
DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 16

Reinforcement Learning

Lecturer: Jiaming Liang November 30, 2023

1 Markov decision process model

Reinforcement learning is the study of planing and learning in a scenario where a learner/agent

actively interacts with the environment to maximize the reward she receives from the environment.

We first introduce the model of Markov decision processes (MDPs), a model of the environment

and interactions with the environment widely adopted in reinforcement learning. We then introduce

several algorithms for the planning problem, which corresponds to the case where the environment

model is known to the agent, and a series of learning algorithms for the more general case of an

unknown model.

Figure 1: The general scenario of reinforcement learning

An MDP is a Markovian process defined as follows.

Definition 1. A Markov decision process is defined by:

• a set of states S, possibly infinite;

• a start state or initial state s0 ∈ S;

• a set of actions A, possibly infinite;

• a transition probability P(s′ | s, a) : distribution over destination states s′ = δ(s, a);

• a reward probability P(r′ | s, a) : distribution over rewards returned s′ = δ(s, a).

The model is Markovian because the transition and reward probabilities depend only on the

current state s and not the entire history of states and actions taken.

Example: whether to fish salmons this year.

• state space (salmon population): S = {empty, low, medium, high};

Reinforcement Learning-1

Figure 2: An example of MDP

• action space: A = {fish, not to fish, re-breed};

• transition probabilities and rewards labeled in graph.

Definition 2. (Policy) A policy is a mapping π : S → A.

More precisely, this is the definition of a stationary policy since the choice of the action does

not depend on the time. More generally, we could define a non-stationary policy as a sequence of

mappings πt : S → A indexed by t.

The agent’s objective is to find a policy that maximizes her expected (reward) return. The

return she receives following a policy π along a specific sequence of states st, . . . , sT is defined as

follows:

• finite horizon (T <∞) :
∑T−t

τ=0 r (st+τ , π (st+τ));

• infinite horizon (T =∞) :
∑T−t

τ=0 γ
τr (st+τ , π (st+τ)), where γ ∈ [0, 1) is a constant factor less

than one used to discount future rewards.

Definition 3. (Policy value) The value Vπ(s) of a policy π at state s ∈ S is defined as the

expected reward returned when starting at s and following policy π:

• finite horizon: Vπ(s) = E
[∑T−t

τ=0 r (st+τ , π (st+τ)) | st = s
]
;

• infinite discounted horizon: Vπ(s) = E
[∑T−t

τ=0 γ
τr (st+τ , π (st+τ)) | st = s

]
,

where the expectations are over the random selection of the states st and the reward values rt+1.

An infinite undiscounted horizon is also often considered based on the limit of the average reward,

when it exists.

Proposition 1. (Bellman equation) The values Vπ(s) of policy π at states s ∈ S for an infinite

horizon MDP obey the following system of linear equations:

Vπ(s) = E[r(s, π(s)] + γ
∑
s′

P
(
s′ | s, π(s)

)
Vπ

(
s′
)
, ∀s ∈ S. (1)

Reinforcement Learning-2

Definition 4. (Optimal policy) A policy π∗ is optimal if it has maximal value for all states

s ∈ S.

Definition 5. (State-action value function) The optimal state-action value function Q∗ is

defined for all (s, a) ∈ S ×A as the expected return for taking action a ∈ A at state s ∈ S and then

following the optimal policy:

Q∗(s, a) = E[r(s, a)] + γ
∑
s′∈S

P
(
s′ | s, a

)
V ∗ (s′) . (2)

It is not hard to see then that the optimal policy values are related to Q∗ via

V ∗(s) = max
a∈A

Q∗(s, a), ∀s ∈ S. (3)

Observe also that, by definition of the optimal policy, we have

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S.

Replacing Q∗ by its definition in (3) gives the following system of equations for the optimal policy

values V ∗(s):

V ∗(s) = max
a∈A

{
E[r(s, a)] + γ

∑
s′∈S

P
(
s′ | s, a

)
V ∗ (s′)} ,

also known as Bellman equations. Note that this new system of equations is not linear due to the

presence of the max operator. It is distinct from the previous linear system we defined under the

same name in (1).

