k}^{2}-2 h\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& =r_{k}^{2}-2 h\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right), x_{k}-x_{*}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

Using Lemma 3, we have

$$
r_{k+1}^{2} \leq\left(1-\frac{2 h \mu L}{\mu+L}\right) r_{k}^{2}+h\left(h-\frac{2}{\mu+L}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

It follows from the assumption that $0 \leq h \leq 2 /(\mu+L)$ that

$$
r_{k+1}^{2} \leq\left(1-\frac{2 h \mu L}{\mu+L}\right) r_{k}^{2}
$$

So the first conclusion holds by applying the above inequality recursively. The second conclusion holds by plugging in $h=2 /(\mu+L)$. The last conclusion follows from Lemma 1(ii) and the second conclusion.

Note that the fastest rage of convergence is achieved for $h=2 /(\mu+L)$. In this case, we have

$$
\left\|x_{k}-x_{*}\right\| \leq\left(\frac{L-\mu}{L+\mu}\right)^{k}\left\|x_{0}-x_{*}\right\| .
$$

3 Optimization with constraints

Let us consider now a smooth optimization problem with the set constraint:

$$
\begin{equation*}
\min _{x \in Q} f(x) \tag{1}
\end{equation*}
$$

where Q is a closed convex set.
In the unconstrained case, the optimality condition is

$$
\nabla f(x)=0 .
$$

But this condition does not work with the set constraint. Consider the following univariate minimization problem:

$$
\min _{x \geq 0} x
$$

Here $Q=\{x \in \mathbb{R}: x \geq 0\}$ and $f(x)=x$. Note that $x_{*}=0$ but $f^{\prime}\left(x_{*}\right)=1>0$.
Theorem 4. Let f be convex and differentiable and Q be closed and convex. A point x_{*} is as solution to (1) if and only if

$$
\begin{equation*}
\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle \geq 0 \tag{2}
\end{equation*}
$$

for all $x \in Q$.
Proof. Indeed, if (2) is true, then

$$
f(x) \geq f\left(x_{*}\right)+\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle \geq f\left(x_{*}\right)
$$

for all $x \in Q$. On the other hand, let x_{*} be a solution to (1). Assume that there exists some $x \in Q$ such that

$$
\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle<0 .
$$

Consider the function

$$
\phi(\alpha)=f\left(x_{*}+\alpha\left(x-x_{*}\right)\right), \quad \alpha \in[0,1] .
$$

Note that

$$
\phi(0)=f\left(x_{*}\right), \quad \phi^{\prime}(0)=\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle<0 .
$$

Therefore, for α small enough we have

$$
f\left(x_{*}+\alpha\left(x-x_{*}\right)\right)=\phi(\alpha)<\phi(0)=f\left(x_{*}\right) .
$$

This is a contradiction.

The next statement is often addressed as the growth property of strongly convex functions.
Theorem 5. If f is μ-strongly convex, then for any $x \in Q$, we have

$$
f(x) \geq f\left(x_{*}\right)+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2} .
$$

Proof. Indeed, by strong convexity and Theorem 4, we have

$$
\begin{aligned}
f(x) & \geq f\left(x_{*}\right)+\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2} \\
& \geq f\left(x_{*}\right)+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2} .
\end{aligned}
$$

Theorem 6. Let f be μ-strongly convex with $\mu>0$ and the set Q is closed and convex. Then there exists a unique solution x_{*} to (1).

Proof. The proof is left as a HW problem.

3.1 Minimization over simple sets

Let us consider the following minimization problem over a set

$$
\min _{x \in Q} f(x)
$$

where f is μ-strongly convex and L-smooth, and Q is a closed convex set. We assume that Q is simple enough so that projection onto Q is easy to compute.

Definition 5. Let Q be a closed set and $x_{0} \in \mathbb{R}^{n}$. Define

$$
\operatorname{proj}_{Q}\left(x_{0}\right)=\arg \min _{x \in Q}\left\|x-x_{0}\right\| .
$$

We call $\operatorname{proj}_{Q}\left(x_{0}\right)$ the Euclidean projection of the point x_{0} onto the set Q.
Lemma 4. For any two points x_{1} and $x_{2} \in \mathbb{R}^{n}$, we have

$$
\left\|\operatorname{proj}_{Q}\left(x_{1}\right)-\operatorname{proj}_{Q}\left(x_{2}\right)\right\| \leq\left\|x_{1}-x_{2}\right\|
$$

Proof. The proof is left as a HW problem.
Theorem 7. Let x_{*} be an optimal solution to (1). Then, for any $h>0$, we have

$$
\operatorname{proj}_{Q}\left(x_{*}-h \nabla f\left(x_{*}\right)\right)=x_{*} .
$$

Proof. The proof is left as a HW problem.

