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1 Stochastic optimization

Sampling from a probability distribution P0(x) ∝ exp(−f(x)) can be cast as an optimization

min
P∈P2(Rd)

KL(P ||P0).

Note that KL(·||·) is not symmetric, KL(µ||ν) ≥, and KL(µ||ν) = 0 if and only if µ = ν. If

we parametrize the target distribution P0 as Pθ0 where θ0 ∈ Rn and switch P and P0, then we

reformulate the problem as

min
Pθ∈P2(Rd)

KL(Pθ0 ||Pθ).

By the definition of KL divergence, we have

min
Pθ∈P2(Rd)

KL(Pθ0 ||Pθ) = min
Pθ∈P2(Rd)

∫
log

Pθ0(z)

Pθ(z)
Pθ0(z)dz

= min
Pθ∈P2(Rd)

∫
logPθ0(z)Pθ0(z)dz −

∫
logPθ(z)Pθ0(z)dz

=

∫
logPθ0(z)Pθ0(z)dz − max

Pθ∈P2(Rd)

∫
logPθ(z)Pθ0(z)dz

=

∫
logPθ0(z)Pθ0(z)dz −max

θ∈Θ
Ez∼Pθ0

[logPθ(z)].

The infinite dimensional optimization problem thus reduces to an n-dimensional problem

max
θ∈Θ

Ez∼Pθ0
[logPθ(z)], (1)

and can be generalized as stochastic optimization (SO)

min
x∈Rn

{ϕ(x) := f(x) + h(x)} , f(x) = Eξ[F (x, ξ)]. (2)

Problem (1) is indeed the maximum likelihood estimation (MLE). A standard way to solve MLE

(1) (and SO (2) in general) is to solve its sample average approximation (SAA), namely, taking

independent and identically distributed (i.i.d.) samples Z1, . . . , ZN of Z ∼ Pθ0 and optimizing the

average of the function value samples,

max
θ∈Θ

{
ℓ(θ|Z) :=

1

N

N∑
i=1

logPθ(Zi)

}
.
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Since we take the i.i.d. samples first and then solve the deterministic optimization problem, this is

an offline approach. In contrast, we can take a sample of the function value (if necessary) and its

first-order information, and perform a (proximal) gradient step. This method is called stochastic

approximation (SA) and is an online approach.

2 Sample average approximation

To solve (2) in the way of SAA, we just need to generate a large number of samples and then solve its

SAA using a deterministic optimization method. For example, Newton’s method or quasi-Newton

method is usually used in MLE. Intuitively, by the law of large numbers, the SAA will converges

to the expected function value as the number of samples goes to infinity. The question is how to

quantitatively justify the accuracy of the approximation.

We need the following concentration inequality.

Lemma 1. (Hoeffding’s inequality) Let X1, . . . , Xn be independent bounded random variables

with Xi ∈ [a, b] for all i, where −∞ < a < b < ∞. Then, for all t ≥ 0,

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2nt

(b− a)2

)
and

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

)
≤ exp

(
− 2nt

(b− a)2

)
.

Corollary 1. Let X be a random variable with bounded support on [a, b] and let X1, . . . , Xn be

i.i.d. samples of X, then for all t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2nt

(b− a)2

)
.

This corollary shows that the SAA becomes more accurate as the number of samples increases.

However, since the estimate only applies fro a single point x ∈ domh, we cannot use the SAA to

approximate the expectation Eξ[F (x, ξ)]. We would additionally assume X = domh is compact.

Definition 1. The distance between two sets A and B is

D(A,B) = sup
a∈A

inf
b∈B

∥a− b∥.

For a set A, an ε-net is a set Aε ⊂ A such that D(A,Aε) ≤ ε. The covering number of an ε-net of

A, denoted by N (A, ε), is the minimal cardinality of an ε-net of A.
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Note that D(A,B) is not symmetric and if A is compact then N (A, ε) is finite.

We cannot apply inequality Corollary 1 to every x ∈ X , because there are infinitely many of

them, but we can apply this inequality to finitely many elements of X (i.e., its ε-net Xε) and then

use an approximation argument.

