Convexity and Complexity

Lecturer: Jiaming Liang

1 Convexity

1.1 Convex set

Definition 1. A set $S \subseteq \mathbb{R}^{n}$ is called convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in[0,1]$ it holds that $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in S$. For a set $S \subseteq \mathbb{R}^{n}$, the convex hull of S, denoted by $\operatorname{Conv}(S)$, is the intersection of all convex sets containing S.

Clearly, $\operatorname{Conv}(S)$ is by itself a convex set, and it is the smallest convex set containing S (w.r.t. inclusion).

Affine sets can be defined similarly if we replace $\lambda \in[0,1]$ by $\lambda \in \mathbb{R}$. A hyperplane is a subset of \mathbb{R}^{n} given by

$$
H_{\mathbf{a}, b}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{a}, \mathbf{x}\rangle=b\right\},
$$

where $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. It is an easy exercise to show that hyperplanes are affine sets.
Examples: Evidently, affine sets are always convex. Open and closed balls are always convex regardless of the choice of norm. For given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the closed line segment between \mathbf{x} and \mathbf{y} is a subset of \mathbb{R}^{n} denoted by $[\mathbf{x}, \mathbf{y}]$ and defined as

$$
[\mathbf{x}, \mathbf{y}]=\{\alpha \mathbf{x}+(1-\alpha) \mathbf{y}: \alpha \in[0,1]\}
$$

The open line segment (\mathbf{x}, \mathbf{y}) is similarly defined as

$$
(\mathbf{x}, \mathbf{y})=\{\alpha \mathbf{x}+(1-\alpha) \mathbf{y}: \alpha \in(0,1)\}
$$

when $\mathbf{x} \neq \mathbf{y}$ and is the empty set \emptyset when $\mathbf{x}=\mathbf{y}$. Closed and open line segments are convex sets. Another example of convex sets are half-spaces, which are sets of the form

$$
H_{\mathbf{a}, b}^{-}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{a}, \mathbf{x}\rangle \leq b\right\},
$$

where $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.

1.2 Convex function

Definition 2. A proper extended real-valued function f is convex if and only if

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \quad \text { for all } \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in[0,1] .
$$

The epigraph of an extended real-valued function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is defined by epi $(f)=$ $\left\{(\mathbf{x}, t): f(\mathbf{x}) \leq t, \mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}\right\}$

Theorem 1. An extended real-valued function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is called convex if $\operatorname{epi}(f)$ is a convex set.

Definition 3. A continuously differentiable function f is convex on \mathbb{R}^{n} if for any $x, y \in \mathbb{R}^{n}$ we have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle .
$$

Definition 4. A twice continuously differentiable function f is convex on \mathbb{R}^{n} if and only if for any $x \in \mathbb{R}^{n}$ we have

$$
\nabla^{2} f(x) \succeq 0
$$

Example

- Every linear function $f(x)=\alpha+\langle a, x\rangle$ is convex.
- Let matrix A be symmetric and positive semidefinite. Then the quadratic function

$$
f(x)=\alpha+\langle a, x\rangle+\frac{1}{2}\langle A x, x\rangle
$$

is convex (since $\left.\nabla^{2} f(x)=A \succeq 0\right)$.

Operations preserving convexity

- $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is a convex function, then

$$
g(x)=f(A x+b)
$$

is convex.

- Let $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be extended real-valued convex functions, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in$ \mathbb{R}_{+}. Then the function $\sum_{i=1}^{m} \alpha_{i} f_{i}$ is convex.
- Let $f_{i}: \mathbb{R}^{n} \rightarrow(-\infty, \infty], i \in I$, be extended real-valued convex functions, where I is a given index set. Then the function

$$
f(\mathbf{x})=\max _{i \in I} f_{i}(\mathbf{x})
$$

is convex.
Example Let $C \subseteq \mathbb{R}^{n}$ be a nonempty set, and consider the function

$$
\varphi_{C}(\mathbf{x})=\frac{1}{2}\left(\|\mathbf{x}\|^{2}-d_{C}^{2}(\mathbf{x})\right)
$$

where

$$
d_{C}(\mathbf{x})=\min _{\mathbf{y} \in C}\|\mathbf{x}-\mathbf{y}\| .
$$

We want to show that $\varphi_{C}(\mathbf{x})$ is convex. Note that

$$
d_{C}^{2}(\mathbf{x})=\min _{\mathbf{y} \in C}\|\mathbf{x}-\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}-\max _{\mathbf{y} \in C}\left[2\langle\mathbf{y}, \mathbf{x}\rangle-\|\mathbf{y}\|^{2}\right]
$$

