DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 13

Randomized Block Coordinate Descent

Lecturer: Jiaming Liang November 9, 2023

1 Motivation

In this lecture, we discuss methods for solving optimization problems with huge-scale and block-wise
decomposible structure. Since first-order methods with full gradient updates would be computa-
tionally expensive, we are interested in methods that make partial gradient/vector updates, i.e.,
an update in only one block of the full gradient/vector. Methods of this type are called coordinate
descent methods.

1.1 Theoretical justification

The simplest variant of the coordinate descent method is based on a cyclic coordinate search.
However, for this strategy it is difficult to prove convergence, and almost impossible to estimate
the rate of convergence

Another possibility is to move along the direction corresponding to the component of gradient
with maximal absolute value. Consider

min f(z)

where the convex objective function f has component-wise Lipschitz continuous gradient, i.e.,

|Vif (x + he;) = Vif(z)| < MJh|, z€R" heR,i=1,...,n.

Consider the following algorithm.

Algorithm 1 Maximum abosolute value coordinate descent
Input: Initial point g € R"
for £ > 0 do
Step 1. Choose

ix = argmax 1<i<n |Vif (7g)|
Step 2. Update
1
Tpt1 = Tk — lekf (k) €iy -

end for
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It is not difficult to show that

Fw) = @) 2 537 IVad @ 2 o IV (@)

1 2
> — Jx
> s (F o)~ £2)
where R > ||zp — ||, and hence that
2nM R?
flan) —fo <™ k> 0.

k+47 =

Since the maximum absolute value coordinate is needed, this method still requires computation
of the full gradient. However, if this vector is available, it seems better to apply the usual full
gradient methods. It is also important that for convex functions with Lipschitz-continuous gradient,
ie.,

IVf(@) =Vl < Lz —yll, zyeR"
it can happen that M > L.

1.2 Computational complexity

In huge-scale optimization, the computation of full gradient or directional derivative evaluations
is expansive, and even a function value can require substantial computational efforts. Moreover,
some parts of the problem’s data can be distributed in space and in time. The problem’s data may
be only partially available at the moment of evaluating the current test point.

Example.
; — . (z)) Z Az —
min {f(w) > () + 5114z~ b }
where f; are convex differentiable univariate functions, A = (ai,...,a,) € RP*™ and || - || is the

standard Euclidean norm in RP. Then
Vif(@) = £} (29) + {aig(@)), i=1,.m
g(z) = Az —b.

If the residual vector g(x) is already computed, then the computation of i-th directional derivative
requires O (p;) operations, where p; is the number of nonzero elements in vector a;. On the other
hand, the coordinate move x4 = x + ae; results in the following change in the residual:

g9(zy) = 9(x) + aa;.

Therefore, the i-th coordinate step for problem (1.6) needs O (p;) operations. Note that compu-
tation of either the function value, or the whole gradient, or an arbitrary directional derivative
requires O (3" | p;) operations.
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2 Randomized block coordinate descent
Define the partition of the identity matrix
InZ(Uh'”,Ub)GRnxn, UZ'ER"XM, i1=1,---,b.

Thus, any z = (), -+, )T € R” can be represented as
m—ZUm ) e R™, i=1,---,b.

Consider the problem of minimizing a composite convex function:

min {¢(x) := f(z) + h(z)}.

z€R™

Assumptions for f and h:
e h is closed, convex, and separable, i.e., h(x) = Z;’:l hi(z®);

e f is convex and differentiable on dom h and there exists L; > 0 for ¢ = 1,--- ,b such that
Fla+ Ua'® —a )~ [7(@) + (Vaf (2), 'O —20)] < 2O 2O va,o! € domh. (1)

Define the randomized block coordinate descent update as follows:

2@ = argmin o cpn, ((V Flao), u® — 2y 4 hy(u®) + - (|u® — ! > (2)
and ;
ali] = xo + Ui (1 —xg)), i=1--,b. ®

2.1 The method

Now, we are ready to state the randomized block coordinate descent method.

Algorithm 2 Randomized block coordinate descent

Input: Initial point x¢g € domh
for £ > 1 do
Step 1. Generate a random variable iy according to

Prob(iy =i)=p;, i=1,2,---,b.