Proposition 1. The following statements hold:

(a) Union bound

P

(⋃
i∈I

Ai

)
≤
∑
i∈I

P(Ai)

where I is a finite index set and {Ai}i∈I are events;

(b) Let Xε ⊂ X be an ε-net for X , then

P

(
max
x∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

)
≤
∑
x∈Xε

P

(∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

)
;

(c) Suppose x 7→ F (x, z) is Lipschitz continuous with constant M for all ξ ∈ Ξ, then

P

(
max
x∈X

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ + 2Mε

)
≤
∑
x∈Xε

P

(∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

)
.

Proof. (a) This statement follows from repeated applications of the probability identity

P(A ∪B) = P(A) + P(B)− P(A ∩B).

(b) This statement follow from part (a) and the fact that the event{
max
x∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

}

is contained in the union

⋃
x∈Xε

{∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

}
,

i.e., if the maximum error is greater than ε then at least one of the errors must be greater than ε.

(c) For any x ∈ X , there must exist a x̂ ∈ Xε such that ∥x − x̂∥ ≤ ε. Note that |a − b| ≤
|a− c|+ |c− d|+ |d− b|, and henc that

|a− b| − |c− d| ≤ |a− c|+ |b− d|.
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So, it follows from the M-Lipschitz continuity of F (x, ξ) that∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

F (x̂, ξi)− E[F (x̂, ξ)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)−
1

n

n∑
i=1

F (x̂, ξi)

∣∣∣∣∣+ |E[F (x, ξ)]− E[F (x̂, ξ)]|

≤2M∥x− x̂∥ ≤ 2Mε.

Since x̂ can be viewed as a mapping from x, i.e., x̂ = x̂(x), it follows

max
x∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≤ max
x∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x̂, ξi)− E[F (x̂, ξ)]

∣∣∣∣∣+ 2Mε

≤ max
x̂∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x̂, ξi)− E[F (x̂, ξ)]

∣∣∣∣∣+ 2Mε.

This statement now follows from the above relation and part (b)

P

(
max
x∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ + 2Mε

)

≤P

(
max
x̂∈Xε

∣∣∣∣∣ 1n
n∑

i=1

F (x̂, ξi)− E[F (x̂, ξ)]

∣∣∣∣∣ ≥ δ

)

≤
∑
x∈Xε

P

(∣∣∣∣∣ 1n
n∑

i=1

F (x, ξi)− E[F (x, ξ)]

∣∣∣∣∣ ≥ δ

)
.

Now, based on Proposition 1 (c) and Corollary 1, we can approximate (2) with its SAA

min
x∈Rn

1

n

n∑
i=1

F (x, ξi),

which we can solve using any deterministic method.

3 Stochastic approximation

To study the SA approach for solving (2), we need the following assumptions.

(A1) both f and h are closed and convex functions;

Stochastic Optimization-4



(A2) for almost every ξ ∈ Ξ, a functional oracle F (·, ξ) : domh → R and a stochastic gradient

oracle s(·, ξ) : domh → Rn satisfying

f(x) = E[F (x, ξ)], f ′(x) = E[s(x, ξ)] ∈ ∂f(x)

for every x ∈ domh are available;

(A3) for every x ∈ domh, we have E[∥s(x, ξ)− f ′(x)∥2] ≤ σ2;

(A4) for every x, y ∈ domh,

f(x)− f(y)− ⟨f ′(y), x− y⟩ ≤ 2M∥x− y∥+ L

2
∥x− y∥2. (3)

In this section, we are particularly interested in the stochastic version of the proximal subgra-

dient method, which is an SA-type method.

Algorithm 1 Stochastic subgradient method

Input: Initial point x0 ∈ Rn

for k ≥ 0 do

Step 1. Choose λk ∈ (0, 1/(2L)) and generate a stochastic gradient s(xk; ξk)

Step 2. Compute

xk+1 = argmin
u∈Rn

{
⟨s(xk; ξk), u⟩+ h(u) +

1

2λk
∥u− xk∥2

}
.

end for

3.1 Convergence in expectation

Lemma 2. For every k ≥ 0, we have

λk (ϕ(xk+1)− ϕ(x∗)) ≤
1

2
∥xk − x∗∥2 −

1

2
∥xk+1 − x∗∥2 +

4λ2
kM

2

1− 2λkL

+ λk⟨s(xk; ξk)− f ′(xk), x∗ − xk⟩+ λ2
k∥s(xk; ξk)− f ′(xk)∥2. (4)

Proof. It follows from step 2 of Algorithm 1 that for every u ∈ domh,

⟨s(xk; ξk), u⟩+h(u)+
1

2λk
∥u−xk∥2 ≥ ⟨s(xk; ξk), xk+1⟩+h(xk+1)+

1

2λk
∥xk+1−xk∥2+

1

2λk
∥xk+1−u∥2.

