DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 14

Nonconvex Optimization

Lecturer: Jiaming Liang November 21, 2023

1 Setup

We are interested in solving
min{¢(z) := f(x) + h(z)}. (1)

We assume that
(A1) h is closed and convex;

(A2) there exist scalar L > 0 and a compact convex set € O dom h such that f is nonconvex and
differentiable on €2, and

HVf(u) - Vf (u')H <L Hu - u’H . Yu,u €.

It follows from (A1) and (A2) that the set of optimal solutions X, is nonempty and compact.
Second, if L satisfies (A2) then the pair (M, m) = (L, L) satisfies

—% Ju—'||* < flu) = £ (us0) < % [u—'||?, Vu,u’ € Q. (2)

Clearly,
0<m<L, 0<MC<L.

The interesting case is when m < M, and we say function f is m-weakly convex if
m 2
_EHU_U/H < flu) = by (usu'), Vu,u' € Q.

It is easy to check that g(-) = f() + x| - [|* is convex if A < 1/m. Hence, weakly-convex functions
are convexifiable.

Solving for global minima or even local minima are intractable in nonconvex optimization, so
we instead solve for stationary points, i.e. x € dom h satisfying

0 € Vf(z)+ oh(z).
Definition 1. Given p > 0, a pair (v,x) is called a p-approzimate stationary pair of problem (1)

if
v € Vf(@)+h(z), o]l < p.
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2 Projected gradient method

Algorithm 1 Projected gradient method
Input: Initial point 2o € domh, X € (0,1/M], p > 0.
for £ > 0 do
Step 1. Compute

1
Tpi1 = argmin {Ef(u; xg) + h(u) + ﬁHu — kaHZ}

Step 2. Compute

LT — X
Vg1 = % + Vf(xrs1) — Vf(ar),

if |[vgs1]] < p, then stop.
end for

Lemma 1. For every k > 0, we have

1
it € Vf(ok) + Ohans). owsall < (L4 ) s = ol

Proof. The optimality condition of the subproblem in Algorithm 1 is

1
0e Vf(l‘k) + 8h(l‘k+1) + X ($k+1 — xk) .

Hence, the inclusion in the lemma holds after rearrangement. The inequality follows from the
definition of vi4; and the fact that V f is L-smooth. t

Theorem 1. For every k > 1, we have

: 1\ 2[p(z0) — ¢x]
min, vl < (L + > NiTT .

A
Proof. 1t follows from the subproblem in Algorithm 1 that for every u € dom h,
: 1 2 1 2
Cr(usae) + hu) + oyllu = 2ull” = oy lu = 24|
1
2 Uy (Tpgr;0) + h(Tpg1) + BN [

M 1
> ¢(Tpy1) — > 2k — 2l” + X [

where the second inequality is due to the second inequality of (2). Taking u = xj in the above
inequality and using the fact that A < 1/M, we have

1 M

M
o) = olansn) > (5 =% ) bowen =l = 5 oo — .
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Summing the above inequality, we obtain

M , o M \?% . N
— > o plf > T — J1“
O(xo) = dlan) 2 -k | min [lziey — 2" > -k <L+ A) min, [vi

Hence, the lemma holds. O

3 Frank-Wolfe method

Recall the Frank-Wolfe method from Lecture 8.

Algorithm 2 Generalized Frank-Wolfe method
Input: Initial point x¢g € dom h
for £ > 0 do
Step 1. Compute yj, = argmin yern{(y, Vf(zx)) + h(y)}.
Step 2. Choose tj, € [0,1] and set xp+1 = (1 — tg)zk + txys-
end for

Also recall the following results.

Definition 2. The Wolfe gap is the function S(x) : domh — R given by

S(x) = max{(Vf(z),z —y) + h(x) — h(y)}.

yER™

Lemma 2. The following statements hold:
(a) S(x) >0 for any x € dom h;
(b) S(xzx) =0 if and only if —V f(x4) € Oh(xy), that is, if and only if x, is a stationary point of
(1).
Proof. (b) It follows from (a) that S(x.) = 0 if and only if S(x.) < 0, which is the same a
(Vf(z), 26 — ) + h(xzy) — h(z) <0, 2z € domh.

Rearraging the terms gives
h(z) = h(z.) + (=V [ (2:), 2 — 24),

which is equivalent to —V f(z.) € Oh(z.). O
Lemma 3. Let x € domh and t € [0,1]. Then, we have

2
S~ +1y) < o) — 15(x) + -y —

where y = argmin yern {(u, Vf(x)) + h(u)}.
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Three stepsize rules

1) predefined diminishing stepsize:

2
ap — =
k L + 27
2) adaptive stepsize:
S
B, = min{l,W};
Llyx — x|

3) exact minimization/line search:
Nk € argminepo 19 (1 — )z + tyg) -

The following lemma is (P3) of PS3.

Lemma 4. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then for every k > 0,
we have

1 . S2(x
olan) = olansn) = min {S(). 70 Q
where D is the diameter of dom h.

Now, with all the above technical results, we are ready to present the main convergence result
of Frank-Wolfe method applied to nonconvex optimization.

Theorem 2. Using the adaptive or exact line search stepsizes in Frank-Wolfe, then the following
statements hold:

(a) for every k>0, ¢(zk) > ¢(vry1) and ¢p(xr) > ¢(zr41) if Tk is not a stationary point of (1);
(b) S(xr) — 0 as k — oo;

(c) for every k > 1,

min  S(z;) < max
0<i<k—1

2 (¢(wo) — ¢«) /2Ly D? (p(x0) — ¢x)
k ’ vk

(d) all limit points of the sequence {x}r>0 are stationary points of problem (1).

Proof. (a) The first result directly follows from Lemma 4 and the fact that S(x) > 0. If = is not
a stationary point, then S(x) > 0 and hence ¢(x) > ¢(xp41) in view of (3).

(b) Since {¢(zk)} is non-increasing and bounded from below, it follows that it is convergent. In
particular, ¢(z) > ¢(zr4+1) — 0 as k — oo. Therefore, it follows from Lemma 4 that S(xp) — 0
as k — oo.
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(c¢) Summation of (3) over iterations gives

Blo) — Blax) > ;kz:jmn {020, S%Z‘)} > 5, nin min { (2., Sz b

then the result holds after simple calculation.
(d) Suppose that Z is a limit point of {z3},~,. Then there exists a subsequence {zy, }j>0 that
converges to Z. By the definition of the Wolfe gap S(-), it follows that for any x € domh,

S(xkj) > <Vf (wk]) ,:L‘kj - $> +h (a:kj) - h(a:)

Passing to the limit j — oo and using the fact that .S (mk]) — 0 as j — o0, as well as the continuity
of Vf and the lower semicontinuity of h, we obtain that

0>(Vf(z),z—z)+ h(z)— h(xz), Vzecdomh,
which is the same as the relation —V f(Z) € Oh(z), that is, Z is a stationary point of (1). O

In the proof of part (d), we have used the fact that h is closed is equivalent to h is lower
semicontinuous. We say h is lower semicontinuous at zq if and only if

liminf h(z) > h (zo) .

T—T0
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