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1 Convex smooth functions

1.1 Smoothness

Definition 1. A function is called L-smooth on Rn if its gradient is L-Lipschitz continuous on Rn,

i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rn.

Lemma 1. The following statements are equivalent:

(i) f is L-smooth;

(ii) for all x, y ∈ Rn,

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥x− y∥2;

(iii) for all x, y ∈ Rn,

f(x) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2 ≤ f(y);

(iv) for all x, y ∈ Rn,
1

L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩;

(v) for all x, y ∈ Rn,

⟨∇f(x)−∇f(y), x− y⟩ ≤ L∥x− y∥2.

Proof. (i) =⇒ (ii)

f(y)− f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x), y − x⟩dτ

≤
∫ 1

0
Lτ∥y − x∥2dτ =

L

2
∥y − x∥2.

(ii) =⇒ (iii)

Gradient Methods-1



Fix x0 ∈ Rn and consider ϕ(y) = f(y)−⟨∇f (x0) , y⟩. Note that the optimal solution is y∗ = x0.

Using (ii), we have

ϕ (y∗) = min
x∈Rn

ϕ(x) ≤ min
x∈Rn

{
ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L

2
∥x− y∥2

}
= min

r≥0

{
ϕ(y)− r∥∇ϕ(y)∥+ L

2
r2
}

= ϕ(y)− 1

2L
∥∇ϕ(y)∥2

Hence, (iii) holds in view of ∇ϕ(y) = ∇f(y)−∇f (x0).

(iii) =⇒ (iv)

We obtain (iv) by adding two copies of (iii) with x and y interchanged.

(iv) =⇒ (i)

This is simply by (iv) and Cauchy-Schwarz inequality.

(ii) =⇒ (v)

We obtain (v) by adding two copies of (ii) with x and y interchanged.

(v) =⇒ (ii)

f(y)− f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x), y − x⟩dτ

≤
∫ 1

0
τ∥y − x∥2dτ =

L

2
∥y − x∥2.

1.2 Gradient method

Algorithm 1 Gradient method

Input: Initial point x0 ∈ Rn

for k ← 0, · · · ,K − 1 do

Step 1. Choose hk > 0.

Step 2. Compute xk+1 = xk − hk∇f(xk).
end for

Output: xK

Theorem 1. Assume f is convex and L-smooth and choose hk = h ∈ (0, 2/L) for every k ≥ 0.

Then, the Gradient Method generates a sequence of points {xk} satisfying

f(xk)− f∗ ≤
2[f(x0)− f∗]∥x0 − x∗∥2

2∥x0 − x∗∥2 + kh(2− Lh)[f(x0)− f∗]
, ∀k ≥ 0.
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Proof. Let rk := ∥xk − x∗∥. Then, we get

r2k+1 = ∥xk − x∗ − h∇f (xk)∥2

= r2k − 2h ⟨∇f (xk) , xk − x∗⟩+ h2 ∥∇f (xk)∥2

= r2k − 2h ⟨∇f (xk)−∇f(x∗), xk − x∗⟩+ h2 ∥∇f (xk)∥2 .

Using Lemma 1(iv), we have

r2k+1 ≤ r2k − h

(
2

L
− h

)
∥∇f (xk)∥2 .

Therefore, rk ≤ r0. Using Lemma 1(i), we have

f (xk+1) ≤ f (xk) + ⟨∇f (xk) , xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

= f (xk)− α ∥∇f (xk)∥2

where α = h(1 − Lh/2). This inequality gives the descent property of the function value. Define

∆k = f(xk)− f∗. Then,

∆k ≤ ⟨∇f (xk) , xk − x∗⟩ ≤ rk ∥∇f (xk)∥ ≤ r0 ∥∇f (xk)∥ .

Thus,

∆k+1 ≤ ∆k −
α

r20
∆2

k.

Dividing the above inequality by ∆k+1∆k, we have

1

∆k+1
≥ 1

∆k
+

α

r20

∆k

∆k+1
≥ 1

∆k
+

α

r20
.

Summing up these inequalities, we obtain

1

∆k
≥ 1

∆0
+

αk

r20
.

The conclusion follows by inverting the above inequalities.

Choosing h = 1/L maximizes h(2−Lh) and hence the denominator, so it is the optimal stepsize.

We have the following convergence rate of the Gradient Method:

f(xk)− f∗ ≤
2L[f(x0)− f∗]∥x0 − x∗∥2

2L∥x0 − x∗∥2 + k[f(x0)− f∗]
, ∀k ≥ 0.

Again, using the smoothness of f , we have

f (x0) ≤ f∗ + ⟨∇f (x∗) , x0 − x∗⟩+
L

2
∥x0 − x∗∥2 = f∗ +

L

2
∥x0 − x∗∥2 .