Taking u = x∗ in the above inequality and using the convexity of f and (3) with (x, y) = (xk+1, xk),
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we have

f(x∗)− ⟨f ′(xk), x∗ − xk⟩+ h(x∗) + ⟨s(xk; ξk), x∗⟩+
1

2λk
∥xk − x∗∥2

≥f(xk) + h(x∗) + ⟨s(xk; ξk), x∗⟩+
1

2λk
∥xk − x∗∥2

≥f(xk) + h(xk+1) + ⟨s(xk; ξk), xk+1⟩+
1

2λk
∥xk+1 − xk∥2 +

1

2λk
∥xk+1 − x∗∥2

≥f(xk+1)− ⟨f ′(xk), xk+1 − xk⟩ − 2M∥xk+1 − xk∥+
1− λkL

2λk
∥xk+1 − xk∥2

+ h(xk+1) + ⟨s(xk; ξk), xk+1⟩+
1

2λk
∥xk+1 − x∗∥2.

Rearranging the terms, we have

λk (ϕ(xk+1)− ϕ(x∗)) ≤
1

2
∥xk − x∗∥2 −

1

2
∥xk+1 − x∗∥2 + 2λkM∥xk+1 − xk∥ −

1− λkL

2
∥xk+1 − xk∥2

+ λk⟨s(xk; ξk)− f ′(xk), x∗ − xk⟩++λk⟨s(xk; ξk)− f ′(xk), xk − xk+1⟩.

Using the above inequality, the Cauchy-Schwarz inequality, and the fact λk < 1/(2L), we have

λk (ϕ(xk+1)− ϕ(x∗)) ≤
1

2
∥xk − x∗∥2 −

1

2
∥xk+1 − x∗∥2 + 2λkM∥xk+1 − xk∥ −

1− λkL

2
∥xk+1 − xk∥2

+ λk⟨s(xk; ξk)− f ′(xk), x∗ − xk⟩+ λ2
k∥s(xk; ξk)− f ′(xk)∥2 +

1

4
∥xk+1 − xk∥2

≤ 1

2
∥xk − x∗∥2 −

1

2
∥xk+1 − x∗∥2 + 2λkM∥xk+1 − xk∥ −

1− 2λkL

4
∥xk+1 − xk∥2

+ λk⟨s(xk; ξk)− f ′(xk), x∗ − xk⟩+ λ2
k∥s(xk; ξk)− f ′(xk)∥2.

Finally, (4) follows from the above inequality and the AM-GM inequality.

Theorem 1. If λk < 1/(2L) for every k ≥ 0, then

Eξ[k−1]
[ϕ(x̄k)]− ϕ(x∗) ≤

d20 +
∑k−1

i=0
4λ2

iM
2

1−λiL
+
∑k−1

i=0 2λ2
iσ

2

2
∑k−1

i=0 λi

(5)

where

x̄k :=

∑k−1
i=0 λixi+1∑k−1

i=0 λi

, d0 := ∥x0 − x∗∥. (6)

As a consequence, if

λk = λ = min

{
ε

16M2 + 2σ2
,
1

4L

}
, (7)

then we find x̄k such that Eξ[k−1]
[ϕ(x̄k)]− ϕ(x∗) ≤ ε in at most

max

{
4Ld20
ε

,
(16M2 + 2σ2)d20

ε2

}
iterations.
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Proof. Taking expectation of (4) w.r.t. ξk conditioned on ξ[k−1] and using (A2) and (A3), we have

λkEξk

[
ϕ(xk+1)|ξ[k−1]

]
− λkϕ(x∗) ≤

1

2
∥xk − x∗∥2 −

1

2
Eξk

[
∥xk+1 − x∗∥2|ξ[k−1]

]
+

4λ2
kM

2

1− 2λkL

+ λ2
kEξk

[
∥s(xk; ξk)− sk∥2|ξ[k−1]

]
≤ 1

2
∥xk − x∗∥2 −

1

2
Eξk

[
∥xk+1 − x∗∥2|ξ[k−1]

]
+

4λ2
kM

2

1− 2λkL
+ λ2

kσ
2.