Step 2. Compute xj by the randomized block coordinate descent update (2) and (3).
end for
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Lemma 1. Applying the block coordinate descent update in the i-th coordinate, we have

o) = ofalil) 2 2+ s (1= Z5% ) 1O (W
where
i = e(alil) = hi(ay) = hi(a®) = (1 = Vif (wo).af) —2®).

Note: ¢; = £(x[i]) is a random variable, and r(*) € R™ is a random vector. They both depend
on the choice of i-th coordinate.

Proof. First note in the i-th block, we have the following equalities to connect the local and global

quantities
(Vif (z0), 2! — 2Dy = (V f(x0), z0 — li]) (5)
hi(z§)) — hi(2®) = h(z) — h(zli]) (6)
(i) — wol|? = g — 2 @2 = A2+ (7)

The optimality condition for (2) is
r® € Vif(xo) + 6hz(m(z)), or r? € Vif(xo) + aszhl($((]l)),
where & = hi(x)) — hi(2?) — (r@) — V(o) 2 — 29).

Hence '
ei = hi(2)) — hi(e®) + (Vi f(x0), ) — D) — Al D]2,

and
i+ AP P = ha(ay) = hi(a®) + (Vif (o), 2 — o).

It follows from (5) and (6) that

gi + Nillr @12 = h(zo) — h(@[i]) + (V f(20), m0 — 2[i])

= (F + W)(@0) ~ h(al]) ~ (f(a0) + (Vf(a0). 2f] — z0)
= (F + (o) ~ h(al]) {5 (afil 20
< (7 Wlao) ~ hGald) ~ (f(ali) — 5 el ol

where the last inequality is due to (1). Then by (7), we have

a+&w@w§w+mmw—mwn—0@m L&u“w)

&+M(1 LA)H@W (f + h)(z0) — ( + B (ali]).
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Definition 1. Define

b
2 DiNi ()12
I = 25 I,

and
° Pidi : PiNi 1y ()12
(lsllz)* = > (== o) (lls @) = Z<T)_ 12,
i=1 i=1
Lemma 2. Chooseing A\; = %i, t=1,---,b, and applying the randomized block coordinate descent,
we have
P(xo) — szgl > ||T||#

Proof. Taking expectation on both sides of (4),
b
$(x0) — E[(x)] = Y pi (d(wo) — d(x[i]))
i=1
’ Li);
> Som (s n (1= 5 ) O sz (s Z100P)

i=1

It follows from the above inequality and Definition 1 that

b b b
DiNi i
d(xo) — Elp(z)] =Y piei+ > ) Ir D)2 =" pies + |Ir]1%-
i=1 i=1 i=1

Lemma 3. )
Blwo) — Bla.) ~ X0y e

[0 — 4[|

Irll4 =

Proof. The optimality condition for (2) is
r® e Vi f(xo) + 0hi(zD), or rD e V,f(x0) + 8Eihi(x((]i)).
From the latter inclusion, we have

hi(ut) > hi(x(()i)) + (rD — Y, f(x0), u — a;(()i)) —&;, Yu e R™.
Taking u® = iL'Sj), we have

hiel) > hi(@§)) + (D = Vi f(20), a8 — &) — e

Randomized Block Coordinate Descent-5



Summation over coordinates gives
b

h(w.) > h(wo) + (r — Vf(20), 2« — x0) — > _ 3.

i=1
Thus, we have

b
(r.a0 — 2.) + 3 & = hzo) — h(z.) — (VS (z0), 7. — z0)
=1

= h(wo) — h(zs) + f(@o) — f(zx)
= @(x0) — d(x4).
Hence, by the above inequality and the Cauchy-Schwarz inequality, we obtain

(20) — $las) = Sy &

[0 — ][

¢
I7ll =

Definition 2. Define

& = {do, i1, -+ sk}
to be the sequence of observed random variables after k iterations, where iy, is the choice of block in
the k-th iteration.

