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1 Convexity

1.1 Convex set

Definition 1. A set S ⊆ Rn is called convex if for any x,y ∈ S and λ ∈ [0, 1] it holds that

λx+(1−λ)y ∈ S. For a set S ⊆ Rn, the convex hull of S, denoted by Conv(S), is the intersection

of all convex sets containing S.

Clearly, Conv(S) is by itself a convex set, and it is the smallest convex set containing S (w.r.t.

inclusion).

Affine sets can be defined similarly if we replace λ ∈ [0, 1] by λ ∈ R. A hyperplane is a subset

of Rn given by

Ha,b = {x ∈ Rn : ⟨a,x⟩ = b},

where a ∈ Rn and b ∈ R. It is an easy exercise to show that hyperplanes are affine sets.

Examples: Evidently, affine sets are always convex. Open and closed balls are always convex

regardless of the choice of norm. For given x,y ∈ Rn, the closed line segment between x and y is

a subset of Rn denoted by [x,y] and defined as

[x,y] = {αx+ (1− α)y : α ∈ [0, 1]}

The open line segment (x,y) is similarly defined as

(x,y) = {αx+ (1− α)y : α ∈ (0, 1)}

when x ̸= y and is the empty set ∅ when x = y. Closed and open line segments are convex sets.

Another example of convex sets are half-spaces, which are sets of the form

H−
a,b = {x ∈ Rn : ⟨a,x⟩ ≤ b},

where a ∈ Rn and b ∈ R.

1.2 Convex function

Definition 2. A proper extended real-valued function f is convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x,y ∈ Rn, λ ∈ [0, 1].
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The epigraph of an extended real-valued function f : Rn → [−∞,∞] is defined by epi(f) =

{(x, t) : f(x) ≤ t,x ∈ Rn, t ∈ R}

Theorem 1. An extended real-valued function f : Rn → [−∞,∞] is called convex if epi(f) is a

convex set.

Definition 3. A continuously differentiable function f is convex on Rn if for any x, y ∈ Rn we

have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Definition 4. A twice continuously differentiable function f is convex on Rn if and only if for any

x ∈ Rn we have

∇2f(x) ⪰ 0.

Example

• Every linear function f(x) = α+ ⟨a, x⟩ is convex.

• Let matrix A be symmetric and positive semidefinite. Then the quadratic function

f(x) = α+ ⟨a, x⟩+ 1

2
⟨Ax, x⟩

is convex (since ∇2f(x) = A ⪰ 0
)
.

Operations preserving convexity

• A : Rn → Rm, b ∈ Rm, f : Rn → (−∞,∞] is a convex function, then

g(x) = f(Ax+ b)

is convex.

• Let f1, f2, . . . , fm : Rn → (−∞,∞] be extended real-valued convex functions, and let α1, α2, . . . , αm ∈
R+. Then the function

∑m
i=1 αifi is convex.

• Let fi : Rn → (−∞,∞], i ∈ I, be extended real-valued convex functions, where I is a given

index set. Then the function

f(x) = max
i∈I

fi(x)

is convex.

Example Let C ⊆ Rn be a nonempty set, and consider the function

φC(x) =
1

2

(
∥x∥2 − d2C(x)

)
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where

dC(x) = min
y∈C

∥x− y∥.

We want to show that φC(x) is convex. Note that

d2C(x) = min
y∈C

∥x− y∥2 = ∥x∥2 −max
y∈C

[
2⟨y,x⟩ − ∥y∥2

]
Hence,

φC(x) = max
y∈C

[
⟨y,x⟩ − 1

2
∥y∥2

]
.

Therefore, since φC is a maximization of affine—and hence convex—functions, by the maximization

rule above, it is necessarily convex. Also note that φC is convex regarless of whether C is convex

or not.

2 Complexity

Definition 5. We say f(x) = O(g(x)) if there exists scalars M > 0 and x0 ∈ R such that

|f(x)| ≤ Mg(x) for all x ≥ x0.

We say f(x) = Ω(g(x)) if there exists scalars M > 0 and x0 ∈ R such that

f(x) ≥ Mg(x) for all x ≥ x0.

We say f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

Convergence rate

Sublinear rate. This rate is described in terms of a power function of the iteration counter. For

example, suppose that for some method we can prove the rate of convergence rk ≤ c√
k
. In this

case, the upper complexity bound justified by this scheme for the corresponding problem class is(
c
ϵ

)2
.

Example Gradient method:

f(xk)− f∗ ≤
Ld20
k

Accelerated gradient method:

f(xk)− f∗ ≤
Ld20
k2

Subgradient method:

f(xk)− f∗ ≤
Md0√

k
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Linear rate. This rate is given in terms of an exponential function of the iteratic counter. For

example,

rk+1 ≤ (1− q)rk

rk ≤ c(1− q)k ≤ ce−qk, 0 < q ≤ 1.

Note that the corresponding complexity bound is 1
q

(
ln c+ ln 1

ϵ

)
.

Eample Gradient method:

O
(
L

µ
log

(
µd20
ε

))
Accelerated gradient method:

O

(√
L

µ
log

(
µd20
ε

))
Quadratic rate. This rate has a double exponential dependence in the iteration counter. For

example,

rk+1 ≤ cr2k

The corresponding complexity estimate depends on the double logarithm of the desired accuracy:

ln ln 1
ϵ .

Example Suppose that the initial starting point x0 is close enough to x∗ :

∥x0 − x∗∥ ≤ r̄ =
2µ

3M
.

Then ∥xk − x∗∥ ≤ r̄ for all k and the Newton’s Method converges quadratically:

∥xk+1 − x∗∥ ≤ M ∥xk − x∗∥2

2 (µ−M ∥xk − x∗∥)
.

Note that following the definition of r̄ and ∥xk − x∗∥ ≤ r̄, we have

∥xk+1 − x∗∥ ≤ M ∥xk − x∗∥2

2 (µ−Mr̄)
=

3M ∥xk − x∗∥2

2µ
=

∥xk − x∗∥2

r̄
.
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