Hence,

$$
\varphi_{C}(\mathbf{x})=\max _{\mathbf{y} \in C}\left[\langle\mathbf{y}, \mathbf{x}\rangle-\frac{1}{2}\|\mathbf{y}\|^{2}\right] .
$$

Therefore, since φ_{C} is a maximization of affine - and hence convex - functions, by the maximization rule above, it is necessarily convex. Also note that φ_{C} is convex regarless of whether C is convex or not.

2 Complexity

Definition 5. We say $f(x)=\mathcal{O}(g(x))$ if there exists scalars $M>0$ and $x_{0} \in \mathbb{R}$ such that

$$
|f(x)| \leq M g(x) \quad \text { for all } \quad x \geq x_{0} .
$$

We say $f(x)=\Omega(g(x))$ if there exists scalars $M>0$ and $x_{0} \in \mathbb{R}$ such that

$$
f(x) \geq M g(x) \quad \text { for all } \quad x \geq x_{0}
$$

We say $f(x)=\Theta(g(x))$ if $f(x)=\mathcal{O}(g(x))$ and $f(x)=\Omega(g(x))$.

Convergence rate

Sublinear rate. This rate is described in terms of a power function of the iteration counter. For example, suppose that for some method we can prove the rate of convergence $r_{k} \leq \frac{c}{\sqrt{k}}$. In this case, the upper complexity bound justified by this scheme for the corresponding problem class is $\left(\frac{c}{\epsilon}\right)^{2}$.

Example Gradient method:

$$
f\left(x_{k}\right)-f_{*} \leq \frac{L d_{0}^{2}}{k}
$$

Accelerated gradient method:

$$
f\left(x_{k}\right)-f_{*} \leq \frac{L d_{0}^{2}}{k^{2}}
$$

Subgradient method:

$$
f\left(x_{k}\right)-f_{*} \leq \frac{M d_{0}}{\sqrt{k}}
$$

Linear rate. This rate is given in terms of an exponential function of the iteratic counter. For example,

$$
\begin{aligned}
r_{k+1} & \leq(1-q) r_{k} \\
r_{k} \leq c(1-q)^{k} & \leq c e^{-q k}, \quad 0<q \leq 1 .
\end{aligned}
$$

Note that the corresponding complexity bound is $\frac{1}{q}\left(\ln c+\ln \frac{1}{\epsilon}\right)$.
Eample Gradient method:

$$
\mathcal{O}\left(\frac{L}{\mu} \log \left(\frac{\mu d_{0}^{2}}{\varepsilon}\right)\right)
$$

Accelerated gradient method:

$$
\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \left(\frac{\mu d_{0}^{2}}{\varepsilon}\right)\right)
$$

Quadratic rate. This rate has a double exponential dependence in the iteration counter. For example,

$$
r_{k+1} \leq c r_{k}^{2}
$$

The corresponding complexity estimate depends on the double logarithm of the desired accuracy: $\ln \ln \frac{1}{\epsilon}$.

Example Suppose that the initial starting point x_{0} is close enough to x^{*} :

$$
\left\|x_{0}-x^{*}\right\| \leq \bar{r}=\frac{2 \mu}{3 M} .
$$

Then $\left\|x_{k}-x^{*}\right\| \leq \bar{r}$ for all k and the Newton's Method converges quadratically:

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M\left\|x_{k}-x^{*}\right\|^{2}}{2\left(\mu-M\left\|x_{k}-x^{*}\right\|\right)}
$$

Note that following the definition of \bar{r} and $\left\|x_{k}-x^{*}\right\| \leq \bar{r}$, we have

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M\left\|x_{k}-x^{*}\right\|^{2}}{2(\mu-M \bar{r})}=\frac{3 M\left\|x_{k}-x^{*}\right\|^{2}}{2 \mu}=\frac{\left\|x_{k}-x^{*}\right\|^{2}}{\bar{r}} .
$$

