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Quasi-Newton Methods
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Lecturer: Jiaming Liang November 21, 2024

1 Proximal point method

We are interested in solving

min{6(x) = f(z) + h(z)}
e h is closed and convex;
e f is closed and convex, domh C dom f;

e the optimal set X, is nonempty.

Algorithm 1 Proximal point method

Input: Initial point x¢p € dom h and constant stepsize A > 0
for £k > 0 do

Solve j11 = argmin yepn{d(z) + 55 ||z — 2]}
end for

Theorem 1.

1 2
b < _
d(xp) — dx < 2)\]{;\\300 T |

Proof. Tt follows from the optimality of x;1 that for every x € dom h,

8(w) + 5xlle = ol 2 dlanen) + 5llanis — ol + o5 e = awenl
Taking x = zj, we have
Bew) 2 Oennn) + yllews — al?
and hence this is a descent method. Taking x = z,, we have
but gl =l > 0(wnen) + 5 o — el + 5 s —
2) 2 2A

Rearranging the above inequality, we obtain

1 1
Bakan) = b < o5 llan — mull? = llowsn — @l
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Summing the resulting inequality and using the descent property, we have

[

k
1 1
k[o( <D b)) = 6] < o llwo = @llP = o lon — w® < oo —
o 2 2 2

Therefore, the conclusion of the theorem follows. O

2 Inexact proximal point framework

The proximal point method is more conceptual than practical. In practice, we usually design
algorithms to approximate the solution zj,1 to the proximal subproblem. Algorithms solving the
proximal subproblem approximately can be described and analyzed under the inexact proximal
point (IPP) framework.

2.1 Algorithm

Algorithm 2 Inexact proximal point framework

Input: Initial point zyp € dom h and scalar o € (0, 1]
for £k > 1 do

Step 1. Choose A, > 0 and 6§ > 0.

Step 2. Compute (z, Tk, £r) such that

w S 8€k¢(£’k’)a (1)
k

|k — Zx||® + 2 ek < ol|Ek — zp—1|® + O (2)

end for

The inclusion (1) in the IPP framework means

Tp — o

1
o= P € 0, (60)+ o) ()

In contrast to the PPM, the above inclusion provides two relaxations vy and €. If both 7 = 0
(i.e., Tx, = ) and g, = 0, then

1

02960+ 511 —ral?) (),

i.e., the proximal problem is solved exactly
. 1 2
T = argmin yepn § ¢(x) + " — ||z — xg—1]|
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Moreover, the inequality (2) is automatically satisfied
ka — .kaQ =+ 2)\k5k = H@k”Q =+ 2)\k5k =0< JHi'k — .%'k,1H2 + 5k

Hence, the IPP framework becomes the PPM.

2.2 Proximal gradient method as an example

In this subsection, we assume f is L-smooth, then we show that the proximal gradient (PG) method
with stepsize A; < /L for some o € (0, 1] is an instance of the IPP framework. We begin with an
iteration of the PG method

. 1
x) = argmin {Ef(x; xp—1) + h(z) + KHJE — $k1H2} . (3)
TzER™ k

The optimality condition is
Tkp—1 — Tk

\ € 00y (s xp—1) + h(-)|(xk),
k

which means for every x € dom h,
¢(x) = Ly(w; xp—1) + h(2)

1
> lp(xp; xp—1) + h(zr) + 7k<l’k—1 — Tk, T — Tg)

1
= ¢(zg) + r(xk—l — Tg, T — Tp) — €k
k
where the first inequality is due to the convexity of f and ¢ is defined as
Ek = f(xk) - Ef(:ck; xk—l)-
Hence, PG satisfies the inclusion (1) of IPP with
Tp =g, ek = f(xx) —lp(xp;Tp-1), O = 0.

Moreover, it follows from the assumption that f is L-smooth that

L L, . o .
er = for) — Lp(mpimp—t) < S lloe — ap—1ll” = S1Z — o1 ® < 5 13 — 21|
2 2 2k
Hence, the inequality (2) of IPP is also satisfied. Now, we have shown PG is an instance of IPP.
Next, let us show the convergence of PG using the general convergence guarantee of IPP. It

follows from (3) and L-smoothness of f that

1
d(xp—1) > Ly(rp; op—1) + h(xk) + rkak —zp1|?