Definition 3. Define the expected values
ok = Eg [o(zr)], &k = Eg, [e(zi)],

and 1
A = O — O, = .
k= Ok — bx, Tk AL
Lemma 4.
Ok — P41 = Eprt,
and

Ap — Apy1 > Ejta-

Proof. Given &, it follows from Lemma 2 that

o

Sak) = By, [6(@ri1)] 2 ) pies = By, [e(wp4)).
=1

Taking the expectation in &, we get

Ok — Pkt1 = Ekt1-

Using Definition 3, we have
Ap — Ag1 > Egt1-
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2.2 Uniform distribution

In this subsection, we consider the uniform distribution of p;’s, where p; = % , =1,---,b. For an it-

eration k > 1,we discuss two cases: ¢(rr)—¢s < 2bE;,  [e(2p41)] and ¢(x
First, we note that in the uniform distribution case,

d(xk) — b — E;y , [e(ht1)] = = Px — bzpz e(Tpy[i

where &; = e(xp11[i]).

Case 1. ¢(xr) — ¢« < 20E;,_ [e(7hy1)]
Taking the expectation in &, then we have

%(Efk [p(zr)] — ¢4) < bE§k+1[€(xk+1)]’

or equivalently,
1 1
iAk = §(¢k — ¢x) < bEgy1-

Proposition 1.
Apy1 < C1Ag,

and
1

>
Tk+1 Z c Tk
whereClzl—%<1.
Proof. Tt follows from (8) and Lemma 4 that
_ 1
Ap — Apy1 > &1 > %Ah
Thus, we have

Apyr < (1 - 2b> A = C1Ay,

and
T < C1Thy1.

Case 2. ¢(x) — ¢x > 20E;,  [e(whq1)]
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Proposition 2.
1

Tht1 — Tk = Yok

where

C =4R* and R = max{ max |2 — 2l - ¢(2) < ¢(x0)}

x Tx€

which is a measure of the size of the level set of ¢ given by xg.
Note: in the uniform distribution case,

b 1/2
rM@=<%§ﬁwwwﬁ .
i=1
Proof. By Lemmas 2 and 3, we have

(9(x0) = b =300y €0)*

(llzo — 4[l3)?

b
¢(x0) — E[p(x)] — me > |Ir]|3 >

For the k-th iteration, that is

(¢(xk) - ¢* - bEik+1 [g(karl)DQ
(lze — zll%)?

(D(zk) = ¢:)° _ (D(xk) — 64)°
Aok — 24llZ)? — ¢ ’

\Y

¢(wk) - Eik+1[¢($k+l)] - EikJrl[E(xk"Fl)] =

>

where the second inequality is due to the assumption that ¢(zy) — ¢« > 20E;, , [e(2r41)] and
the last inequality is due to the definition of C'.

Taking the expectation in & and using the Jensen’s inequality, we obtain

Ee, (¢(zr) — ¢s)? > (o — ¢*)2.

Ok — Pkt1 — Ept1 = o 5

Thus, we have
1
A — Dpp1 > Mg — Apyr — &1 > = (D)%

C
and hence
L Ap — Apq1 > Ap — Agyq >l
Apyr Ayg Al — (Ap)?2 —C7
or equivalently,
1
Thtl — Tk = 6
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Definition 4. Let
1 1
Kt .= {] : §AJ > b§j+1,0§j < k—l}, K™ = {j : iAJ Sb§j+170§j§ k—l}
Theorem 1.

max{4R?, (2b — 1)[p(z0) — ¢+]}
k

Ay <

Proof. Using Propositions 1 and 2, we have

=Y (o) + Y (- 7)

jeEKt JEK—
> K5 4 K| (11)
c c;
> (|K*|+ ]K])min{l,m (1 — 1)}
o\
ok
cr’

where C" = max{C, C1/(m0(1 — C1))}. Therefore, we have

Y )
A, FET0T o= on
and finally
C/
Ap < —.
=k

2.3 Arbitrary distribution

In this subsection, we consider the arbitrary distribution. W.L.O.G., we can assume 0 < p; < py <
- <pp <1, thus

b b b
P1 ;Ei = fél}gbpi ;61‘ < ;pi&; = Ele(x)].
1= 1= 1=

For an iteration & > 1,we discuss two cases: ¢(z) — ¢y < p%IEikH[s(azkH)] and ¢(xg) — dx >
}%Eik+l [6(xk+1)] :

We present the following results without giving their proofs since they are similar to those in
Subsection 2.2.

Case 1. ¢(z) — s < %Eikﬂ [e(zry1)]

Randomized Block Coordinate Descent-9



Proposition 3.

