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1 Motivation

In this lecture, we discuss methods for solving optimization problems with huge-scale and block-wise

decomposible structure. Since first-order methods with full gradient updates would be computa-

tionally expensive, we are interested in methods that make partial gradient/vector updates, i.e.,

an update in only one block of the full gradient/vector. Methods of this type are called coordinate

descent methods.

1.1 Theoretical justification

The simplest variant of the coordinate descent method is based on a cyclic coordinate search.

However, for this strategy it is difficult to prove convergence, and almost impossible to estimate

the rate of convergence

Another possibility is to move along the direction corresponding to the component of gradient

with maximal absolute value. Consider

min
x∈Rn

f(x)

where the convex objective function f has component-wise Lipschitz continuous gradient, i.e.,

|∇if (x+ hei)−∇if(x)| ≤ M |h|, x ∈ Rn, h ∈ R, i = 1, . . . , n.

Consider the following algorithm.

Algorithm 1 Maximum abosolute value coordinate descent

Input: Initial point x0 ∈ Rn

for k ≥ 0 do

Step 1. Choose

ik = argmax 1≤i≤n |∇if (xk)|

Step 2. Update

xk+1 = xk −
1

M
∇ikf (xk) eik .

end for
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It is not difficult to show that

f (xk)− f (xk+1) ≥
1

2M
|∇ikf (xk)|2 ≥

1

2nM
∥∇f (xk)∥2

≥ 1

2nMR2
(f (xk)− f∗)

2

where R ≥ ∥x0 − x∗∥, and hence that

f (xk)− f∗ ≤
2nMR2

k + 4
, k ≥ 0.

Since the maximum absolute value coordinate is needed, this method still requires computation

of the full gradient. However, if this vector is available, it seems better to apply the usual full

gradient methods. It is also important that for convex functions with Lipschitz-continuous gradient,

i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ Rn

it can happen that M ≥ L.

1.2 Computational complexity

In huge-scale optimization, the computation of full gradient or directional derivative evaluations

is expansive, and even a function value can require substantial computational efforts. Moreover,

some parts of the problem’s data can be distributed in space and in time. The problem’s data may

be only partially available at the moment of evaluating the current test point.

Example.

min
x∈Rn

{
f(x) :=

n∑
i=1

fi

(
x(i)
)
+

1

2
∥Ax− b∥2

}
where fi are convex differentiable univariate functions, A = (a1, . . . , an) ∈ Rp×n, and ∥ · ∥ is the

standard Euclidean norm in Rp. Then

∇if(x) = f ′
i

(
x(i)
)
+ ⟨ai, g(x)⟩ , i = 1, . . . , n

g(x) = Ax− b.

If the residual vector g(x) is already computed, then the computation of i-th directional derivative

requires O (pi) operations, where pi is the number of nonzero elements in vector ai. On the other

hand, the coordinate move x+ = x+ αei results in the following change in the residual:

g (x+) = g(x) + αai.

Therefore, the i-th coordinate step for problem (1.6) needs O (pi) operations. Note that compu-

tation of either the function value, or the whole gradient, or an arbitrary directional derivative

requires O (
∑n

i=1 pi) operations.
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2 Randomized block coordinate descent

Define the partition of the identity matrix

In = (U1, · · · , Ub) ∈ Rn×n, Ui ∈ Rn×ni , i = 1, · · · , b.

Thus, any x = (x(1), · · · , x(b))T ∈ Rn can be represented as

x =
b∑

i=1

Uix
(i), x(i) ∈ Rni , i = 1, · · · , b.

Consider the problem of minimizing a composite convex function:

min
x∈Rn

{ϕ(x) := f(x) + h(x)}.

Assumptions for f and h:

• h is closed, convex, and separable, i.e., h(x) =
∑b

i=1 hi(x
(i));

• f is convex and differentiable on domh and there exists Li ≥ 0 for i = 1, · · · , b such that

f(x+Ui(x
′(i)−x(i)))− [f(x)+ ⟨∇if(x), x

′(i)−x(i)⟩] ≤ Li

2
∥x′(i)−x(i)∥2 ∀x, x′ ∈ domh. (1)

Define the randomized block coordinate descent update as follows:

x(i) = argmin u(i)∈Rni

(
⟨∇if(x0), u

(i) − x
(i)
0 ⟩+ hi(u

(i)) +
1

2λi

∥∥∥u(i) − x
(i)
0

∥∥∥2) , (2)

and

x[i] = x0 + Ui(x
(i) − x

(i)
0 ), i = 1, · · · , b. (3)

2.1 The method

Now, we are ready to state the randomized block coordinate descent method.