Taking expectation of the above inequality w.r.t. ξ[k−1] and using the law of total expectation, we

have

λkEξ[k] [ϕ(xk+1)]− λkϕ(x∗) ≤
1

2
Eξ[k−1]

[
∥xk − x∗∥2

]
− 1

2
Eξ[k]

[
∥xk+1 − x∗∥2

]
+

4λ2
kM

2

1− 2λkL
+ λ2

kσ
2.

Summing the above inequality from k = 0 to k − 1, we obtain

k−1∑
i=0

λi

[
Eξ[i] [ϕ(xi+1)]− ϕ(x∗)

]
≤ 1

2
d20 +

k−1∑
i=0

4λ2
iM

2

1− 2λiL
+

k−1∑
i=0

λ2
iσ

2.

Using the convexity of ϕ and the definition of x̄k in (6), we show (5) holds. Using the constant

stepsize λ as defined in (7), we have that relation (5) implies

Eξ[k−1]
[ϕ(x̄k)]− ϕ(x∗) ≤

d20
2λk

+ 8λM2 + λσ2 ≤ d20
2λk

+
ε

2
.

The last conclusion of the theorem follows from the above inequality and (7).

Corollary 2. Assume λk = λ is as in (7), then the complexity to find x̄k such that

P(ϕ(x̄k)− ϕ∗ ≤ ε) ≥ 1− p,

where p ∈ (0, 1), is

O
(
max

{
Ld20
εp

,
(M2 + σ2)d20

ε2p2

})
. (8)

Proof. If we have

E[ϕ(x̄k)]− ϕ∗ ≤ pε, (9)

then it follows from the Markov’s inequality that

P(ϕ(x̄k)− ϕ∗ ≥ ε) ≤ E[ϕ(x̄k)]− ϕ∗
ε

≤ p.

Hence, using Theorem 1, we obtain the complexity to find x̄k such that (9) holds is (8). Therefore,

the corollary follows.

Stochastic Optimization-7



3.2 High probability result

It is possible, however, to obtain much finer bounds on deviation probabilities when imposing more

restrictive assumptions on the distribution of s(x, ξ). Specifically, assume the following “light-tail”

condition.

Assumption 1. For any x ∈ domh, we have

E
[
exp

(
∥s(x, ξ)−∇f(x)∥2/σ2

)]
≤ exp(1).

It can be seen that Assumption 1 implies (A3). Indeed, if a random variable X satisfies

E[exp(X/a)] ≤ exp(1) for some a > 0, then by Jensen’s inequality

exp(E[X/a]) ≤ E[exp(X/a)] ≤ exp(1),

and thus E[X] ≤ a. Of course, Assumption 1 holds if ∥s(x, ξ) − ∇f(x)∥2 ≤ σ2 for all x ∈ domh

and almost every ξ ∈ Ξ.

Assumption 1 is sometimes called the sub-Gaussian assumption. Many different random vari-

ables, such as Gaussian, uniform, and any random variables with a bounded support, will satisfy

this assumption.

The following result is well-known for the martingale-difference sequence.

Lemma 3. Let ξ[k] ≡ {ξ1, ξ2, . . . , ξk} be a sequence of i.i.d. random variables, and ζk = ζk
(
ξ[k]
)
be

deterministic Borel functions of ξ[k] such that E
[
ζk | ξ[k−1]

]
= 0 a.s. and E

[
exp

(
ζ2k/σ

2
k

)
| ξ[k−1]

]
≤

exp(1) a.s., where σk > 0 are deterministic. Then for any γ ≥ 0, we have

P

 k∑
i=1

ζi > γ

√√√√ k∑
i=1

σ2
i

 ≤ exp

(
−γ2

3

)
.