We have the following result.
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Corollary 1. Assume f is convex and L-smooth and choose hk = h = 1/L for every k ≥ 0. Then,

f(xk)− f∗ ≤
2L∥x0 − x∗∥2

k + 4
, ∀k ≥ 0.

Theorem 2. If f is continuously diffrentialble and convex on Rn and ∇f(x∗) = 0, then x∗ is the

global minimum of f on Rn.

Proof. It follows from the convexity of f that for every x ∈ Rn,

f(x) ≥ f (x∗) + ⟨∇f (x∗) , x− x∗⟩ = f (x∗) .

Hence, it is also interesting in finding a point with a small norm of the gradient:

∥∇f(x)∥ ≤ ε.

(See PS1 for more results.)

2 Strongly convex and smooth functions

Definition 2. A proper extended real-valued function f is µ-strongly convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)
µ

2
∥x− y∥2 for all x, y ∈ Rn, λ ∈ [0, 1].

Definition 3. A continuously differentiable function f is µ-strongly convex on Rn if for any x, y ∈
Rn we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2.

Definition 4. A twice continuously differentiable function f is µ-strongly convex on Rn if and only

if for any x ∈ Rn we have

∇2f(x) ⪰ µI.

Lemma 2. If a continuously differentiable function f is µ-strongly convex on Rn, then we have

(i) for all x, y ∈ Rn,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

2µ
∥∇f(x)−∇f(y)∥2;

(ii) for all x, y ∈ Rn,

⟨∇f(x)−∇f(y), x− y⟩ ≤ 1

µ
∥∇f(x)−∇f(y)∥2;
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(iii) for all x, y ∈ Rn,

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥.

Proof. The proof is left as a HW problem.

Lemma 3. Assume f is µ-strongly convex and L-smooth. For every x, y ∈ Rn, we have

⟨∇f(x)−∇f(y), x− y⟩ ≥ µL

µ+ L
∥x− y∥2 + 1

µ+ L
∥∇f(x)−∇f(y)∥2.

Proof. The proof is left as a HW problem.

We are now ready to estimate the performance of the Gradient Method on the class of strongly

convex functions.

Theorem 3. Assume f is µ-strongly convex and L-smooth and choose 0 ≤ h ≤ 2/(µ+ L). Then,

the Gradient Method generates a sequence {xk} such that

∥xk − x∗∥2 ≤
(
1− 2hµL

µ+ L

)k

∥x0 − x∗∥2.

If h = 2/(µ+ L), then

∥xk − x∗∥ ≤
(
κ− 1

κ+ 1

)k

∥x0 − x∗∥,

and

f(xk)− f∗ ≤
L

2

(
κ− 1

κ+ 1

)2k

∥x0 − x∗∥2, ∀k ≥ 0

where κ = L/µ.

Proof. Let rk := ∥xk − x∗∥. Then, we get

r2k+1 = ∥xk − x∗ − h∇f (xk)∥2

= r2k − 2h ⟨∇f (xk) , xk − x∗⟩+ h2 ∥∇f (xk)∥2

= r2k − 2h ⟨∇f (xk)−∇f(x∗), xk − x∗⟩+ h2 ∥∇f (xk)∥2 .

Using Lemma 3, we have

r2k+1 ≤
(
1− 2hµL

µ+ L

)
r2k + h

(
h− 2

µ+ L

)
∥∇f(xk)∥2.

It follows from the assumption that 0 ≤ h ≤ 2/(µ+ L) that

r2k+1 ≤
(
1− 2hµL

µ+ L

)
r2k.

So the first conclusion holds by applying the above inequality recursively. The second conclusion

holds by plugging in h = 2/(µ+ L). The last conclusion follows from Lemma 1(ii) and the second

conclusion.
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Note that the fastest rage of convergence is achieved for h = 2/(µ+ L). In this case, we have

∥xk − x∗∥ ≤
(
L− µ

L+ µ

)k

∥x0 − x∗∥.

3 Optimization with constraints

Let us consider now a smooth optimization problem with the set constraint :

min
x∈Q

f(x) (1)

where Q is a closed convex set.

In the unconstrained case, the optimality condition is

∇f(x) = 0.

But this condition does not work with the set constraint. Consider the following univariate mini-

mization problem:

min
x≥0

x.

Here Q = {x ∈ R : x ≥ 0} and f(x) = x. Note that x∗ = 0 but f ′(x∗) = 1 > 0.

Theorem 4. Let f be convex and differentiable and Q be closed and convex. A point x∗ is as

solution to (1) if and only if

⟨∇f(x∗), x− x∗⟩ ≥ 0 (2)

for all x ∈ Q.