1 L
> ofon) + (3~ 5 ) low = P
2—0 9 1 9
> ¢(zy) + " |2k — 2p-1]" > d(zk) + ﬂHﬂck — o1
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where the second last inequality is due to A\ < o/L and the last inequality is due to o < 1.

Other examples

For simplicity, we consider the case h = 0 and f is differentiable. The examples below could be
extended to the versions with h.

(1) if f is p-strongly convex, approximating f by {;(z;zx_1) + &z — zx_1]/?, then

- ) 1
T = x), = argmin {Ef(:n;:ck_l) + ng — xk_lHQ + — " lx — zp_ 1” }
rER™
Ak

14 Agp

= Tk—-1 —

Vf(zK-1);
(2) the extragradient method: approximating f by ¢s(x;xy—1) and £f(x; &), then

T = argmin {Ef(fﬂ;wk—ﬂ * o |z — 2 |? } = Tg-1 — MV f(Tr-1),
reR™

x) = argmin {Ef(a;;i*k) + o |z — 2p_1]? } =xp_1 — NV I(Zk);
T€R"

(3) Newton’s method: if f is twice differentiable, approximating f by

1
a5 (@ 2p—1) = Ep (@3 25-1) + Sl — Th1 %02y
and removing the quadratic term form (3), then

Ty = al“gr]gin gr(zsop 1) = 2p1 — [V2F (1)) V(zp1);
reR™

(4) regularized Newton’s method: if f is twice differentiable, approximating f by qr(x;xr_1),

then

) 1 2
x), = argmin < qr(x;Tp—1) + " — ||z — z_1]|
rER?

1
= Tp_1 — [VZf(l“k—l) /\kf} Vi(rr-1)
= 21 — [MVEf(zpo1) + 1] MV S (2p);

if we consider ¢ = f + h, then the regularized Newton’s method generalizes to the proximal
Newton’s method;
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(5) Newton proximal extragradient: if f is twice differentiable, approximating f by q(z;xx—1)
and lf(x; Zy), then

- . 1 _1
T = argrﬂgm {qf(x;mkl) o — ||z — 21| } =Ty — [)\kvzf(:rk,l) + I] MNeVf(zg—1),
TER™

. - 1 -

xp = argmin § (2 2g) + ||z — xp— 1|| =xk_1 — MV [(Z);
JEGR"’ 2)\

if we consider ¢ = f + h, then the regularized Newton’s method generalizes to the proximal

Newton’s method;

(6) quasi Newton proximal extragradient: if f is twice differentiable and p-strongly convex,
approximating f by

5 1
Gp(x;ap—1) = Ly(2;28-1) + §H$ — zp-1llB,

and £y (z; @) + & |lv — zp—1]/?, then

. - 1 2
T), = argmin < Gp(x; rp—1) + " — ||z — x—1]|
TER?

= Tp—-1 — [AkBk + I] )\ka(.%']gfl),

T}, = argmin {Kf(a:;ik)—i-ng—xkﬂP—i- o |z — xp_ 1H2}
TER?
1 - Akt
= — |1 — MV f(Zp)] + .
1+>\ku[’“ KV (Te) 1+ A\ept

3 Quasi Newton proximal extragradient

Consider mingecgn f(z) where f is closed, convex, p-strongly convex and Li-smooth, and assume
that V2f is Lo-Lipschitz continuous, i.e.,

IV2f(2) = V2l < Lallz —yll, Yo,y €R™
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Algorithm 3 Quasi Newton proximal extragradient

Input: Initial point zo € R™, scalars oy € [0,1), ag € (0, 1) satisfying ay + ao < 1
for £k > 1 do
Step 1. Given By, and xj_1, find the stepsize A\, and Z; such that

|2k — xp—1 + M (Vf(2p-1) + Bi(Tr — 25-1)) || < oal|Zk — zp—1]],
M|V f(2r) = Vf(zp—1) — Br(@r — 1) < col|Tp — 2p—1]];

(5)
Step 2. Set
1 - At .
= 1=V ; 6
Ty 1+)\W[wk 1= M V(@) + L (6)
Step 3. Update Bj1 using a subroutine.
end for