2 Planning algorithms

In this section, we assume that the environment model is known. That is, the transition probability

P (s′ | s, a) and the expected reward E[r(s, a)] for all s, s′ ∈ S and a ∈ A are assumed to be given.

The problem of finding the optimal policy then does not require learning the parameters of the

environment model or estimating other quantities helpful in determining the best course of actions,

it is purely a planning problem.

Three standard algorithms for this planning problem are the value iteration algorithm, the

policy iteration algorithm, and a linear programming formulation of the problem. We will skip

the details of these algorithms since the learning algorithms are more related to optimization for

machine learning.

Reinforcement Learning-3

3 Stochastic approximation

The estimation and algorithmic methods adopted for learning in reinforcement learning are closely

related to the concepts and techniques in stochastic approximation. Thus, we start by introducing

several useful results of this field that will be needed for the proofs of convergence of the reinforce-

ment learning algorithms presented.

Theorem 1. (Mean estimation) Let X be a random variable taking values in [0, 1] and let

x0, . . . , xm be i.i.d. values of X. Define the sequence (µm)m∈N by

µm+1 = (1− αm)µm + αmxm,

with µ0 = x0, αm ∈ [0, 1],
∑

m≥0 αm = +∞ and
∑

m≥0 α
2
m < +∞. Then,

µm
a.s.−→ E[X].

Stochastic optimization is the general problem of finding the solution to the equation

x = H(x),

where x ∈ Rn, when

• H(x) cannot be computed, for example, because H is not accessible or because the cost of

its computation is prohibitive;

• but an i.i.d. sample of m noisy observations H(xi) + wi are available, i ∈ [1,m], where the

noise random variable w has expectation zero: E[w] = 0.

This problem arises in a variety of different contexts and applications. As we shall see, it is directly

related to the learning problem for MDPs.

One general idea for solving this problem is to use an iterative method and define a sequence

{xt}t∈N in a way similar to what is suggested by Theorem 1:

xt+1 = (1− αt)xt + αt [H (xt) + wt]

= xt + αt [H (xt) + wt − xt] ,

where {αt}t∈N follow conditions similar to those assumed in Theorem 1. More generally, we consider

sequences defined via

xt+1 = xt + αtD(xt, wt),

where D is a function mapping Rn×Rn to Rn. There are many different theorems guaranteeing the

convergence of this sequence under various assumptions. We will present one of the most general

forms of such theorems, which relies on the following general result.

Reinforcement Learning-4

Theorem 2. (Supermartingale convergence) Let {Xt}t∈N, {Yt}t∈N, and {Zt}t∈N be sequences

of non-negative random variables such that
∑∞

t=0 Yt < ∞. Let Ft denote all the information for

t′ ≤ t : Ft =
{
(Xt′)t′≤t , (Yt′)t′≤t , (Zt′)t′≤t

}
. Then, if E [Xt+1 | Ft] ≤ Xt + Yt − Zt, the following

holds:

• Xt converges to a limit (with probability one);

•
∑∞

t=0 Zt <∞.

The following is one of the most general forms of such theorems.

Theorem 3. Let D be a function mapping Rn × Rn to Rn, {xt}t∈N and {wt}t∈N be two sequences

in Rn, and {αt}t∈N be a sequence of real numbers with xt+1 = xt + αtD(xt, wt). Let Ft denote the

entire history for t′ ≤ t, that is: Ft = {{xt′}t′≤t, {wt′}t′≤t, {αt′}t′≤t}.
Let Ψ denote x 7→ 1

2 ∥x− x∗∥22 for some x∗ ∈ Rn and assume that D and {αt}t∈N verify the

following conditions:

• ∃K1,K2 ∈ R : E
∣∣∣∥D (xt, wt)∥22

∣∣∣Ft |≤ K1 +K2Ψ(xt);

• ∃c ≥ 0 : ∇Ψ(xt)
⊤ E [D (xt, wt) | Ft] ≤ −cΨ(xt);

• αt > 0,
∑∞

t=0 αt =∞,
∑∞

t=0 α
2
t <∞.

