1 Relative smoothness and relative strong convexity

There are many differentiable convex functions in practice that do not satisfy a uniform smoothness condition, e.g., the D-optimal design problem. Given a matrix $H \in \mathbb{R}^{m \times n}$ of rank m, where $n \geq m+1$, the D-optimal design problem is

$$
\min _{x \in \Delta_{n}}\left\{f(x):=-\ln \operatorname{det}\left(H X H^{\top}\right)\right\}
$$

where $X=\operatorname{Diag}(x)$. In statistics, the D -optimal design problem corresponds to maximizing the determinant of the Fisher information matrix $\mathbb{E}\left[H H^{\top}\right]$. In computational geometry, D-optimal design arises as a Lagrangian dual problem of the minimum volume covering ellipsoid problem.

We are interested in solving a constrained problem

$$
\min _{x \in Q} f(x)
$$

where f is closed and convex and Q is a closed and convex set. We do not assume that f is uniformly smooth or strongly convex, but instead we resort to the following notions of relative smoothness and strong convexity.

Definition 1. We say f is L-smooth relative to h on Q if for any $x, y \in \operatorname{int} Q$, there is a scalar L for which

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+L D_{h}(y, x),
$$

where D_{h} is the Bregman divergence of h.
Definition 2. We say f is μ-strongly convex relative to h on Q if for any $x, y \in \operatorname{int} Q$, there is a scalar $\mu \geq 0$ for which

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\mu D_{h}(y, x) .
$$

Note that h does not need to strongly nor strictly convex. We refer to h as the reference function.

In the case when both f and h are twice differentiable, f is both μ-strongly convex and L-smooth relative to h can be written as

$$
\mu \nabla^{2} h(x) \preceq \nabla^{2} f(x) \preceq L \nabla^{2} h(x) \text { for all } x \in \operatorname{int} Q .
$$

Lemma 1. The following conditions are equivalent:
(a) $f(\cdot)$ is L-smooth relative to $h(\cdot)$;
(b) $L h(\cdot)-f(\cdot)$ is a convex function on Q;
(c) under twice differentiability $\nabla^{2} f(x) \preceq L \nabla^{2} h(x)$ for any $x \in \operatorname{int} Q$;
(d) $\langle\nabla f(x)-\nabla f(y), x-y\rangle \leq L\langle\nabla h(x)-\nabla h(y), x-y\rangle$ for all $x, y \in \operatorname{int} Q$.

Lemma 2. The following conditions are equivalent:
(a) $f(\cdot)$ is μ-strongly convex relative to $h(\cdot)$;
(b) $f(\cdot)-\mu h(\cdot)$ is a convex function on Q;
(c) under twice differentiability $\nabla^{2} f(x) \succeq \mu \nabla^{2} h(x)$ for any $x \in$ int Q;
(d) $\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\langle\nabla h(x)-\nabla h(y), x-y\rangle$ for all $x, y \in \operatorname{int} Q$.

Example 1. Suppose that f is a twice-differentiable convex function on $Q:=\mathbb{R}^{n}$ and let $\left\|\nabla^{2} f(x)\right\|$ denote the operator norm of $\nabla^{2} f(x)$ with respect to the ℓ_{2}-norm on \mathbb{R}^{n}. Suppose that $\left\|\nabla^{2} f(x)\right\| \leq$ $p_{r}\left(\|x\|_{2}\right)$ where $p_{r}(\alpha)=\sum_{i=0}^{r} a_{i} \alpha^{i}$ is an r-degree polynomial of α. Let

$$
h(x):=\frac{1}{r+2}\|x\|_{2}^{r+2}+\frac{1}{2}\|x\|_{2}^{2} .
$$

Then the following lemma shows that f is L-smooth relative to h with a certain L.
Lemma 3. Let L be such that $p_{r}(\alpha) \leq L\left(1+\alpha^{r}\right)$ for $\alpha \geq 0$. Then f is L-smooth relative to h.
Proof. Calculation gives the gradient of h