Apy1 < C2Ag.
and
> 1 T
T il
k+1 = 02 k>
where Cy =1 — B < 1.
Case 2. ¢(xy) — ¢ > 2By, [e(wpp1)]
Proposition 4.
1
>
Tk+1 Tk = Ca

where

C =4R?, and R = max{ max ||z — x|y : ¢(x) < gb(:vo)} .

T T € Xy

Theorem 2. )
A, < max{4R?, (2/py = 1)[é(x0) — ¢4}

k
Example. One choice of the non-uniform distribution is for some o > 0,
_ L
bi = S

where S, = 25:1 L¢. In this case, if \; = 1/L;, then

b LOé—l 1/2
Irlly = (Z . HTW) ,

=1

and

b 1/2
lIsll% = (25aZL3_“\IS(i)!!2> -
i=1

3 Dual problem

In this section, we show that the dual of the regularized empirical risk minimization (ERM) prob-
lems associated with linear predictors is in the block-wise decomposible structure .

Let Ay, As,--- , A, be the columns of A € R¥*™ ¢1, ¢, - - , ¢, be a sequence of convex functions
defined on R, and g be a convex function defined on R¢. The goal of regularized ERM with linear
predictors is to solve the following convex optimization problem

minimize,,cpa {P(w) = %Z di(ATw) + )\g(w)} :
i=1
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Reformulated primal problem

o IR
MINIMIZE, cRn yeRd {n z; Gi(yi) + Ag(w) 1y = AZ-TIU} .
i=

Dual function of the reformulated problem is

R GRan¢Z yz +)\g +Zmz
Y "w

—Z [lnf —bi(yi +xzy1:| + lnf Ag( ) — (A$)Tw

Y, €ER N

—Z [— sup yi(—na;) — ¢i(yi)] — A sup wT(iAx) - g(w)

N y,eR weRd
1 1
=S L g — agr(Ra
> i) <A

= )i~ Ag” (g Aw)
=1

n -

where u = nx.
The dual problem is

1 1
maximize,cgn {n Z —¢; (—u;) — )\g*()\nAu)} .

This is equivalent to minimizing

1 & 1
minimize,egn {F(u) = Z o7 (—u;) + )\g*(/\nAu)} .

i=1

The structure of F'(x) matches our general formulation of the composite convex function with
Flw) = 2" (-A Z ) = £ 361 (~u)
)\n — i) n ! ‘

4 Accelerated randomized block coordinate descent

In this section, we develop a variant of the randomized block coordinate descent method that
achieves the acceleration convergence rate O(k~2). For simplicity, we consider the for uniform
distribution.
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Algorithm 3 Accelerated randomized block coordinate descent

Input: Initial point xg € domh. Set yg = x¢ and Ag =1 — %.

for £ > 0 do
Step 1. Generate a random variable ix11 = ¢ uniformly from {1,2,...,b};
Step 2. Compute

ak = Lt 12; 4b2Ak, App1 = Ap +ag, Tp = Aijlyk + Aiilfrk
Step 3. Compute
:U;Zj_l := argmin ;) {(V, f(Zy), ul®d — f;;b + hi(u(i)) a b - wff)H2}7 9)
Tpa1 = Tk + Ui(xgﬁrl — x,(j)),
o =0+ @l - o), (10)

arb
_ 5 U @ ~0)
Ykr1 = T, + Uiy, — 330)-

end for

We first make some basic observations.
Lemma 5.
Apy1 = aib?,  Ap> ——
Proof. The identity follows from the facts that Ax11 = Ax + ar and ay, is the solution of
bQ(I% —ap — A, = 0.
Now, we prove the inequality. It follows from the definition of a; that

1+\/1+4b2Ak \ﬁ

= 2?2 b
thus )
VA 1 1
A A > A+ —— VAL + =] .
k+1 = A + ak kTt b +2b2_ k;+2b
Hence 1
VA1 > VAR + %
Summing this equality over iterations gives
I A k
This concludes the proof. O
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Lemma 6. Define ) = A1 — agb =0, Bi = apb =1 and for k > 1,

/8]27 ZZO,,k—l,
By = B +ay —agb, 1 =k; (11)
ab l=k+1.

