DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 14

Nonconvex Optimization

Lecturer: Jiaming Liang

November 21, 2023

1 Setup

We are interested in solving

$$\min\{\phi(x) := f(x) + h(x)\}.$$
(1)

We assume that

- (A1) h is closed and convex;
- (A2) there exist scalar $L \ge 0$ and a compact convex set $\Omega \supset \text{dom } h$ such that f is nonconvex and differentiable on Ω , and

$$\left\|\nabla f(u) - \nabla f(u')\right\| \le L \left\|u - u'\right\|, \quad \forall u, u' \in \Omega.$$

It follows from (A1) and (A2) that the set of optimal solutions X_* is nonempty and compact. Second, if L satisfies (A2) then the pair (M, m) = (L, L) satisfies

$$-\frac{m}{2} \|u - u'\|^2 \le f(u) - \ell_f(u; u') \le \frac{M}{2} \|u - u'\|^2, \quad \forall u, u' \in \Omega.$$
⁽²⁾

Clearly,

$$0 \le m \le L, \quad 0 \le M \le L.$$

The interesting case is when $m \leq M$, and we say function f is m-weakly convex if

$$-\frac{m}{2} \left\| u - u' \right\|^2 \le f(u) - \ell_f(u; u'), \quad \forall u, u' \in \Omega.$$

It is easy to check that $g(\cdot) = f(\cdot) + \frac{1}{2\lambda} \|\cdot\|^2$ is convex if $\lambda \leq 1/m$. Hence, weakly-convex functions are convexifiable.

Solving for global minima or even local minima are intractable in nonconvex optimization, so we instead solve for stationary points, i.e. $x \in \text{dom } h$ satisfying

$$0 \in \nabla f(x) + \partial h(x).$$

Definition 1. Given $\rho > 0$, a pair (v, x) is called a ρ -approximate stationary pair of problem (1) if

$$v \in \nabla f(x) + \partial h(x), \quad ||v|| \le \rho.$$

Nonconvex Optimization-1

2 Projected gradient method

Algorithm 1 Projected gradient method

Input: Initial point $x_0 \in \text{dom } h$, $\lambda \in (0, 1/M]$, $\rho > 0$. for $k \ge 0$ do

Step 1. Compute

$$x_{k+1} = \operatorname{argmin} \left\{ \ell_f(u; x_k) + h(u) + \frac{1}{2\lambda} ||u - x_k||^2 \right\}$$

Step 2. Compute

$$v_{k+1} = \frac{x_k - x_{k+1}}{\lambda} + \nabla f(x_{k+1}) - \nabla f(x_k),$$

if $||v_{k+1}|| \leq \rho$, then stop. end for

Lemma 1. For every $k \ge 0$, we have

$$v_{k+1} \in \nabla f(x_{k+1}) + \partial h(x_{k+1}), \quad ||v_{k+1}|| \le \left(L + \frac{1}{\lambda}\right) ||x_{k+1} - x_k||.$$

Proof. The optimality condition of the subproblem in Algorithm 1 is

$$0 \in \nabla f(x_k) + \partial h(x_{k+1}) + \frac{1}{\lambda} (x_{k+1} - x_k).$$

Hence, the inclusion in the lemma holds after rearrangement. The inequality follows from the definition of v_{k+1} and the fact that ∇f is L-smooth.

Theorem 1. For every $k \ge 1$, we have

$$\min_{1 \le i \le k} \|v_i\| \le \left(L + \frac{1}{\lambda}\right) \frac{\sqrt{2[\phi(x_0) - \phi_*]}}{\sqrt{Mk}}$$

Proof. It follows from the subproblem in Algorithm 1 that for every $u \in \text{dom } h$,

$$\ell_f(u; x_k) + h(u) + \frac{1}{2\lambda} ||u - x_k||^2 - \frac{1}{2\lambda} ||u - x_{k+1}||^2$$

$$\geq \ell_f(x_{k+1}; x_k) + h(x_{k+1}) + \frac{1}{2\lambda} ||x_{k+1} - x_k||^2$$

$$\geq \phi(x_{k+1}) - \frac{M}{2} ||x_{k+1} - x_k||^2 + \frac{1}{2\lambda} ||x_{k+1} - x_k||^2,$$

where the second inequality is due to the second inequality of (2). Taking $u = x_k$ in the above inequality and using the fact that $\lambda \leq 1/M$, we have

$$\phi(x_k) - \phi(x_{k+1}) \ge \left(\frac{1}{\lambda} - \frac{M}{2}\right) \|x_{k+1} - x_k\|^2 \ge \frac{M}{2} \|x_{k+1} - x_k\|^2.$$

Nonconvex Optimization-2

Summing the above inequality, we obtain

$$\phi(x_0) - \phi(x_k) \ge \frac{M}{2}k \min_{0 \le i \le k-1} \|x_{i+1} - x_i\|^2 \ge \frac{M}{2}k \left(L + \frac{1}{\lambda}\right)^{-2} \min_{1 \le i \le k} \|v_i\|^2.$$

Hence, the lemma holds.

3 Frank-Wolfe method

Recall the Frank-Wolfe method from Lecture 8.

Algorithm 2 Generalized Frank-Wolfe method Input: Initial point $x_0 \in \text{dom } h$ for $k \ge 0$ do Step 1. Compute $y_k = \operatorname{argmin}_{y \in \mathbb{R}^n} \{ \langle y, \nabla f(x_k) \rangle + h(y) \}.$ Step 2. Choose $t_k \in [0, 1]$ and set $x_{k+1} = (1 - t_k)x_k + t_k y_k$. end for

Also recall the following results.