Proposition 1. Let {x} be the iterates generated by Algorithm 3 then we have for every k > 1,

2 Jwe—1 — 2)?
Tp — T < Y———
o — | < AL
Proof. To begin with, using the triangle inequality and conditions (4) and (5), we have
2k — 2p—1 + MV f(Z) ]

(7)

<@k — k1 + e (Vf(wp—1) + Br(Tr — 25-1)) | + Ml VF(@k) — VF(2r-1) — Be(@k — 25-1) ||
<(o1 + )Tk — x|l = | T — 2]l

It is easy to observe that

(8)
L. 1 1 - 1, .
(wh—1 = g B — ) = Sllog—r — zl* = Slap-1 — Bl” — 12 — =] (9)
2 2 2
Using the Cauchy-Schwarz inequality and (8) and (9), we have for every = € R",
Me(Vf(Zr), & — x

) = (Tk — xp—1 + MV F(ZR), T — ) + (-1 — Tk, Tpp — )
<@k — 21 + M V(@) Tk — 2l + (Zh—1 — T, Th — @)

- - 1 1 . 1 .
<all@y = zpalllde -2+ Sllea =2 = Sllana = Bl = Sl - 2]
1 1-— 1-—
< Sllanmr — o2 = =5 ey — 32 - 5=
It follows from (6) that for every x € R,

1Z5 — .

(10)

)\k<Vf(.f‘k), Tl — .CI?> = <JL‘]€,1 — Ty T — l’> + >\k/l<£’k — Tk, T — iL'>
1 1 14+ App
=5 llzies =2 = Sl — 2l -

Akt - Ak
|z — z||* + THﬂfk —z|?
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Combining (10) with z = z;, and (11) with = ., we obtain

MV (@), T — 24) = MV f(Th), T — ) + MV [ (T1), Tk — )

1- 1 14 A
< Dot = wlP + gl -zl = Ty — a2
)\k,u l—« )\k,u 5

Since f is p-strongly convex, it follows from Lemma 4 of Lecture 3 that

(Vf(@r), Tk — 2:) = (Vf (@) = VF(a), Tk — 22) > pll@e — 2%

Applying the above inequality to the left-hand side of (12), we have

14+ M 1 1—a 5 1l—a M 5
Bllan = aal? < S llan-1 — 2 - ||:ck_1xk||2( + 258 17k —

2 2 2 2

1 9 1l—a
< Slop1 — xs]|? —
< Sllono -zl - =

-1 — Tl
Hence, (7) immediately follows. O
Lemma 1. For every k > 1, A\, > 1/(8Ly).

Theorem 2. Under mild conditions, we have for every k > 1

|zr — | < +>_1'
lTr—1 — x| — 8Ly ’

2k — 24|

(a) linear convergence

(b) superlinear convergence

lim ——— =0;
k—ro0 ka 1 — m*H
moreover, for every k > 1
—k
[l — | 3 k
o — x| ~ 1677| 12 4 36]| By — V2 ()] + (27 + %) L2]|zo — 4|2

Proof. (a) This case immediately follows from Proposition 1 and Lemma 1.
(b) Noting that x + log(1 + 2~!) is convex, using the Jensen’s inequality and the Cauchy-
Schwarz inequality, we have

e B R
Tp — Tx Tj — Tx

< [Ty e a—
[0 ] = anu—x*u 1575 < ( Zi-%l/A%)
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To obtain the superlinear convergence of QNPE, it suffices to bound Zle 1/ )\22. A technical result
shows that

k 2
1 1 1 Hyl — stz”
) S + )
Zizl N (=p)ag (182 a3p? 2 Is:”

v 1€B

where y; = Vf(2;) — Vf(xr—1) and s; = ; — x;—1. Indeed, defining the loss function at iteration k

0, if k ¢ B

lly—Bs|”
2lsil*

U (B) =
+(B) otherwise,

then the process of finding By can be viewed as an online optimization problem. Hence, the
subroutine step 3 can be any online optimization method, e.g., FTRL. The bound on Zle 1/)? is
controlled by the regret bound of FTRL. We skipped the details here and recommend the interested
readers to refer to the paper “Online Learning Guided Curvature Approximation: A Quasi-Newton
Method with Global Non-Asymptotic Superlinear Convergence”. O
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