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1 Setup

We are interested in solving

min{ϕ(x) := f(x) + h(x)}. (1)

We assume that

(A1) h is closed and convex;

(A2) there exist scalar L ≥ 0 and a compact convex set Ω ⊃ domh such that f is nonconvex and

differentiable on Ω, and∥∥∇f(u)−∇f
(
u′
)∥∥ ≤ L

∥∥u− u′
∥∥ , ∀u, u′ ∈ Ω.

It follows from (A1) and (A2) that the set of optimal solutions X∗ is nonempty and compact.

Second, if L satisfies (A2) then the pair (M,m) = (L,L) satisfies

−m

2

∥∥u− u′
∥∥2 ≤ f(u)− ℓf

(
u;u′

)
≤ M

2

∥∥u− u′
∥∥2 , ∀u, u′ ∈ Ω. (2)

Clearly,

0 ≤ m ≤ L, 0 ≤ M ≤ L.

The interesting case is when m ≤ M , and we say function f is m-weakly convex if

−m

2

∥∥u− u′
∥∥2 ≤ f(u)− ℓf

(
u;u′

)
, ∀u, u′ ∈ Ω.

It is easy to check that g(·) = f(·) + 1
2λ∥ · ∥

2 is convex if λ ≤ 1/m. Hence, weakly-convex functions

are convexifiable.

Solving for global minima or even local minima are intractable in nonconvex optimization, so

we instead solve for stationary points, i.e. x ∈ domh satisfying

0 ∈ ∇f(x) + ∂h(x).

Definition 1. Given ρ > 0, a pair (v, x) is called a ρ-approximate stationary pair of problem (1)

if

v ∈ ∇f(x) + ∂h(x), ∥v∥ ≤ ρ.
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2 Projected gradient method

Algorithm 1 Projected gradient method

Input: Initial point x0 ∈ domh, λ ∈ (0, 1/M ], ρ > 0.

for k ≥ 0 do

Step 1. Compute

xk+1 = argmin

{
ℓf (u;xk) + h(u) +

1

2λ
∥u− xk∥2

}
Step 2. Compute

vk+1 =
xk − xk+1

λ
+∇f(xk+1)−∇f(xk),

if ∥vk+1∥ ≤ ρ, then stop.

end for

Lemma 1. For every k ≥ 0, we have

vk+1 ∈ ∇f(xk+1) + ∂h(xk+1), ∥vk+1∥ ≤
(
L+

1

λ

)
∥xk+1 − xk∥.

Proof. The optimality condition of the subproblem in Algorithm 1 is

0 ∈ ∇f(xk) + ∂h(xk+1) +
1

λ
(xk+1 − xk) .

Hence, the inclusion in the lemma holds after rearrangement. The inequality follows from the

definition of vk+1 and the fact that ∇f is L-smooth.

Theorem 1. For every k ≥ 1, we have

min
1≤i≤k

∥vi∥ ≤
(
L+

1

λ

) √
2[ϕ(x0)− ϕ∗]√

Mk
.

Proof. It follows from the subproblem in Algorithm 1 that for every u ∈ domh,

ℓf (u;xk) + h(u) +
1

2λ
∥u− xk∥2 −

1

2λ
∥u− xk+1∥2

≥ ℓf (xk+1;xk) + h(xk+1) +
1

2λ
∥xk+1 − xk∥2

≥ ϕ(xk+1)−
M

2
∥xk+1 − xk∥2 +

1

2λ
∥xk+1 − xk∥2 ,

where the second inequality is due to the second inequality of (2). Taking u = xk in the above

inequality and using the fact that λ ≤ 1/M , we have

ϕ(xk)− ϕ(xk+1) ≥
(
1

λ
− M

2

)
∥xk+1 − xk∥2 ≥

M

2
∥xk+1 − xk∥2 .
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Summing the above inequality, we obtain

ϕ(x0)− ϕ(xk) ≥
M

2
k min
0≤i≤k−1

∥xi+1 − xi∥2 ≥
M

2
k

(
L+

1

λ

)−2

min
1≤i≤k

∥vi∥2 .

Hence, the lemma holds.

3 Frank-Wolfe method

Recall the Frank-Wolfe method from Lecture 8.

Algorithm 2 Generalized Frank-Wolfe method

Input: Initial point x0 ∈ domh

for k ≥ 0 do

Step 1. Compute yk = argmin y∈Rn{⟨y,∇f(xk)⟩+ h(y)}.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = (1− tk)xk + tkyk.

end for

Also recall the following results.