Then, the sequence {xt} converges almost surely to x∗:

xt
a.s.−→ x∗.

Theorem 4. Let H be a function mapping Rn to Rn, {xt}t∈N, {wt}t∈N, and {αt}t∈N be three

sequences in Rn with

xt+1(s) = xt(s) + αt(s)[H(xt)(s)− xt(s) + wt(s)], ∀s ∈ [1, n].

Let Ft denote the entire history for t′ ≤ t, that is: Ft = {{xt′}t′≤t, {wt′}t′≤t, {αt′}t′≤t} and assume

the following conditions hold:

• ∃K1,K2 ∈ R : E
[
w2
t (s) | Ft

]
≤ K1 +K2 ∥xt∥2 for some norm ∥ · ∥;

• E[wt | Ft] = 0;

•
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞ for every s ∈ [1, n];

• H is a ∥ · ∥∞-contraction with fixed point x∗.

Then, the sequence {xt} converges almost surely to x∗:

xt
a.s.−→ x∗.

Reinforcement Learning-5

4 Learning algorithms

This section considers the more general scenario where the environment model of an MDP, that is

the transition and reward probabilities , is unknown.

There are two main learning approaches that can be adopted. One known as the model-free

approach consists of learning an action policy directly. Another one, a model-based approach,

consists of first learning the environment model, and then use that to learn a policy. The tempo-

ral difference (TD) and Q-learning algorithms we present for this problem are widely adopted in

reinforcement learning and belong to the family of model-free approaches.

Both TD and Q-learning algorithms resemble stochastic formulations of the value iteration

algorithm for planning. We will skip the policy gradient methods that resembles the policy iteration

algorithm for planning.

4.1 Temporal difference algorithm

Our goal is to estimate the polivy value function under a stationary policy π. The TD algorithm

is based on Bellman’s linear equations giving the value of a policy π (see (1)):

Vπ(s) = E[r(s, π(s))] + γ
∑
s′∈S

P
(
s′ | s, π(s)

)
Vπ

(
s′
)

= E
[
r(s, π(s)) + γVπ(s

′) | s
]
.

The probability distribution according to which this last expectation is defined is not known. The

TD algorithm consists of:

• sampling a new state s′;

• updating the policy values according to the following, which justifies the name of the algo-

rithm:

V (s)← (1− α)V (s) + α
[
r(s, π(s)) + γV

(
s′
)]

= V (s) + α[r(s, π(s)) + γV
(
s′
)
− V (s)︸ ︷︷ ︸

temporal difference of V values

].

Here, the parameter α is a function of the number of visits to the state s.

Reinforcement Learning-6

Algorithm 1 TD

Input: Initial policy value vector V0 ∈ R|S|, sample an initial state s

for t = 0 to T do

Observe reward r′ = r(s, π(s)) and next state s′

Compute V (s)← (1− α)V (s) + α[r′ + γV (s′)]

Update s← s′

end for

Return V

4.2 Q-learning algorithm

Our goal is to find an optimal policy and the core problem is to solve the Bellman equation. The

Q-learning algorithm is based on the equations giving the optimal state-action value function Q∗

(see (2) and (3)):

Q∗(s, a) = E[r(s, a)] + γ
∑
s′∈S

P
(
s′ | s, a

)
V ∗ (s′)

= E
[
r(s, a) + γmax

a∈A
Q∗(s, a)

]
.

The distribution model is not known. Thus, the Q-learning algorithm consists of the following main

steps:

• sampling a new state s′;

• updating the policy values according to the following:

Q(s, a)← (1− α)Q(s, a) + α[r(s, a) + γmax
a′∈A

Q(s′, a′)],

where the parameter α is a function of the number of visits to the state s.