Algorithm 2 Randomized block coordinate descent

Input: Initial point x0 ∈ domh

for k ≥ 1 do

Step 1. Generate a random variable ik according to

Prob(ik = i) = pi, i = 1, 2, · · · , b.

Step 2. Compute xk by the randomized block coordinate descent update (2) and (3).

end for
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Lemma 1. Applying the block coordinate descent update in the i-th coordinate, we have

ϕ(x0)− ϕ(x[i]) ≥ εi + λi

(
1− Liλi

2

)
∥r(i)∥2, (4)

where

r(i) =
x
(i)
0 − x(i)

λi
, εi := ε(x[i]) = hi(x

(i)
0 )− hi(x

(i))− ⟨r(i) −∇if(x0), x
(i)
0 − x(i)⟩.

Note: εi = ε(x[i]) is a random variable, and r(i) ∈ Rni is a random vector. They both depend

on the choice of i-th coordinate.

Proof. First note in the i-th block, we have the following equalities to connect the local and global

quantities

⟨∇if(x0), x
(i)
0 − x(i)⟩ = ⟨∇f(x0), x0 − x[i]⟩ (5)

hi(x
(i)
0 )− hi(x

(i)) = h(x0)− h(x[i]) (6)

∥x[i]− x0∥2 = ∥x(i)0 − x(i)∥2 = λ2
i ∥r(i)∥2 (7)

The optimality condition for (2) is

r(i) ∈ ∇if(x0) + ∂hi(x
(i)), or r(i) ∈ ∇if(x0) + ∂εihi(x

(i)
0 ),

where εi = hi(x
(i)
0 )− hi(x

(i))− ⟨r(i) −∇if(x0), x
(i)
0 − x(i)⟩.

Hence

εi = hi(x
(i)
0 )− hi(x

(i)) + ⟨∇if(x0), x
(i)
0 − x(i)⟩ − λi∥r(i)∥2,

and

εi + λi∥r(i)∥2 = hi(x
(i)
0 )− hi(x

(i)) + ⟨∇if(x0), x
(i)
0 − x(i)⟩.

It follows from (5) and (6) that

εi + λi∥r(i)∥2 = h(x0)− h(x[i]) + ⟨∇f(x0), x0 − x[i]⟩
= (f + h)(x0)− h(x[i])− (f(x0) + ⟨∇f(x0), x[i]− x0⟩)
= (f + h)(x0)− h(x[i])− ℓf (x[i];x0)

≤ (f + h)(x0)− h(x[i])−
(
f(x[i])− Li

2
∥x[i]− x0∥2

)
,

where the last inequality is due to (1). Then by (7), we have

εi + λi∥r(i)∥2 ≤ (f + h)(x0)− h(x[i])−
(
f(x[i])− Liλ

2
i

2
∥r(i)∥2

)
,

so

εi + λi

(
1− Liλi

2

)
∥r(i)∥2 ≤ (f + h)(x0)− (f + h)(x[i]).
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Definition 1. Define

∥r∥2# =
b∑

i=1

piλi

2
∥r(i)∥2,

and

(∥s∥∗#)2 =
b∑

i=1

(
piλi

2
)−1(∥s(i)∥∗)2 =

b∑
i=1

(
piλi

2
)−1∥s(i)∥2.

Lemma 2. Chooseing λi =
1
Li
, i = 1, · · · , b, and applying the randomized block coordinate descent,

we have

ϕ(x0)− E[ϕ(x)]−
b∑

i=1

piεi ≥ ∥r∥2#.