Definition 2. The Wolfe gap is the function $S(x) : \operatorname{dom} h \to \mathbb{R}$ given by

$$S(x) = \max_{y \in \mathbb{R}^n} \{ \langle \nabla f(x), x - y \rangle + h(x) - h(y) \}.$$

Lemma 2. The following statements hold:

(a) $S(x) \ge 0$ for any $x \in \text{dom } h$;

(b) $S(x_*) = 0$ if and only if $-\nabla f(x_*) \in \partial h(x_*)$, that is, if and only if x_* is a stationary point of (1).

Proof. (b) It follows from (a) that $S(x_*) = 0$ if and only if $S(x_*) \leq 0$, which is the same a

$$\langle \nabla f(x_*), x_* - x \rangle + h(x_*) - h(x) \le 0, \quad x \in \operatorname{dom} h.$$

Rearraging the terms gives

$$h(x) \ge h(x_*) + \langle -\nabla f(x_*), x - x_* \rangle$$

which is equivalent to $-\nabla f(x_*) \in \partial h(x_*)$.

Lemma 3. Let $x \in \text{dom } h$ and $t \in [0, 1]$. Then, we have

$$\phi((1-t)x + ty) \le \phi(x) - tS(x) + \frac{t^2L}{2} \|y - x\|^2,$$

where $y = \operatorname{argmin}_{u \in \mathbb{R}^n} \{ \langle u, \nabla f(x) \rangle + h(u) \}.$

Nonconvex Optimization-3

Three stepsize rules

1) predefined diminishing stepsize:

$$\alpha_k = \frac{2}{k+2}$$

2) adaptive stepsize:

$$\beta_{k} = \min\left\{1, \frac{S(x_{k})}{L \|y_{k} - x_{k}\|^{2}}\right\};$$

3) exact minimization/line search:

$$\eta_k \in \operatorname{argmin}_{t \in [0,1]} \phi\left((1-t)x_k + ty_k\right).$$

The following lemma is (P3) of PS3.

Lemma 4. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then for every $k \ge 0$, we have

$$\phi(x_k) - \phi(x_{k+1}) \ge \frac{1}{2} \min\left\{ S(x_k), \frac{S^2(x_k)}{LD^2} \right\},\tag{3}$$

where D is the diameter of dom h.

Now, with all the above technical results, we are ready to present the main convergence result of Frank-Wolfe method applied to nonconvex optimization.

Theorem 2. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then the following statements hold:

- (a) for every $k \ge 0$, $\phi(x_k) \ge \phi(x_{k+1})$ and $\phi(x_k) > \phi(x_{k+1})$ if x_k is not a stationary point of (1);
- (b) $S(x_k) \to 0$ as $k \to \infty$;
- (c) for every $k \ge 1$,

$$\min_{0 \le i \le k-1} S(x_i) \le \max\left\{\frac{2\left(\phi(x_0) - \phi_*\right)}{k}, \frac{\sqrt{2L_f D^2\left(\phi(x_0) - \phi_*\right)}}{\sqrt{k}}\right\}$$

(d) all limit points of the sequence $\{x_k\}_{k\geq 0}$ are stationary points of problem (1).

Proof. (a) The first result directly follows from Lemma 4 and the fact that $S(x_k) \ge 0$. If x_k is not a stationary point, then $S(x_k) > 0$ and hence $\phi(x_k) > \phi(x_{k+1})$ in view of (3).

(b) Since $\{\phi(x_k)\}$ is non-increasing and bounded from below, it follows that it is convergent. In particular, $\phi(x_k) > \phi(x_{k+1}) \to 0$ as $k \to \infty$. Therefore, it follows from Lemma 4 that $S(x_k) \to 0$ as $k \to \infty$.

Nonconvex Optimization-4

(c) Summation of (3) over iterations gives

$$\phi(x_0) - \phi(x_k) \ge \frac{1}{2} \sum_{i=0}^{k-1} \min\left\{ S(x_i), \frac{S^2(x_i)}{LD^2} \right\} \ge \frac{k}{2} \min_{0 \le i \le k-1} \min\left\{ S(x_i), \frac{S^2(x_i)}{LD^2} \right\},$$

then the result holds after simple calculation.

(d) Suppose that \bar{x} is a limit point of $\{x_k\}_{k\geq 0}$. Then there exists a subsequence $\{x_{k_j}\}_{j\geq 0}$ that converges to \bar{x} . By the definition of the Wolfe gap $S(\cdot)$, it follows that for any $x \in \text{dom } h$,

$$S(x_{k_j}) \ge \langle \nabla f(x_{k_j}), x_{k_j} - x \rangle + h(x_{k_j}) - h(x).$$

Passing to the limit $j \to \infty$ and using the fact that $S(x_{k_j}) \to 0$ as $j \to \infty$, as well as the continuity of ∇f and the lower semicontinuity of h, we obtain that

$$0 \ge \langle \nabla f(\bar{x}), \bar{x} - x \rangle + h(\bar{x}) - h(x), \quad \forall x \in \operatorname{dom} h,$$

which is the same as the relation $-\nabla f(\bar{x}) \in \partial h(\bar{x})$, that is, \bar{x} is a stationary point of (1).

In the proof of part (d), we have used the fact that h is closed is equivalent to h is lower semicontinuous. We say h is lower semicontinuous at x_0 if and only if

$$\liminf_{x \to x_0} h(x) \ge h(x_0) \,.$$