$$
\nabla h(x)=\|x\|^{r+1} \frac{x}{\|x\|}+x=\|x\|^{r} x+x
$$

and its Hessian

$$
\begin{aligned}
\nabla^{2} h(x) & =\|x\|^{r} I+x r\|x\|^{r-1} \frac{x^{\top}}{\|x\|}+I=\left(1+\|x\|^{r}\right) I+r\|x\|^{r-2} x x^{\top} \\
& \succeq\left(1+\|x\|^{r}\right) I \succeq \frac{1}{L} p_{r}(\|x\|) I \succeq \frac{1}{L} \nabla^{2} f(x),
\end{aligned}
$$

where the last two relations follow from the assumptions on f and p_{r}. So, f is L-smooth relative to h by Lemma 1(c).

Optimization in Relative Scale-2

Example 2. D-optimal design In this case, we choose h to be the logarithmic barrier function, namely,

$$
h(x):=-\sum_{j=1}^{n} \ln \left(x_{j}\right)
$$

defined on the positive orthant \mathbb{R}_{++}.
Lemma 4. The f in D-optimal design is 1 -smooth relative to h on \mathbb{R}_{++}.
Proof. The gradient and Hessian of h are

$$
\nabla f(x)=\operatorname{diag}(-C), \quad C=H^{\top}\left(H X H^{\top}\right)^{-1} H,
$$

and

$$
\nabla^{2} f(x)=C \circ C
$$

where \circ denotes the Hadamard product. Let $U=H X^{1 / 2}$, then

$$
U^{\top}\left(U U^{\top}\right)^{-1} U \preceq I
$$

since the left side of this matrix inequality is a projection operator. Then, we have

$$
X^{\frac{1}{2}} H^{\top}\left(H X H^{\top}\right)^{-1} H X^{\frac{1}{2}} \preceq I .
$$

Multiplying this matrix inequality on the left and right by $X^{-\frac{1}{2}}$, then we have

$$
C \preceq X^{-1} .
$$

Moreover, we get

$$
\nabla^{2} f(x)=C \circ C \preceq C \circ X^{-1} \preceq X^{-1} \circ X^{-1}=X^{-2}=\nabla^{2} h(x)
$$

where the first and the second matrix inequalities above follows from the fact that $C \preceq X^{-1}$ and the Hadamard product of two symmetric positive semidefinite matrices is also a symmetric positive semidefinite matrix. The result then follows using Lemma 1(c).

2 Algorithms

2.1 Primal gradient method

```
Algorithm 1 Primal gradient method with reference \(h\)
    Input: Initial point \(x_{0} \in Q, L\) and \(h\) satisfying Definition 1 be given
    for \(k \geq 0\) do
        Compute \(x_{k+1}=\operatorname{argmin}_{x \in Q}\left\{\ell_{f}\left(x ; x_{k}\right)+L D_{h}\left(x, x_{k}\right)\right\}\).
    end for
```

The following lemma is a stronger version of the three-points lemma.

Lemma 5. Suppose ϕ is convex and let

$$
z^{+}:=\arg \min _{x \in Q}\left\{\phi(x)+D_{h}(x, z)\right\},
$$

then for all $x \in Q$

$$
\phi(x)+D_{h}(x, z) \geq \phi\left(z^{+}\right)+D_{h}\left(z^{+}, z\right)+D_{h}\left(x, z^{+}\right) .
$$

Theorem 1. If f is L-smooth and μ-strongly convex ralative to h, then $\left\{x_{k}\right\}$ generated by the primal gradient method satisfies

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq \frac{\mu D_{h}\left(x_{*}, x_{0}\right)}{\left(1+\frac{\mu}{L-\mu}\right)^{k}-1} \leq \frac{L-\mu}{k} D_{h}\left(x_{*}, x_{0}\right) .
$$