Proof. Taking expectation on both sides of (4),

ϕ(x0)− E[ϕ(x)] =
b∑

i=1

pi (ϕ(x0)− ϕ(x[i]))

≥
b∑

i=1

pi

(
εi + λi

(
1− Liλi

2

)
∥r(i)∥2

)
=

b∑
i=1

pi

(
εi +

λi

2
∥r(i)∥2

)
.

It follows from the above inequality and Definition 1 that

ϕ(x0)− E[ϕ(x)] ≥
b∑

i=1

piεi +

b∑
i=1

piλi

2
∥r(i)∥2 =

b∑
i=1

piεi + ∥r∥2#.

Lemma 3.

∥r∥# ≥
ϕ(x0)− ϕ(x∗)−

∑b
i=1 εi

∥x0 − x∗∥∗#
.

Proof. The optimality condition for (2) is

r(i) ∈ ∇if(x0) + ∂hi(x
(i)), or r(i) ∈ ∇if(x0) + ∂εihi(x

(i)
0 ).

From the latter inclusion, we have

hi(u
(i)) ≥ hi(x

(i)
0 ) + ⟨r(i) −∇if(x0), u

(i) − x
(i)
0 ⟩ − εi, ∀u(i) ∈ Rni .

Taking u(i) = x
(i)
∗ , we have

hi(x
(i)
∗ ) ≥ hi(x

(i)
0 ) + ⟨r(i) −∇if(x0), x

(i)
∗ − x

(i)
0 ⟩ − εi.
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Summation over coordinates gives

h(x∗) ≥ h(x0) + ⟨r −∇f(x0), x∗ − x0⟩ −
b∑

i=1

εi.

Thus, we have

⟨r, x0 − x∗⟩+
b∑

i=1

εi ≥ h(x0)− h(x∗)− ⟨∇f(x0), x∗ − x0⟩

≥ h(x0)− h(x∗) + f(x0)− f(x∗)

= ϕ(x0)− ϕ(x∗).

Hence, by the above inequality and the Cauchy-Schwarz inequality, we obtain

∥r∥# ≥
ϕ(x0)− ϕ(x∗)−

∑b
i=1 εi

∥x0 − x∗∥∗#
.

Definition 2. Define

ξk = {i0, i1, · · · , ik}

to be the sequence of observed random variables after k iterations, where ik is the choice of block in

the k-th iteration.

Definition 3. Define the expected values

ϕk = Eξk [ϕ(xk)], ε̄k = Eξk [ε(xk)],

and

∆k = ϕk − ϕ∗, τk =
1

∆k
.

Lemma 4.

ϕk − ϕk+1 ≥ ε̄k+1,

and

∆k −∆k+1 ≥ ε̄k+1.

Proof. Given ξk, it follows from Lemma 2 that

ϕ(xk)− Eik+1
[ϕ(xk+1)] ≥

b∑
i=1

piεi = Eik+1
[ε(xk+1)].

Taking the expectation in ξk, we get

ϕk − ϕk+1 ≥ ε̄k+1.

Using Definition 3, we have

∆k −∆k+1 ≥ ε̄k+1.
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2.2 Uniform distribution

In this subsection, we consider the uniform distribution of pi’s, where pi =
1
b , i = 1, · · · , b. For an it-

eration k ≥ 1,we discuss two cases: ϕ(xk)−ϕ∗ ≤ 2bEik+1
[ε(xk+1)] and ϕ(xk)−ϕ∗ ≥ 2bEik+1

[ε(xk+1)].

First, we note that in the uniform distribution case,

ϕ(xk)− ϕ∗ − bEik+1
[ε(xk+1)] = ϕ(xk)− ϕ∗ − b

b∑
i=1

piε(xk+1[i]) = ϕ(xk)− ϕ∗ −
b∑

i=1

εi

where εi = ε(xk+1[i]).

Case 1. ϕ(xk)− ϕ∗ ≤ 2bEik+1
[ε(xk+1)]

Taking the expectation in ξk, then we have

1

2
(Eξk [ϕ(xk)]− ϕ∗) ≤ bEξk+1

[ε(xk+1)],

or equivalently,
1

2
∆k =

1

2
(ϕk − ϕ∗) ≤ bε̄k+1. (8)

Proposition 1.

∆k+1 ≤ C1∆k,

and

τk+1 ≥
1

C1
τk,

where C1 = 1− 1
2b < 1.