Proof. Denote ζ̄k = ζk/σk. Then, we have

E[ζ̄k | ξ[k]] = 0, E[exp(ζ̄k) | ξ[k]] ≤ exp(1). (10)

Also note thatexp(x) ≤ x + exp(9x2/16) for all x ∈ R Using the above relation with x = αζ̄k for

α ∈ [0, 4/3] and (10), we have

E[exp(αζ̄k) | ξ[k]] ≤ E[exp(9α2ζ̄2k/16) | ξ[k]] ≤ exp

(
9α2

16

)
. (11)

It follows from the fact that αx ≤ 3
8α

2 + 2
3x

2 that

E[exp(αζ̄k) | ξ[k]] ≤ exp

(
3α2

8

)
E[exp(2ζ̄2k/3) | ξ[k]] ≤ exp

(
3α2

8
+

2

3

)
,
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and hence that for α ≥ 3/4,

E[exp(αζ̄k) | ξ[k]] ≤ exp

(
3α2

4

)
. (12)

Combining (11) and (12), we have for every α ≥ 0,

E[exp(αζ̄k) | ξ[k]] ≤ exp

(
3α2

4

)
,

or euivalently every t ≥ 0,

E[exp(tζk) | ξ[k]] ≤ exp

(
3t2σ2

k

4

)
.

Since ζk is a deterministic function of ξ[k], we have the recurrence

E

[
exp

(
t

k∑
i=1

ζi

)]
= E

[
exp

(
t

k−1∑
i=1

ζi

)
E[exp(tζk) | ξ[k−1]]

]

≤ exp

(
3t2σ2

k

4

)
E

[
exp

(
t
k−1∑
i=1

ζi

)]
.

Hence, we have for every t ≥ 0,

E

[
exp

(
t

k∑
i=1

ζi

)]
≤ exp

(
3t2
∑k

i=1 σ
2
i

4

)
.

Applying the Chebyshev’s inequality, we have for γ > 0 and every t ≥ 0,

P

 k∑
i=1

ζi ≥ γ

√√√√ k∑
i=1

σ2
i

 ≤ exp

−tγ

√√√√ k∑
i=1

σ2
i

E

[
exp

(
t

k∑
i=1

ζi

)]

≤ exp

−tγ

√√√√ k∑
i=1

σ2
i

 exp

(
3t2
∑k

i=1 σ
2
i

4

)
.

Since the above ineqaulity holds for every t ≥ 0,

P

 k∑
i=1

ζi ≥ γ

√√√√ k∑
i=1

σ2
i

 ≤ inf
t≥0

exp

−tγ

√√√√ k∑
i=1

σ2
i

 exp

(
3t2
∑k

i=1 σ
2
i

4

)

= exp

(
−γ2

3

)
.
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Theorem 2. Assume domh has finite diameter D. Then, for every γ ≥ 0, the average point x̄k
as in (6) satisfies

P

ϕ(x̄k)− ϕ∗ ≥

[
2
k−1∑
i=0

λi

]−1
d20 + k−1∑

i=0

4λ2
iM

2

1− 2λiL
+ 2γDσ

√√√√k−1∑
i=0

λ2
i + 2(1 + γ)σ2

k−1∑
i=0

λ2
i


≤ exp

(
−γ2

3

)
+ exp(−γ). (13)

Proof. Let ζk = λk⟨s(xk; ξk)− f ′(xk), x∗ − xk⟩ and ∆k = ∥s(xk; ξk)− f ′(xk)∥. Then, (4) becomes

λk (ϕ(xk+1)− ϕ(x∗)) ≤
1

2
∥xk − x∗∥2 −

1

2
∥xk+1 − x∗∥2 +

4λ2
kM

2

1− 2λkL
+ ζk + λ2

k∆
2
k.

Summing the above inequality over iterations gives

ϕ(x̄k)− ϕ(x∗) ≤
d20 +

∑k−1
i=0

4λ2
iM

2

1−2λiL
+
∑k−1

i=0 2ζi +
∑k−1

i=0 2λ2
i∆

2
i

2
∑k−1

i=0 λi

. (14)

Clearly, it follows (A2) that E
[
ζk | ξ[k−1]

]
= 0, i.e., {ζk} is a martingale-difference sequence.