Proof. Indeed, if (2) is true, then

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩ ≥ f(x∗)

for all x ∈ Q. On the other hand, let x∗ be a solution to (1). Assume that there exists some x ∈ Q

such that

⟨∇f(x∗), x− x∗⟩ < 0.

Consider the function

ϕ(α) = f(x∗ + α(x− x∗)), α ∈ [0, 1].

Note that

ϕ(0) = f(x∗), ϕ′(0) = ⟨∇f(x∗), x− x∗⟩ < 0.

Therefore, for α small enough we have

f(x∗ + α(x− x∗)) = ϕ(α) < ϕ(0) = f(x∗).

This is a contradiction.
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The next statement is often addressed as the growth property of strongly convex functions.

Theorem 5. If f is µ-strongly convex, then for any x ∈ Q, we have

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥2.

Proof. Indeed, by strong convexity and Theorem 4, we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+
µ

2
∥x− x∗∥2

≥ f(x∗) +
µ

2
∥x− x∗∥2.

Theorem 6. Let f be µ-strongly convex with µ > 0 and the set Q is closed and convex. Then there

exists a unique solution x∗ to (1).

Proof. The proof is left as a HW problem.

3.1 Minimization over simple sets

Let us consider the following minimization problem over a set

min
x∈Q

f(x)

where f is µ-strongly convex and L-smooth, and Q is a closed convex set. We assume that Q is

simple enough so that projection onto Q is easy to compute.

Definition 5. Let Q be a closed set and x0 ∈ Rn. Define

projQ(x0) = argmin
x∈Q
∥x− x0∥.

We call projQ(x0) the Euclidean projection of the point x0 onto the set Q.

Lemma 4. For any two points x1 and x2 ∈ Rn, we have

∥ projQ(x1)− projQ(x2)∥ ≤ ∥x1 − x2∥.

Proof. The proof is left as a HW problem.

Theorem 7. Let x∗ be an optimal solution to (1). Then, for any h > 0, we have

projQ(x∗ − h∇f(x∗)) = x∗.

Proof. The proof is left as a HW problem.
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Examples

• nonnegative orthant Q = Rn
+,

projQ(x) = [x]+;

• box Q = Box[ℓ, u],

projQ(x) = (min {max {xi, ℓi} , ui})ni=1 ;

• affine set Q = {x ∈ Rn : Ax = b},

projQ(x) = x−AT
(
AAT

)−1
(Ax− b);

• l2 ball Q = B∥·∥2 [c, r],

projQ(x) = c+
r

max {∥x− c∥2, r}
(x− c);

• half-space Q =
{
x : aTx ≤ α

}
,

projQ(x) = x−
[
aTx− α

]
+

∥a∥2
a.

Algorithm 2 Gradient method for simple set

Input: Initial point x0 ∈ Q

for k ← 0, · · · ,K − 1 do

Step 1. Choose hk.

Step 2. Compute xk+1 = projQ (xk − hk∇f(xk)).
end for

Output: xK

Theorem 8. Assume f is µ-strongly convex and L-smooth and choose hk = h ∈ (0, 2/(µ + L)].

Then, the Gradient Method generates a sequence {xk} such that

∥xk − x∗∥ ≤ (1− µh)k ∥x0 − x∗∥.

If h = 2/(µ+ L), then

∥xk − x∗∥ ≤
(
κ− 1

κ+ 1

)k

∥x0 − x∗∥

and

f(xk)− f∗ ≤
L

2

(
κ− 1

κ+ 1

)2k

∥x0 − x∗∥2, ∀k ≥ 0

where κ = L/µ.
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Proof. Let rk := ∥xk − x∗∥. Then, using Theorem 7 and step 2 of Algorithm 2, we get

r2k+1 =
∥∥projQ(xk − h∇f(xk))− projQ(x∗ − h∇f(x∗))

∥∥2
≤ ∥xk − x∗ − h[∇f(xk)−∇f(x∗)]∥2

= r2k − 2h ⟨∇f(xk)−∇f(x∗), xk − x∗⟩+ h2 ∥∇f(xk)−∇f(x∗)∥2

where the inequality is due to Lemma 4. Using Lemma 3, we have

r2k+1 ≤
(
1− 2hµL

µ+ L

)
r2k + h

(
h− 2

µ+ L

)
∥∇f(xk)−∇f(x∗)∥2.

Using Lemma 2(iii), we have

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥

and the assumption that 0 ≤ h ≤ 2/(µ+ L), we further have

r2k+1 ≤
(
1− 2hµL

µ+ L
+ µ2h

(
h− 2

µ+ L

))
r2k = (1− µh)2r2k.

So the first conclusion holds by applying the above inequality recursively. The second conclusion

holds by plugging in h = 2/(µ+L). The last conclusion follows from the second conclusion, Lemma

1(ii), and Theorem 4.

Note that the convergence rate here is the same as in the unconstrained one.
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