Proof. It follows from Definitions 1 and 2 that

$$
\begin{aligned}
f\left(x_{k}\right) & \leq f\left(x_{k-1}\right)+\left\langle\nabla f\left(x_{k-1}\right), x_{k}-x_{k-1}\right\rangle+L D_{h}\left(x_{k}, x_{k-1}\right) \\
& \leq f\left(x_{k-1}\right)+\left\langle\nabla f\left(x_{k-1}\right), x-x_{k-1}\right\rangle+L D_{h}\left(x, x_{k-1}\right)-L D_{h}\left(x, x_{k}\right) \\
& \leq f(x)+(L-\mu) D_{h}\left(x, x_{k-1}\right)-L D_{h}\left(x, x_{k}\right) .
\end{aligned}
$$

Taking $x=x_{k-1}$ in the above inequality, we know $\left\{f\left(x_{k}\right)\right\}$ is monotone. Multiplying $\left(\frac{L}{L-\mu}\right)^{i}$ to the above inequality and summing, we have

$$
\sum_{i=1}^{k}\left(\frac{L}{L-\mu}\right)^{i} f\left(x_{i}\right) \leq \sum_{i=1}^{k}\left(\frac{L}{L-\mu}\right)^{i} f(x)+L D_{h}\left(x, x_{0}\right)-\left(\frac{L}{L-\mu}\right)^{k} L D_{h}\left(x, x_{k}\right)
$$

and thus

$$
\left(\sum_{i=1}^{k}\left(\frac{L}{L-\mu}\right)^{i}\right)\left(f\left(x_{k}\right)-f(x)\right) \leq L D_{h}\left(x, x_{0}\right)-\left(\frac{L}{L-\mu}\right)^{k} L D_{h}\left(x, x_{k}\right) \leq L D_{h}\left(x, x_{0}\right)
$$

It follows from the monotonicity of $\left\{f\left(x_{k}\right)\right\}$ that

$$
f\left(x_{k}\right)-f(x) \leq \frac{\mu D_{h}\left(x, x_{0}\right)}{\left(1+\frac{\mu}{L-\mu}\right)^{k}-1}
$$

The first inequality of the theorem follows from the above inequality with $x=x_{*}$ and the second inequality holds by simple algebra.

Example 1 continued. A key step in Algorithm 1 is to solve the subproblem with D_{h}. We know specify how to solve it in Example 1. The subproblem can be abstracted as

$$
\min _{x \in \mathbb{R}^{n}}\langle c, x\rangle+\frac{1}{r+2}\|x\|_{2}^{r+2}+\frac{1}{2}\|x\|^{2} .
$$

Optimization in Relative Scale-4

Its first-order optimality condition is

$$
c+\left(1+\|x\|_{2}^{r}\right) x=0 .
$$

Clearly, we know $x=-\theta c$ for some $\theta \geq 0$, and it remains to simply determine the value of the nonnegative scalar θ. If $c=0$, then $x=0$ satisfies the optimality conditions. For $c \neq 0$, notice from above that θ must satisfy

$$
1-\theta-\|c\|_{2}^{r} \cdot \theta^{r+1}=0,
$$

which is a univariate polynomial in θ with a unique positive root.
Example 2 continued. The subproblem in D-optimal design is

$$
\min _{x \in \Delta_{n}}\langle c, x\rangle-\sum_{j=1}^{n} \ln \left(x_{j}\right),
$$

and its optimality condition is

$$
x \geq 0, \quad \sum_{j=1}^{n} x_{j}=1, \quad c-X^{-1} \mathbf{1}=-\theta \mathbf{1},
$$

where θ is the lagrange multiplier. We thus have

$$
x_{j}=\frac{1}{c_{j}+\theta}
$$

and can solve

$$
\sum_{j=1}^{n} \frac{1}{c_{j}+\theta}-1=0
$$

for θ.