Moreover, it follows from the Cauchy-Schwarz inequality, the boundedness of domh, and Assump-

tion 1 that

E
[
exp

{
ζ2k/(λkDσ)2

}
| ξ[k−1]

]
≤ E

[
exp

{
(λkD∆k)

2/(λkDσ)2
}
| ξ[k−1]

]
≤ exp(1).

Using the previous two observations and Lemma 3, we have for every γ ≥ 0,

P

k−1∑
i=0

ζi > γDσ

√√√√k−1∑
i=0

λ2
i

 ≤ exp

(
−γ2

3

)
. (15)

It follows from the convexity of exp(·) that

exp

{
k−1∑
i=0

λ2
i∆

2
i

/(
σ2

k−1∑
i=1

λ2
i

)}
≤

k−1∑
i=1

λ2
i∑k−1

i=1 λ2
i

exp(∆2
i /σ

2).

Taking expectation of the above inequality and using Assumption 1, i.e., E[exp(∆2
i /σ

2)] ≤ exp(1),

we obtain

E

[
exp

{
k−1∑
i=0

λ2
i∆

2
i

/(
σ2

k−1∑
i=1

λ2
i

)}]
≤ exp(1).
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This inequality and the Markov’s inequality imply that for every γ ≥ 0,

P

(
k−1∑
i=0

λ2
i∆

2
i ≥ (1 + γ)σ2

k−1∑
i=0

λ2
i

)
= P

(
exp

{
k−1∑
i=0

λ2
i∆

2
i

}
≥ exp

{
(1 + γ)σ2

k−1∑
i=0

λ2
i

})

≤ E

[
exp

{
k−1∑
i=0

λ2
i∆

2
i

/(
(1 + γ)σ2

k−1∑
i=1

λ2
i

)}]
≤ exp(−γ). (16)

Now, we are ready to summarize the results. It follows from (14) that

P

ϕ(x̄k)− ϕ∗ ≥

[
2
k−1∑
i=0

λi

]−1
d20 + k−1∑

i=0

4λ2
iM

2

1− 2λiL
+ 2γDσ

√√√√k−1∑
i=0

λ2
i + 2(1 + γ)σ2

k−1∑
i=0

λ2
i


≤P

k−1∑
i=0

ζi +

k−1∑
i=0

λ2
i∆

2
i ≥ γDσ

√√√√k−1∑
i=0

λ2
i + (1 + γ)σ2

k−1∑
i=0

λ2
i


≤P

k−1∑
i=0

ζi > γDσ

√√√√k−1∑
i=0

λ2
i

+ P

(
k−1∑
i=0

λ2
i∆

2
i ≥ (1 + γ)σ2

k−1∑
i=0

λ2
i

)
,

where in the second inequality we use the fact that

P(X + Y ≥ a+ b) ≤ P({X ≥ a} ∪ {Y ≥ b}) ≤ P(X ≥ a) + P(Y ≥ b).

It immediately follows from (15) and (16) that (13) holds.

Corollary 3. Assume domh has finite diameter D and

λk = λ = min

{
ε

2[4M2 + (1− log p)σ2]
,
1

4L

}
,

then the complexity to find x̄k such that

P(ϕ(x̄k)− ϕ∗ ≤ ε) ≥ 1− p,

where p ∈ (0, 1), is

O

(
max

{
Ld20
ε

,
[M2 + σ2(1 + log 1

p)]d
2
0

ε2
,
D2σ2

ε2
log

1

p

})
. (17)

Proof. Let γ = Θ(log 1/p). In view of Theorem 2, it suffices to derive the bound on k for

d20
2λk

+ 4λM2 +
Dσ√
k
log

1

p
+

(
1 + log

1

p

)
σ2λ ≤ ε.
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Using the choice of λ, it boils down to deriving the bound on k for

d20
2λk

+
Dσ√
k
log

1

p
≤ ε

2
.

Hence, we prove (17) is the complexity bound to find x̄k such that it is an ε-solution with probability

at least 1− p.
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