Nonconvex Optimization

Lecturer: Jiaming Liang
November 21, 2023

1 Setup

We are interested in solving

$$
\begin{equation*}
\min \{\phi(x):=f(x)+h(x)\} . \tag{1}
\end{equation*}
$$

We assume that
(A1) h is closed and convex;
(A2) there exist scalar $L \geq 0$ and a compact convex set $\Omega \supset \operatorname{dom} h$ such that f is nonconvex and differentiable on Ω, and

$$
\left\|\nabla f(u)-\nabla f\left(u^{\prime}\right)\right\| \leq L\left\|u-u^{\prime}\right\|, \quad \forall u, u^{\prime} \in \Omega
$$

It follows from (A1) and (A2) that the set of optimal solutions X_{*} is nonempty and compact. Second, if L satisfies (A2) then the pair $(M, m)=(L, L)$ satisfies

$$
\begin{equation*}
-\frac{m}{2}\left\|u-u^{\prime}\right\|^{2} \leq f(u)-\ell_{f}\left(u ; u^{\prime}\right) \leq \frac{M}{2}\left\|u-u^{\prime}\right\|^{2}, \quad \forall u, u^{\prime} \in \Omega \tag{2}
\end{equation*}
$$

Clearly,

$$
0 \leq m \leq L, \quad 0 \leq M \leq L
$$

The interesting case is when $m \leq M$, and we say function f is m-weakly convex if

$$
-\frac{m}{2}\left\|u-u^{\prime}\right\|^{2} \leq f(u)-\ell_{f}\left(u ; u^{\prime}\right), \quad \forall u, u^{\prime} \in \Omega
$$

It is easy to check that $g(\cdot)=f(\cdot)+\frac{1}{2 \lambda}\|\cdot\|^{2}$ is convex if $\lambda \leq 1 / m$. Hence, weakly-convex functions are convexifiable.

Solving for global minima or even local minima are intractable in nonconvex optimization, so we instead solve for stationary points, i.e. $x \in \operatorname{dom} h$ satisfying

$$
0 \in \nabla f(x)+\partial h(x)
$$

Definition 1. Given $\rho>0$, a pair (v, x) is called a ρ-approximate stationary pair of problem (1) if

$$
v \in \nabla f(x)+\partial h(x), \quad\|v\| \leq \rho .
$$

Nonconvex Optimization-1

2 Projected gradient method

```
Algorithm 1 Projected gradient method
    Input: Initial point \(x_{0} \in \operatorname{dom} h, \lambda \in(0,1 / M], \rho>0\).
    for \(k \geq 0\) do
        Step 1. Compute
            \(x_{k+1}=\operatorname{argmin}\left\{\ell_{f}\left(u ; x_{k}\right)+h(u)+\frac{1}{2 \lambda}\left\|u-x_{k}\right\|^{2}\right\}\)
```

Step 2. Compute

$$
v_{k+1}=\frac{x_{k}-x_{k+1}}{\lambda}+\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right),
$$ if $\left\|v_{k+1}\right\| \leq \rho$, then stop.

end for

Lemma 1. For every $k \geq 0$, we have

$$
v_{k+1} \in \nabla f\left(x_{k+1}\right)+\partial h\left(x_{k+1}\right), \quad\left\|v_{k+1}\right\| \leq\left(L+\frac{1}{\lambda}\right)\left\|x_{k+1}-x_{k}\right\| .
$$

Proof. The optimality condition of the subproblem in Algorithm 1 is

$$
0 \in \nabla f\left(x_{k}\right)+\partial h\left(x_{k+1}\right)+\frac{1}{\lambda}\left(x_{k+1}-x_{k}\right) .
$$

Hence, the inclusion in the lemma holds after rearrangement. The inequality follows from the definition of v_{k+1} and the fact that ∇f is L-smooth.