Proof. It follows from (8) and Lemma 4 that

∆k −∆k+1 ≥ ε̄k+1 ≥
1

2b
∆k.

Thus, we have

∆k+1 ≤
(
1− 1

2b

)
∆k = C1∆k,

and

τk ≤ C1τk+1.

Case 2. ϕ(xk)− ϕ∗ ≥ 2bEik+1
[ε(xk+1)]
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Proposition 2.

τk+1 − τk ≥ 1

C
,

where

C = 4R2, and R = max
x

{
max
x∗∈X∗

∥x− x∗∥∗# : ϕ(x) ≤ ϕ(x0)

}
which is a measure of the size of the level set of ϕ given by x0.

Note: in the uniform distribution case,

∥s∥∗# =

(
2b

b∑
i=1

Li∥s(i)∥2
)1/2

.

Proof. By Lemmas 2 and 3, we have

ϕ(x0)− E[ϕ(x)]−
b∑

i=1

piεi ≥ ∥r∥2# ≥
(ϕ(x0)− ϕ∗ −

∑b
i=1 εi)

2

(∥x0 − x∗∥∗#)2
.

For the k-th iteration, that is

ϕ(xk)− Eik+1
[ϕ(xk+1)]− Eik+1

[ε(xk+1)] ≥
(ϕ(xk)− ϕ∗ − bEik+1

[ε(xk+1)])
2

(∥xk − x∗∥∗#)2

≥ (ϕ(xk)− ϕ∗)
2

4(∥xk − x∗∥∗#)2
≥ (ϕ(xk)− ϕ∗)

2

C
,

where the second inequality is due to the assumption that ϕ(xk)− ϕ∗ ≥ 2bEik+1
[ε(xk+1)] and

the last inequality is due to the definition of C.

Taking the expectation in ξk and using the Jensen’s inequality, we obtain

ϕk − ϕk+1 − ε̄k+1 ≥
Eξk(ϕ(xk)− ϕ∗)

2

C
≥ (ϕk − ϕ∗)

2

C
.

Thus, we have

∆k −∆k+1 ≥ ∆k −∆k+1 − ε̄k+1 ≥
1

C
(∆k)

2,

and hence
1

∆k+1
− 1

∆k
=

∆k −∆k+1

∆k∆k+1
≥ ∆k −∆k+1

(∆k)2
≥ 1

C
,

or equivalently,

τk+1 − τk ≥ 1

C
.
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Definition 4. Let

K+ := {j : 1
2
∆j ≥ bε̄j+1, 0 ≤ j ≤ k − 1}, K− := {j : 1

2
∆j ≤ bε̄j+1, 0 ≤ j ≤ k − 1}.

Theorem 1.

∆k ≤ max{4R2, (2b− 1)[ϕ(x0)− ϕ∗]}
k

.

Proof. Using Propositions 1 and 2, we have

τk − τ0 =
∑
j∈K+

(τj − τj−1) +
∑
j∈K−

(τj − τj−1)

≥ |K+| 1
C

+ |K−|τ0
(

1

C1
− 1

)
≥ (|K+|+ |K−|)min

{
1

C
, τ0

(
1

C1
− 1

)}
=

k

C ′ ,

where C ′ = max{C,C1/(τ0(1− C1))}. Therefore, we have

1

∆k
= τk ≥ τ0 +

k

C ′ ≥
k

C ′ ,

and finally

∆k ≤ C ′

k
.

2.3 Arbitrary distribution

In this subsection, we consider the arbitrary distribution. W.L.O.G., we can assume 0 < p1 ≤ p2 ≤
· · · ≤ pb < 1, thus

p1

b∑
i=1

εi = min
1≤i≤b

pi

b∑
i=1

εi ≤
b∑

i=1

piεi = E[ε(x)].

For an iteration k ≥ 1,we discuss two cases: ϕ(xk) − ϕ∗ ≤ 2
p1
Eik+1

[ε(xk+1)] and ϕ(xk) − ϕ∗ ≥
2
p1
Eik+1

[ε(xk+1)].

We present the following results without giving their proofs since they are similar to those in

Subsection 2.2.