Algorithm 2 Q-learning

Input: Initial state-action value function Q0 ∈ R|S|×|A|, sample an initial state s

for t = 0 to T do

Select an action a from the current state s using a policy π derived from Q

Observe reward r′ = r(s, π(s)) and next state s′

Compute Q(s, a)← (1− α)Q(s, a) + α[r′ + γmaxa′∈AQ(s′, a′)]

Update s← s′

end for

Return Q

Reinforcement Learning-7

Theorem 5. Consider a finite MDP. Assume that for all s ∈ S and a ∈ A,
∑∞

t=0 αt(s, a) =∞ and∑∞
t=0 α

2
t (s, a) < ∞ with αt(s, a) ∈ [0, 1]. Then, the Q-learning algorithm converges to the optimal

value Q∗ (with probability one).

Note that the conditions on αt(s, a) impose that each state-action pair is visited infinitely many

times.

Proof. Let {Qt(s, a)}t≥0 denote the sequence of state-action value functions at (s, a) ∈ S × A

generated by the algorithm. By definition of the Q-learning updates,

Qt+1 (st, at) = Qt (st, at) + α

[
r (st, at) + γmax

a′
Qt

(
st+1, a

′)−Qt (st, at)

]
.

This can be rewritten as the following for all s ∈ S and a ∈ A:

Qt+1(s, a) =Qt(s, a) + αt(s, a)

[
r(s, a) + γ E

s′∼P(·|s,a)

[
max
a′

Qt

(
s′, a′

)]
−Qt(s, a)

]
+ γαt(s, a)

[
max
a′

Qt

(
s′, a′

)
− E

s′∼P(·|s,a)

[
max
a′

Qt

(
s′, a′

)]]
, (4)

if we define αt(s, a) as 0 if (s, a) ̸= (st, at) and αt (st, at) otherwise. Now,

wt(s
′) = max

a′
Qt

(
s′, a′

)
− E

s′∼P(·|s,a)

[
max
a′

Qt

(
s′, a′

)]
,

and

H(Qt)(s, a) = r(s, a) + γ E
s′∼P(·|s,a)

[
max
a′

Qt

(
s′, a′

)]
.

In view of (4),

Qt+1(s, a) = Qt(s, a) + αt(s, a) [H (Qt) (s, a)−Qt(s, a) + γwt(s)] , ∀(s, a) ∈ S ×A.

We now show that the hypotheses of Theorem 4 hold forQt and wt, which will imply the convergence

of Qt to Q∗. The conditions on αt hold by assumption. By definition of wt, E [wt | Ft] = 0. Also,

for any s′ ∈ S,

∣∣wt

(
s′
)∣∣ ≤ max

a′

∣∣Qt

(
s′, a′

)∣∣+ ∣∣∣∣ E
s′∼P[·|s,a]

[
max
a′

Qt

(
s′, a′

)]∣∣∣∣
≤ 2max

s′

∣∣∣∣max
a′

Qt

(
s′, a′

)∣∣∣∣ = 2 ∥Qt∥∞ .

Reinforcement Learning-8

Thus, E
[
w2
t (s) | Ft

]
≤ 4 ∥Qt∥2∞. Finally, H is a γ-contraction for ∥ · ∥∞ since for any Q′

1, Q
′′
2 ∈

R|S|×|A|, and (s, a) ∈ S ×A, we can write

∣∣H (Q2) (x, a)−H
(
Q′

1

)
(x, a)

∣∣ = ∣∣∣∣γ E
s′∼P[·|s,a]

[
max
a′

Q2

(
s′, a′

)
−max

a′
Q1

(
s′, a′

)]∣∣∣∣
≤ γ E

s′∼P[·|s,a]

[∣∣∣∣max
a′

Q2

(
s′, a′

)
−max

a′
Q1

(
s′, a′

)∣∣∣∣]
≤ γ E

s′∼P[·|s,a]
max
a′

[∣∣Q2

(
s′, a′

)
−Q1

(
s′, a′

)∣∣]
≤ γmax

s′
max
a′

[∣∣Q2

(
s′, a′

)
−Q1

(
s′, a′

)∣∣]
= γ

∥∥Q′′
2 −Q′

1

∥∥
∞ .

Since H is a contraction, it admits a fixed point Q∗ : H (Q∗) = Q∗.

Reinforcement Learning-9