Theorem 1. For every $k \geq 1$, we have

$$
\min _{1 \leq i \leq k}\left\|v_{i}\right\| \leq\left(L+\frac{1}{\lambda}\right) \frac{\sqrt{2\left[\phi\left(x_{0}\right)-\phi_{*}\right]}}{\sqrt{M k}} .
$$

Proof. It follows from the subproblem in Algorithm 1 that for every $u \in \operatorname{dom} h$,

$$
\begin{aligned}
& \ell_{f}\left(u ; x_{k}\right)+h(u)+\frac{1}{2 \lambda}\left\|u-x_{k}\right\|^{2}-\frac{1}{2 \lambda}\left\|u-x_{k+1}\right\|^{2} \\
& \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+h\left(x_{k+1}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \geq \phi\left(x_{k+1}\right)-\frac{M}{2}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{k}\right\|^{2},
\end{aligned}
$$

where the second inequality is due to the second inequality of (2). Taking $u=x_{k}$ in the above inequality and using the fact that $\lambda \leq 1 / M$, we have

$$
\phi\left(x_{k}\right)-\phi\left(x_{k+1}\right) \geq\left(\frac{1}{\lambda}-\frac{M}{2}\right)\left\|x_{k+1}-x_{k}\right\|^{2} \geq \frac{M}{2}\left\|x_{k+1}-x_{k}\right\|^{2}
$$

Nonconvex Optimization-2

Summing the above inequality, we obtain

$$
\phi\left(x_{0}\right)-\phi\left(x_{k}\right) \geq \frac{M}{2} k \min _{0 \leq i \leq k-1}\left\|x_{i+1}-x_{i}\right\|^{2} \geq \frac{M}{2} k\left(L+\frac{1}{\lambda}\right)^{-2} \min _{1 \leq i \leq k}\left\|v_{i}\right\|^{2} .
$$

Hence, the lemma holds.

3 Frank-Wolfe method

Recall the Frank-Wolfe method from Lecture 8.

```
Algorithm 2 Generalized Frank-Wolfe method
    Input: Initial point \(x_{0} \in \operatorname{dom} h\)
    for \(k \geq 0\) do
        Step 1. Compute \(y_{k}=\operatorname{argmin}_{y \in \mathbb{R}^{n}}\left\{\left\langle y, \nabla f\left(x_{k}\right)\right\rangle+h(y)\right\}\).
        Step 2. Choose \(t_{k} \in[0,1]\) and set \(x_{k+1}=\left(1-t_{k}\right) x_{k}+t_{k} y_{k}\).
    end for
```

Also recall the following results.
Definition 2. The Wolfe gap is the function $S(x): \operatorname{dom} h \rightarrow \mathbb{R}$ given by

$$
S(x)=\max _{y \in \mathbb{R}^{n}}\{\langle\nabla f(x), x-y\rangle+h(x)-h(y)\} .
$$

Lemma 2. The following statements hold:
(a) $S(x) \geq 0$ for any $x \in \operatorname{dom} h$;
(b) $S\left(x_{*}\right)=0$ if and only if $-\nabla f\left(x_{*}\right) \in \partial h\left(x_{*}\right)$, that is, if and only if x_{*} is a stationary point of (1).

Proof. (b) It follows from (a) that $S\left(x_{*}\right)=0$ if and only if $S\left(x_{*}\right) \leq 0$, which is the same a

$$
\left\langle\nabla f\left(x_{*}\right), x_{*}-x\right\rangle+h\left(x_{*}\right)-h(x) \leq 0, \quad x \in \operatorname{dom} h .
$$

Rearraging the terms gives

$$
h(x) \geq h\left(x_{*}\right)+\left\langle-\nabla f\left(x_{*}\right), x-x_{*}\right\rangle,
$$

which is equivalent to $-\nabla f\left(x_{*}\right) \in \partial h\left(x_{*}\right)$.
Lemma 3. Let $x \in \operatorname{dom} h$ and $t \in[0,1]$. Then, we have

$$
\phi((1-t) x+t y) \leq \phi(x)-t S(x)+\frac{t^{2} L}{2}\|y-x\|^{2},
$$

where $y=\operatorname{argmin}_{u \in \mathbb{R}^{n}}\{\langle u, \nabla f(x)\rangle+h(u)\}$.