Definition 2. The Wolfe gap is the function S(x) : domh → R given by

S(x) = max
y∈Rn

{⟨∇f(x), x− y⟩+ h(x)− h(y)}.

Lemma 2. The following statements hold:

(a) S(x) ≥ 0 for any x ∈ domh;

(b) S(x∗) = 0 if and only if −∇f(x∗) ∈ ∂h(x∗), that is, if and only if x∗ is a stationary point of

(1).

Proof. (b) It follows from (a) that S(x∗) = 0 if and only if S(x∗) ≤ 0, which is the same a

⟨∇f(x∗), x∗ − x⟩+ h(x∗)− h(x) ≤ 0, x ∈ domh.

Rearraging the terms gives

h(x) ≥ h(x∗) + ⟨−∇f(x∗), x− x∗⟩,

which is equivalent to −∇f(x∗) ∈ ∂h(x∗).

Lemma 3. Let x ∈ domh and t ∈ [0, 1]. Then, we have

ϕ((1− t)x+ ty) ≤ ϕ(x)− tS(x) +
t2L

2
∥y − x∥2,

where y = argmin u∈Rn{⟨u,∇f(x)⟩+ h(u)}.
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Three stepsize rules

1) predefined diminishing stepsize:

αk =
2

k + 2
;

2) adaptive stepsize:

βk = min

{
1,

S (xk)

L ∥yk − xk∥2

}
;

3) exact minimization/line search:

ηk ∈ argmin t∈[0,1]ϕ ((1− t)xk + tyk) .

The following lemma is (P3) of PS3.

Lemma 4. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then for every k ≥ 0,

we have

ϕ(xk)− ϕ(xk+1) ≥
1

2
min

{
S(xk),

S2(xk)

LD2

}
, (3)

where D is the diameter of domh.

Now, with all the above technical results, we are ready to present the main convergence result

of Frank-Wolfe method applied to nonconvex optimization.

Theorem 2. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then the following

statements hold:

(a) for every k ≥ 0, ϕ(xk) ≥ ϕ(xk+1) and ϕ(xk) > ϕ(xk+1) if xk is not a stationary point of (1);

(b) S(xk) → 0 as k → ∞;

(c) for every k ≥ 1,

min
0≤i≤k−1

S(xi) ≤ max

{
2 (ϕ(x0)− ϕ∗)

k
,

√
2LfD2 (ϕ(x0)− ϕ∗)√

k

}

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem (1).

Proof. (a) The first result directly follows from Lemma 4 and the fact that S(xk) ≥ 0. If xk is not

a stationary point, then S(xk) > 0 and hence ϕ(xk) > ϕ(xk+1) in view of (3).

(b) Since {ϕ(xk)} is non-increasing and bounded from below, it follows that it is convergent. In

particular, ϕ(xk) > ϕ(xk+1) → 0 as k → ∞. Therefore, it follows from Lemma 4 that S(xk) → 0

as k → ∞.
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(c) Summation of (3) over iterations gives

ϕ(x0)− ϕ(xk) ≥
1

2

k−1∑
i=0

min

{
S(xi),

S2(xi)

LD2

}
≥ k

2
min

0≤i≤k−1
min

{
S(xi),

S2(xi)

LD2

}
,

then the result holds after simple calculation.

(d) Suppose that x̄ is a limit point of {xk}k≥0. Then there exists a subsequence
{
xkj

}
j≥0

that

converges to x̄. By the definition of the Wolfe gap S(·), it follows that for any x ∈ domh,

S(xkj ) ≥
〈
∇f

(
xkj

)
, xkj − x

〉
+ h

(
xkj

)
− h(x).

Passing to the limit j → ∞ and using the fact that S
(
xkj

)
→ 0 as j → ∞, as well as the continuity

of ∇f and the lower semicontinuity of h, we obtain that

0 ≥ ⟨∇f(x̄), x̄− x⟩+ h(x̄)− h(x), ∀x ∈ domh,

which is the same as the relation −∇f(x̄) ∈ ∂h(x̄), that is, x̄ is a stationary point of (1).

In the proof of part (d), we have used the fact that h is closed is equivalent to h is lower

semicontinuous. We say h is lower semicontinuous at x0 if and only if

lim inf
x→x0

h(x) ≥ h (x0) .
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