Case 1. ϕ(xk)− ϕ∗ ≤ 2
p1
Eik+1

[ε(xk+1)]
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Proposition 3.

∆k+1 ≤ C2∆k.

and

τk+1 ≥
1

C2
τk,

where C2 = 1− p1
2 < 1.

Case 2. ϕ(xk)− ϕ∗ ≥ 2
p1
Eik+1

[ε(xk+1)]

Proposition 4.

τk+1 − τk ≥ 1

C
,

where

C = 4R2, and R = max
x

{
max
x∗∈X∗

∥x− x∗∥∗# : ϕ(x) ≤ ϕ(x0)

}
.

Theorem 2.

∆k ≤ max{4R2, (2/p1 − 1)[ϕ(x0)− ϕ∗]}
k

.

Example. One choice of the non-uniform distribution is for some α ≥ 0,

pi =
Lα
i

Sα
,

where Sα =
∑b

i=1 L
α
i . In this case, if λi = 1/Li, then

∥r∥# =

(
b∑

i=1

Lα−1
i

2Si
∥r(i)∥2

)1/2

,

and

∥s∥∗# =

(
2Sα

b∑
i=1

L1−α
i ∥s(i)∥2

)1/2

.

3 Dual problem

In this section, we show that the dual of the regularized empirical risk minimization (ERM) prob-

lems associated with linear predictors is in the block-wise decomposible structure .

Let A1, A2, · · · , An be the columns of A ∈ Rd×n, ϕ1, ϕ2, · · · , ϕn be a sequence of convex functions

defined on R, and g be a convex function defined on Rd. The goal of regularized ERM with linear

predictors is to solve the following convex optimization problem

minimizew∈Rd

{
P (w) :=

1

n

n∑
i=1

ϕi(A
T
i w) + λg(w)

}
.
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Reformulated primal problem

minimizey∈Rn,w∈Rd

{
1

n

n∑
i=1

ϕi(yi) + λg(w) : yi = AT
i w

}
.

Dual function of the reformulated problem is

inf
y∈Rn,w∈Rd

1

n

n∑
i=1

ϕi(yi) + λg(w) +
n∑

i=1

xi(yi −AT
i w)

=
n∑

i=1

[
inf
yi∈R

1

n
ϕi(yi) + xiyi

]
+ inf

w∈Rd
λg(w)− (Ax)Tw

=
n∑

i=1

[
− 1

n
sup
yi∈R

yi(−nxi)− ϕi(yi)

]
− λ sup

w∈Rd

wT (
1

λ
Ax)− g(w)

=
n∑

i=1

− 1

n
ϕ∗
i (−nxi)− λg∗(

1

λ
Ax)

=− 1

n

n∑
i=1

ϕ∗
i (−ui)− λg∗(

1

nλ
Au)

where u = nx.

The dual problem is

maximizex∈Rn

{
1

n

n∑
i=1

−ϕ∗
i (−ui)− λg∗(

1

λn
Au).

}
.

This is equivalent to minimizing

minimizex∈Rn

{
F (u) :=

1

n

n∑
i=1

ϕ∗
i (−ui) + λg∗(

1

λn
Au)

}
.

The structure of F (x) matches our general formulation of the composite convex function with

f(u) = λg∗(
1

λn
Au), h(u) =

n∑
i=1

hi(ui) =
1

n

n∑
i=1

ϕ∗
i (−ui).

4 Accelerated randomized block coordinate descent

In this section, we develop a variant of the randomized block coordinate descent method that

achieves the acceleration convergence rate O(k−2). For simplicity, we consider the for uniform

distribution.
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Algorithm 3 Accelerated randomized block coordinate descent

Input: Initial point x0 ∈ domh. Set y0 = x0 and A0 = 1− 1
b .

for k ≥ 0 do

Step 1. Generate a random variable ik+1 = i uniformly from {1, 2, . . . , b};
Step 2. Compute

ak =
1 +

√
1 + 4b2Ak

2b2
, Ak+1 = Ak + ak, x̃k =

Ak

Ak+1
yk +

ak
Ak+1

xk

Step 3. Compute

x
(i)
k+1 := argmin u(i){⟨∇if(x̃k), u

(i) − x̃
(i)
k ⟩+ hi(u

(i)) +
Li

2akb
∥u(i) − x

(i)
k ∥2}, (9)

xk+1 = xk + Ui(x
(i)
k+1 − x

(i)
k ),

y
(i)
k+1 := x̃

(i)
k +

1

akb
(x

(i)
k+1 − x

(i)
k ), (10)

yk+1 = x̃k + Ui(y
(i)
k+1 − x̃

(i)
k ).

end for

We first make some basic observations.