Nonconvex Optimization-3

Three stepsize rules

1) predefined diminishing stepsize:

$$
\alpha_{k}=\frac{2}{k+2} ;
$$

2) adaptive stepsize:

$$
\beta_{k}=\min \left\{1, \frac{S\left(x_{k}\right)}{L\left\|y_{k}-x_{k}\right\|^{2}}\right\} ;
$$

3) exact minimization/line search:

$$
\eta_{k} \in \operatorname{argmin}_{t \in[0,1]} \phi\left((1-t) x_{k}+t y_{k}\right) .
$$

The following lemma is (P3) of PS3.
Lemma 4. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then for every $k \geq 0$, we have

$$
\begin{equation*}
\phi\left(x_{k}\right)-\phi\left(x_{k+1}\right) \geq \frac{1}{2} \min \left\{S\left(x_{k}\right), \frac{S^{2}\left(x_{k}\right)}{L D^{2}}\right\} \tag{3}
\end{equation*}
$$

where D is the diameter of $\operatorname{dom} h$.
Now, with all the above technical results, we are ready to present the main convergence result of Frank-Wolfe method applied to nonconvex optimization.

Theorem 2. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then the following statements hold:
(a) for every $k \geq 0, \phi\left(x_{k}\right) \geq \phi\left(x_{k+1}\right)$ and $\phi\left(x_{k}\right)>\phi\left(x_{k+1}\right)$ if x_{k} is not a stationary point of (1);
(b) $S\left(x_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$;
(c) for every $k \geq 1$,

$$
\min _{0 \leq i \leq k-1} S\left(x_{i}\right) \leq \max \left\{\frac{2\left(\phi\left(x_{0}\right)-\phi_{*}\right)}{k}, \frac{\sqrt{2 L_{f} D^{2}\left(\phi\left(x_{0}\right)-\phi_{*}\right)}}{\sqrt{k}}\right\}
$$

(d) all limit points of the sequence $\left\{x_{k}\right\}_{k \geq 0}$ are stationary points of problem (1).

Proof. (a) The first result directly follows from Lemma 4 and the fact that $S\left(x_{k}\right) \geq 0$. If x_{k} is not a stationary point, then $S\left(x_{k}\right)>0$ and hence $\phi\left(x_{k}\right)>\phi\left(x_{k+1}\right)$ in view of (3).
(b) Since $\left\{\phi\left(x_{k}\right)\right\}$ is non-increasing and bounded from below, it follows that it is convergent. In particular, $\phi\left(x_{k}\right)>\phi\left(x_{k+1}\right) \rightarrow 0$ as $k \rightarrow \infty$. Therefore, it follows from Lemma 4 that $S\left(x_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Nonconvex Optimization-4

(c) Summation of (3) over iterations gives

$$
\phi\left(x_{0}\right)-\phi\left(x_{k}\right) \geq \frac{1}{2} \sum_{i=0}^{k-1} \min \left\{S\left(x_{i}\right), \frac{S^{2}\left(x_{i}\right)}{L D^{2}}\right\} \geq \frac{k}{2} \min _{0 \leq i \leq k-1} \min \left\{S\left(x_{i}\right), \frac{S^{2}\left(x_{i}\right)}{L D^{2}}\right\},
$$

then the result holds after simple calculation.
(d) Suppose that \bar{x} is a limit point of $\left\{x_{k}\right\}_{k \geq 0}$. Then there exists a subsequence $\left\{x_{k_{j}}\right\}_{j \geq 0}$ that converges to \bar{x}. By the definition of the Wolfe gap $S(\cdot)$, it follows that for any $x \in \operatorname{dom} h$,

$$
S\left(x_{k_{j}}\right) \geq\left\langle\nabla f\left(x_{k_{j}}\right), x_{k_{j}}-x\right\rangle+h\left(x_{k_{j}}\right)-h(x) .
$$

Passing to the limit $j \rightarrow \infty$ and using the fact that $S\left(x_{k_{j}}\right) \rightarrow 0$ as $j \rightarrow \infty$, as well as the continuity of ∇f and the lower semicontinuity of h, we obtain that

$$
0 \geq\langle\nabla f(\bar{x}), \bar{x}-x\rangle+h(\bar{x})-h(x), \quad \forall x \in \operatorname{dom} h
$$

which is the same as the relation $-\nabla f(\bar{x}) \in \partial h(\bar{x})$, that is, \bar{x} is a stationary point of (1).
In the proof of part (d), we have used the fact that h is closed is equivalent to h is lower semicontinuous. We say h is lower semicontinuous at x_{0} if and only if

$$
\liminf _{x \rightarrow x_{0}} h(x) \geq h\left(x_{0}\right) .
$$