Then, for all k > 1, we have
B, >0, 1=01,...,k,

and
k k
> B =Ar A=) B, (12)
1=0 1=0
That is, yi is a convex combination of xg,x1, - ,Tk-

Proof. Since By and 31 are nonnegative. Using an induction argument and (11), it amounts to
prove

By =B +ap —agh>0.

It follows from ﬁ]k‘f = ai_1b that

5,’:+1 = ag_1b+ ap — agb

1
= 7@]{: + P [ak(ak + ak_l) - (a% - ai_l)b]
S {a (ap + ap1) — (App1 — A )1]
- ak+ak_1 k\UE k—1 k+1 k b

af < 4 1>
= — | a Ap—1 — 7 ).
ag + ak—1 F -l b

Since ag = % and {ay} is increasing, we have ay + ax—1 > a1 + ag > 2ap > % and hence ﬁ,’gﬂ > 0.
We now prove (12) by induction. First, it easy to check that (12) holds for k¥ = 1. Assume that
(12) holds for some k > 1. Then, it follows from (11) and the induction hypothesis that

k+1 k-1

I ] k k+1
Z Brr1 = Z Brsr + Bryr + B
1=0

1=0
k—1 k

=2 Bitac=) Bita
1=0 1=0

= Ay +ap = Apyr.
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Moreover, using (11) and the induction hypothesis, we also have

5 1
App1Yr+1 = A <$Ck + —(Tpy1 — $k)>
ab

= Apyr + apxr + apb(Tp41 — xp)

k
!
= Z Brxr + agzyr + apb(xgp41 — o)
=0
k—1

= Z ﬁ]lel‘l + B[ljxk + arxr + akb(xkﬂ — :Ek)
=0
k—1

= Z B;i:vl + (ﬁllj + ag — akb)xk + akbxkﬂ
=0
k—1

_ l k k+1

- Z Bra1%1 + Brp1k + By Tkt
1=0
E+1

!
= Z Br11-
1=0

Lemma 7. Define I'y = h(x¢) and for k > 1,

I, _ ZizoBh(x)
k= A, .

Then, we have
Lk > h(ye), Aps1Tre1 = ATk + ar(1 — b)h(xk) + apbh(zpi1).

Proof. Using the definition of I'y, the second equality in (12), and the convexity of h, we have

a l Zﬁo 51lg$l
ATy = Zﬁkh(ﬂcl) > Agh T = Arh(yx)-
=0

Hence, the inequality holds. Now, we show the identity. Using the definitions of ,6’11€ 41 in (11), we
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have
k+1 k—1

App1lpqr = Zﬁkﬂh 21) =Y Biah(@) + Beah(wr) + BEL (@)

=0

= Z Brh(zy) + [B¢ + ar(1 = b)]h(zy) + arbh(zpi1)

— Z BLh(x;) + ar(1 — b)h(zy) + axbh(zgi1)
=0

= Aply + ap(1 — b)h(zk) + arbh(zpy1).

Lemma 8. Assuming ip+1 = i, then we have

A 1[Ter1 + f(Yrs1)]

<Ak + f(yr)] + ar [(1 = b)h(xk) + bh(zks1)] + arly(o[i]; Tr) + %ka—i-l — x)%,

where
xp[i] = g + bU; <x§€}rl — :):;)) = zf + b(Tpr1 — k).

Proof. For simplicity, we will omit the iteration index k£ and let

et = aprn, gt =yen, 2P =2l o =yl

Observations from step 3 of Algorithm 3

1 ba
+ ~ +1; —
y =2 67( M‘@-erﬂ( [i] — )
and N A “ .
Yy [Z]:FZJJFF%M-
Indeed,
. . ba ) Ay+ax  ba . A
sl =4+ el - ) = 2L 2 ] 2 = Syt e+ b

It follows from the smoothness of f (see (1)) and (10), we have

Pt < F@) + (Vaf @), 50— 39) + ) — 0)?

= Lp(y™[i]; 2) + {Hzﬁ[i] — [
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Using this inequality, Lemma 1, and (15), we obtain

AT[CY + f(y )] = a [(1 = b)h(2) + bh(a[i])]
=AT + A" f(y™T[4])

<AT+ A% (650 + 5t - 317
—AT + A* zf<Ay+“x“];5;)+ Li ||x+[¢]—xu2]
a

=AT + Aly(y; Z) + al(xpi]; )+%Hx+[z}—wH2

AL+ f(y)] + aly(zi]; ) + [l [i] — ||,
where the last inequality follows from the convexity of f.