Lemma 5.

Ak+1 = a2kb
2, Ak ≥ k2

4b2
.

Proof. The identity follows from the facts that Ak+1 = Ak + ak and ak is the solution of

b2a2k − ak −Ak = 0.

Now, we prove the inequality. It follows from the definition of ak that

ak =
1 +

√
1 + 4b2Ak

2b2
≥ 1

2b2
+

√
Ak

b
,

thus

Ak+1 = Ak + ak ≥ Ak +

√
Ak

b
+

1

2b2
≥
(√

Ak +
1

2b

)2

.

Hence √
Ak+1 ≥

√
Ak +

1

2b
.

Summing this equality over iterations gives√
Ak ≥

√
A0 +

k

2b
≥ k

2b
.

This concludes the proof.
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Lemma 6. Define β0
1 = A1 − a0b = 0, β1

1 = a0b = 1 and for k ≥ 1,

βl
k+1 =


βl
k, l = 0, · · · , k − 1;

βk
k + ak − akb, l = k;

akb l = k + 1.

(11)

Then, for all k ≥ 1, we have

βk ≥ 0, l = 0, 1, . . . , k,

and
k∑

l=0

βl
k = Ak, Akyk =

k∑
l=0

βl
kxl, (12)

That is, yk is a convex combination of x0, x1, · · · , xk.

Proof. Since β0
1 and β1

1 are nonnegative. Using an induction argument and (11), it amounts to

prove

βk
k+1 = βk

k + ak − akb ≥ 0.

It follows from βk
k = ak−1b that

βk
k+1 = ak−1b+ ak − akb

=
1

ak + ak−1

[
ak(ak + ak−1)− (a2k − a2k−1)b

]
=

1

ak + ak−1

[
ak(ak + ak−1)− (Ak+1 −Ak)

1

b

]
=

ak
ak + ak−1

(
ak + ak−1 −

1

b

)
.

Since a0 =
1
b and {ak} is increasing, we have ak + ak−1 ≥ a1 + a0 ≥ 2a0 ≥ 2

b and hence βk
k+1 ≥ 0.

We now prove (12) by induction. First, it easy to check that (12) holds for k = 1. Assume that

(12) holds for some k ≥ 1. Then, it follows from (11) and the induction hypothesis that

k+1∑
l=0

βl
k+1 =

k−1∑
l=0

βl
k+1 + βk

k+1 + βk+1
k+1

=

k−1∑
l=0

βl
k + ak =

k∑
l=0

βl
k + ak

= Ak + ak = Ak+1.
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Moreover, using (11) and the induction hypothesis, we also have

Ak+1yk+1 = Ak+1

(
x̃k +

1

akb
(xk+1 − xk)

)
= Akyk + akxk + akb(xk+1 − xk)

=
k∑

l=0

βl
kxl + akxk + akb(xk+1 − xk)

=
k−1∑
l=0

βl
kxl + βk

kxk + akxk + akb(xk+1 − xk)

=
k−1∑
l=0

βl
kxl + (βk

k + ak − akb)xk + akbxk+1

=
k−1∑
l=0

βl
k+1xl + βk

k+1xk + βk+1
k+1xk+1

=
k+1∑
l=0

βl
k+1xl.

Lemma 7. Define Γ0 = h(x0) and for k ≥ 1,

Γk =

∑k
l=0 β

l
kh(xl)

Ak
.

Then, we have

Γk ≥ h(yk), Ak+1Γk+1 = AkΓk + ak(1− b)h(xk) + akbh(xk+1).

Proof. Using the definition of Γk, the second equality in (12), and the convexity of h, we have

AkΓk =
k∑

l=0

βl
kh(xl) ≥ Akh

(∑k
l=0 β

l
kxl

Ak

)
= Akh(yk).