2.2 Dual averaging method

```
Algorithm 2 Dual averaging method with reference \(h\)
    Input: Initial point \(x_{0}=\operatorname{argmin}_{x \in Q} h(x), L, \mu\) and \(h\) satisfying Definitions 1 and 2 be given
    for \(k \geq 0\) do
        Compute \(a_{k+1}=\frac{1}{L-\mu}\left(\frac{L}{L-\mu}\right)^{k}\) and
            \(x_{k+1}=\operatorname{argmin}_{x \in Q}\left\{h(x)+\sum_{i=0}^{k} a_{i+1}\left(f\left(x^{i}\right)+\left\langle\nabla f\left(x^{i}\right), x-x_{i}\right\rangle+\mu D_{h}\left(x, x_{i}\right)\right)\right\}\).
    end for
```

Theorem 2. If f is L-smooth and μ-strongly convex ralative to h, then $\left\{x_{k}\right\}$ generated by the dual averaging method satisfies

$$
\min _{1 \leq i \leq k} f\left(x_{i}\right)-f\left(x_{*}\right) \leq \frac{\mu\left[h\left(x_{*}\right)-h\left(x_{0}\right)\right]}{\left(1+\frac{\mu}{L-\mu}\right)^{k}-1} \leq \frac{L-\mu}{k}\left[h\left(x_{*}\right)-h\left(x_{0}\right)\right] .
$$

Proof. We first define $\psi_{0}(x)=h(x)$ and for $k \geq 1$,

$$
\psi_{k}(x):=h(x)+\sum_{i=0}^{k-1} a_{i+1}\left(f\left(x_{i}\right)+\left\langle\nabla f\left(x_{i}\right), x-x_{i}\right\rangle+\mu D_{h}\left(x, x_{i}\right)\right)
$$

and $\psi_{k}^{*}:=\min _{x \in Q} \psi_{k}(x)$. Thus, we have $x_{k}=\arg \min _{x \in Q} \psi_{k}(x)$ and $\psi_{k}\left(x_{k}\right)=\psi_{k}^{*}$. It follows from the above definition and the relative strong convexity that

$$
\begin{equation*}
\psi_{k}^{*} \leq h(x)+A_{k} f(x) \tag{1}
\end{equation*}
$$

where

$$
A_{k}:=\sum_{i=0}^{k-1} a_{i+1}=\frac{1}{\mu}\left[\left(1+\frac{\mu}{L-\mu}\right)^{k}-1\right] .
$$

Observe that the function ψ_{k} is a sum of a linear function and the reference function h multiplied by the coefficient $1+\mu A_{k}$. Therefore $\left(1+\mu A_{k}\right) h$ and ψ_{k} define the same Bregman distance, i.e., for any $x \in Q$ it holds that

$$
\left(1+\mu A_{k}\right) D_{h}\left(x, x_{k}\right)=D_{\psi_{k}}\left(x, x_{k}\right)=\psi_{k}(x)-\psi_{k}\left(x_{k}\right)-\left\langle\nabla \psi_{k}\left(x_{k}\right), x-x_{k}\right\rangle \leq \psi_{k}(x)-\psi_{k}^{*} .
$$

The above inequality with $x=x_{k+1}$ and the definition of ψ_{k+1} imply that

$$
\begin{aligned}
& \psi_{k+1}^{*} \\
& =\psi_{k+1}\left(x_{k+1}\right) \\
& =\psi_{k}\left(x_{k+1}\right)+a_{k+1}\left(f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\mu D_{h}\left(x_{k+1}, x_{k}\right)\right) \\
& \geq \psi_{k}^{*}+a_{k+1}\left(f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\left(\mu+\frac{1}{a_{k+1}}\left(1+\mu A_{k}\right)\right) D_{h}\left(x_{k+1}, x_{k}\right)\right) .
\end{aligned}
$$

Using the fact that

$$
\mu+\frac{1}{a_{k+1}}\left(1+\mu A_{k}\right)=\frac{1+\mu A_{k+1}}{a_{k+1}}=\frac{1}{a_{k+1}}\left(\frac{L}{L-\mu}\right)^{k+1}=L
$$

and the relative smoothness of f, we obtain for $k \geq 0$,

$$
\psi_{k+1}^{*} \geq \psi_{k}^{*}+a_{k+1} f\left(x_{k+1}\right)
$$

Summing up and using (1), we obtain

$$
\sum_{i=0}^{k-1} a_{i+1} f\left(x_{i+1}\right) \leq \psi_{k}^{*}-h\left(x_{0}\right) \leq h(x)+A_{k} f(x)-h\left(x_{0}\right)
$$

The conclusions of the theorem immediately follow.