Lemma 9. Define

. 1/2
A 1 2 b i
Tk+1 = (xl(c-&)-lﬂxl(c—zl"” ’x/(c-i)-l) il = (Z Ly||rt )||2> '
i=1
Then, the following statements hold

() 1
s = argnin s o [0 us) + 1G] + gl

(ii) for any u € R™,
leir =l = o = ull} = Lillai), —u®? = Lifley” = a®];
(i1i) for any u € R™, under total expectation,
2 2 | S 2, 1 2
Elllzkt1 —ullz — llzx —ullz] = EE[Hl’kH —ullz] — EE[H% —ullz];
(iv) let xy, denotes xp[i] when ix1 =i, we have
Bipia[@e] = 1, Eiyyy [(1 = 0)h(ak) + 0h(@ps1)] = A(Z41)-

Proof. (i) This statement immediately follows from (9) and the definition of Zj;.
(ii) and (iii) directly follow from the definitions of Zx; and || - || .
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(iv) Assuming ixy1 = i, then the first identity directly follows from the definition of z[i] in
(14). Using the fact that h(x) = Zi’:l hi(x®), we have

b b
, 1 , 1 ; i b—1 1 .
Bl i) = 3 Do) = 3 30 [ S0 @) + ey | = 2 hw) + phe).
i=1 i=1 \ j#i

Rearranging the above equation and using the definition of z3[i] in (14), we have

E;[bh(2"[i]) — (b — Dh(x)] = h(2).

Theorem 3. ) ) )
4(b* = b)(¢(yo) — ¢*) + 2b%||mg — .||,
k2 '

Proof. Taking the expectation of (13) in ixy; and using Lemma 9, we have

Ee [o(ye)] — ¢ <

. . - 1.
Apr1Bi [Crr + f ()] < Allr + f(y0)] + anfe(@r1) + anly(Trrn; Tn) + 5pllra — k7

It follows form Lemma 9(i) that for any v € domh

. o 1. : 1 1 A
ar[M(@rr1) + Ly (Tp1; Tn)] + 27)“!?6‘k:+1 —ap||7 < aplh(u) + L (u; 3x)] + %llu—xklli - 27)”“_551%1“%-

Combing the above inequalities, we obtain

_ 1 1 .
Ap1Ei o [Trr + fyk1)] < Apx + f(yr)] + aph(u) + aplp(u; Z) + %HU — a7 — llu — Zeall7

2b

1 1 .
< Ap[Tr + f(yi)] + ard(u) + 27)||u — 2|7 — = llu— e 13,

20
where the last inequality follows from the convexity of f and the fact that ¢ = f + h. Taking
u = x, in the above inequality, taking the expectation in § (i.e., total expectation), and , we have

1 1 .
A1 B[Drsr + f(yps)] < AE[Lk + f )] + ands + +5 Bl — A o5 Elllzs — r1|l7].
This inequality together with Lemma 9(iii) implies that
1 1
A1 ELkr1 + f(yer)] < AE[Le + f(ye)] + ands + SE[l|2 — A S Elllz. — 1|l

Rearranging terms givs

Apsa (B[Tgs + Fyps)] = 62) + 5Ellzas — 2ul2) < AETe+ F)] - 62) + 5Ellan - 2l
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It follows from Lemma 7 that

2AL(E[p(yr)] — b) < 24k (E[Tk + f(y)] — bx)
< 240([To + f(10)] — &) + llzo — 2I7
= 240(d(yo) — ) + l|lwo — 2|7

Finally, using Lemma 5 and Ayg = 1 — 1/b, we conclude that

. 2A0(d(yo) — %) + |lwo — .||
Elp(yx)] — ¢* < oA, L

_ A0~ b)(Blyo) — &) + 2w — .}
< d .

O]

In the case where b = 1, we can recover the result of the standard ACG method, that is,
Theorem 3 becomes the same as Theorem 1 of Lecture 7, i.e.,

2L||zo — 242
g, lo()] - ¢ < 27022
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