Hence, the inequality holds. Now, we show the identity. Using the definitions of βl
k+1 in (11), we
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have

Ak+1Γk+1 =

k+1∑
l=0

βl
k+1h(xl) =

k−1∑
l=0

βl
k+1h(xl) + βk

k+1h(xk) + βk+1
k+1h(xk+1)

=
k−1∑
l=0

βl
kh(xl) + [βk

k + ak(1− b)]h(xk) + akbh(xk+1)

=
k∑

l=0

βl
kh(xl) + ak(1− b)h(xk) + akbh(xk+1)

= AkΓk + ak(1− b)h(xk) + akbh(xk+1).

Lemma 8. Assuming ik+1 = i, then we have

Ak+1[Γk+1 + f(yk+1)]

≤Ak[Γk + f(yk)] + ak [(1− b)h(xk) + bh(xk+1)] + akℓf (xb[i]; x̃k) +
Li

2
∥xk+1 − xk∥2, (13)

where

xb[i] = xk + bUi

(
x
(i)
k+1 − x

(i)
k

)
= xk + b(xk+1 − xk). (14)

Proof. For simplicity, we will omit the iteration index k and let

x+[i] = xk+1, y+[i] = yk+1, x
(i)
+ = x

(i)
k+1, y

(i)
+ = y

(i)
k+1.

Observations from step 3 of Algorithm 3

y+[i] = x̃+
1

ba
(x+[i]− x) = x̃+

ba

A+
(x+[i]− x).

and

y+[i] =
A

A+
y +

a

A+
xb[i]. (15)

Indeed,

y+[i] = x̃+
ba

A+
(x+[i]− x) =

Ay + ax

A+
+

ba

A+
(x+[i]− x) =

A

A+
y +

a

A+
[x+ b(x+[i]− x)].

It follows from the smoothness of f (see (1)) and (10), we have

f(y+[i]) ≤ f(x̃) + ⟨∇if(x̃), y
(i)
+ − x̃(i)⟩+ Li

2
∥y(i)+ − x̃(i)∥2

= ℓf (y
+[i]; x̃) +

Li

2
∥y+[i]− x̃∥2.
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Using this inequality, Lemma 1, and (15), we obtain

A+[Γ+ + f(y+[i])]− a
[
(1− b)h(x) + bh(x+[i])

]
=AΓ +A+f(y+[i])

≤AΓ +A+

(
ℓf (y

+[i]; x̃) +
Li

2
∥y+[i]− x̃∥2

)
=AΓ +A+

[
ℓf

(
Ay + axb[i]

A+
; x̃

)
+

Li

2(ab)2
∥x+[i]− x∥2

]
=AΓ +Aℓf (y; x̃) + aℓf (xb[i]; x̃) +

Li

2
∥x+[i]− x∥2

≤A[Γ + f(y)] + aℓf (xb[i]; x̃) +
Li

2
∥x+[i]− x∥2,

where the last inequality follows from the convexity of f .

Lemma 9. Define

x̂k+1 =
(
x
(1)
k+1, x

(2)
k+1, · · · , x

(b)
k+1

)
, ∥r∥L =

(
b∑

i=1

Li∥r(i)∥2
)1/2

.

Then, the following statements hold

(i)

x̂k+1 = argmin u∈Rn

{
ak [ℓf (u; x̃k) + h(u)] +

1

2b
∥u− xk∥2L

}
;

(ii) for any u ∈ Rn,

∥xk+1 − u∥2L − ∥xk − u∥2L = Li∥x(i)k+1 − u(i)∥2 − Li∥x(i)k − u(i)∥2;

(iii) for any u ∈ Rn, under total expectation,

E[∥xk+1 − u∥2L − ∥xk − u∥2L] =
1

b
E[∥x̂k+1 − u∥2L]−

1

b
E[∥xk − u∥2L];

(iv) let xb denotes xb[i] when ik+1 = i, we have

Eik+1
[xb] = x̂k+1, Eik+1

[(1− b)h(xk) + bh(xk+1)] = h(x̂k+1).