Examples

- nonnegative orthant $Q=\mathbb{R}_{+}^{n}$,

$$
\operatorname{proj}_{Q}(x)=[x]_{+} ;
$$

- $\operatorname{box} Q=\operatorname{Box}[\ell, u]$,

$$
\operatorname{proj}_{Q}(x)=\left(\min \left\{\max \left\{x_{i}, \ell_{i}\right\}, u_{i}\right\}\right)_{i=1}^{n} ;
$$

- affine set $Q=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$,

$$
\operatorname{proj}_{Q}(x)=x-A^{T}\left(A A^{T}\right)^{-1}(A x-b)
$$

- l_{2} ball $Q=B_{\|\cdot\|_{2}}[c, r]$,

$$
\operatorname{proj}_{Q}(x)=c+\frac{r}{\max \left\{\|x-c\|_{2}, r\right\}}(x-c) ;
$$

- half-space $Q=\left\{x: a^{T} x \leq \alpha\right\}$,

$$
\operatorname{proj}_{Q}(x)=x-\frac{\left[a^{T} x-\alpha\right]_{+}}{\|a\|^{2}} a .
$$

```
Algorithm 2 Gradient method for simple set
    Input: Initial point \(x_{0} \in Q\)
    for \(k \leftarrow 0, \cdots, K-1\) do
        Step 1. Choose \(h_{k}\).
        Step 2. Compute \(x_{k+1}=\operatorname{proj}_{Q}\left(x_{k}-h_{k} \nabla f\left(x_{k}\right)\right)\).
    end for
    Output: \(x_{K}\)
```

Theorem 8. Assume f is μ-strongly convex and L-smooth and choose $h_{k}=h \in(0,2 /(\mu+L)]$. Then, the Gradient Method generates a sequence $\left\{x_{k}\right\}$ such that

$$
\left\|x_{k}-x_{*}\right\| \leq(1-\mu h)^{k}\left\|x_{0}-x_{*}\right\| .
$$

If $h=2 /(\mu+L)$, then

$$
\left\|x_{k}-x_{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|x_{0}-x_{*}\right\|
$$

and

$$
f\left(x_{k}\right)-f_{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x_{0}-x_{*}\right\|^{2}, \quad \forall k \geq 0
$$

where $\kappa=L / \mu$.

Proof. Let $r_{k}:=\left\|x_{k}-x_{*}\right\|$. Then, using Theorem 7 and step 2 of Algorithm 2, we get

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|\operatorname{proj}_{Q}\left(x_{k}-h \nabla f\left(x_{k}\right)\right)-\operatorname{proj}_{Q}\left(x_{*}-h \nabla f\left(x_{*}\right)\right)\right\|^{2} \\
& \leq\left\|x_{k}-x_{*}-h\left[\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right)\right]\right\|^{2} \\
& =r_{k}^{2}-2 h\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right), x_{k}-x_{*}\right\rangle+h^{2}\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right)\right\|^{2}
\end{aligned}
$$

where the inequality is due to Lemma 4. Using Lemma 3, we have

$$
r_{k+1}^{2} \leq\left(1-\frac{2 h \mu L}{\mu+L}\right) r_{k}^{2}+h\left(h-\frac{2}{\mu+L}\right)\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x_{*}\right)\right\|^{2} .
$$

Using Lemma 2(iii), we have

$$
\mu\|x-y\| \leq\|\nabla f(x)-\nabla f(y)\|
$$

and the assumption that $0 \leq h \leq 2 /(\mu+L)$, we further have

$$
r_{k+1}^{2} \leq\left(1-\frac{2 h \mu L}{\mu+L}+\mu^{2} h\left(h-\frac{2}{\mu+L}\right)\right) r_{k}^{2}=(1-\mu h)^{2} r_{k}^{2}
$$

So the first conclusion holds by applying the above inequality recursively. The second conclusion holds by plugging in $h=2 /(\mu+L)$. The last conclusion follows from the second conclusion, Lemma 1(ii), and Theorem 4.

Note that the convergence rate here is the same as in the unconstrained one.