Proof. (i) This statement immediately follows from (9) and the definition of x̂k+1.

(ii) and (iii) directly follow from the definitions of x̂k+1 and ∥ · ∥L.
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(iv) Assuming ik+1 = i, then the first identity directly follows from the definition of xb[i] in

(14). Using the fact that h(x) =
∑b

i=1 hi(x
(i)), we have

Ei[h(x
+[i])] =

1

b

b∑
i=1

h(x+[i]) =
1

b

b∑
i=1

∑
j ̸=i

hj(x
(j)) + hi(x

(i)
+ )

 =
b− 1

b
h(x) +

1

b
h(x̂+).

Rearranging the above equation and using the definition of xb[i] in (14), we have

Ei[bh(x
+[i])− (b− 1)h(x)] = h(x̂).

Theorem 3.

Eξk [ϕ(yk)]− ϕ∗ ≤
4(b2 − b)(ϕ(y0)− ϕ∗) + 2b2∥x0 − x∗∥2L

k2
.

Proof. Taking the expectation of (13) in ik+1 and using Lemma 9, we have

Ak+1Eik+1
[Γk+1 + f(yk+1)] ≤ Ak[Γk + f(yk)] + akh(x̂k+1) + akℓf (x̂k+1; x̃k) +

1

2b
∥x̂k+1 − xk∥2L.

It follows form Lemma 9(i) that for any u ∈ domh

ak[h(x̂k+1)+ ℓf (x̂k+1; x̃k)]+
1

2b
∥x̂k+1−xk∥2L ≤ ak[h(u)+ ℓf (u; x̃k)]+

1

2b
∥u−xk∥2L−

1

2b
∥u− x̂k+1∥2L.

Combing the above inequalities, we obtain

Ak+1Eik+1
[Γk+1 + f(yk+1)] ≤ Ak[Γk + f(yk)] + akh(u) + akℓf (u; x̃k) +

1

2b
∥u− xk∥2L − 1

2b
∥u− x̂k+1∥2L

≤ Ak[Γk + f(yk)] + akϕ(u) +
1

2b
∥u− xk∥2L − 1

2b
∥u− x̂k+1∥2L,

where the last inequality follows from the convexity of f and the fact that ϕ = f + h. Taking

u = x∗ in the above inequality, taking the expectation in ξk (i.e., total expectation), and , we have

Ak+1E[Γk+1 + f(yk+1)] ≤ AkE[Γk + f(yk)] + akϕ∗ ++
1

2b
E[∥x∗ − xk∥2L]−

1

2b
E[∥x∗ − x̂k+1∥2L].

This inequality together with Lemma 9(iii) implies that

Ak+1E[Γk+1 + f(yk+1)] ≤ AkE[Γk + f(yk)] + akϕ∗ +
1

2
E[∥x∗ − xk∥2L]−

1

2
E[∥x∗ − xk+1∥2L].

Rearranging terms givs

Ak+1(E[Γk+1 + f(yk+1)]− ϕ∗) +
1

2
E[∥xk+1 − x∗∥2L] ≤ Ak(E[Γk + f(yk)]− ϕ∗) +

1

2
E[∥xk − x∗∥2L].
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It follows from Lemma 7 that

2Ak(E[ϕ(yk)]− ϕ∗) ≤ 2Ak(E[Γk + f(yk)]− ϕ∗)

≤ 2A0([Γ0 + f(y0)]− ϕ∗) + ∥x0 − x∗∥2L
= 2A0(ϕ(y0)− ϕ∗) + ∥x0 − x∗∥2L.

Finally, using Lemma 5 and A0 = 1− 1/b, we conclude that

E[ϕ(yk)]− ϕ∗ ≤
2A0(ϕ(y0)− ϕ∗) + ∥x0 − x∗∥2L

2Ak

≤
4(b2 − b)(ϕ(y0)− ϕ∗) + 2b2∥x0 − x∗∥2L

k2
.

In the case where b = 1, we can recover the result of the standard ACG method, that is,

Theorem 3 becomes the same as Theorem 1 of Lecture 7, i.e.,

Eξk [ϕ(yk)]− ϕ∗ ≤ 2L∥x0 − x∗∥2

k2
.
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