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1 Relative smoothness and relative strong convexity

There are many differentiable convex functions in practice that do not satisfy a uniform smoothness

condition, e.g., the D-optimal design problem. Given a matrix H ∈ Rm×n of rank m, where

n ≥ m+ 1, the D-optimal design problem is

min
x∈∆n

{
f(x) := − ln det

(
HXH⊤

)}
where X = Diag(x). In statistics, the D-optimal design problem corresponds to maximizing the

determinant of the Fisher information matrix E[HH⊤]. In computational geometry, D-optimal

design arises as a Lagrangian dual problem of the minimum volume covering ellipsoid problem.

We are interested in solving a constrained problem

min
x∈Q

f(x),

where f is closed and convex and Q is a closed and convex set. We do not assume that f is uniformly

smooth or strongly convex, but instead we resort to the following notions of relative smoothness

and strong convexity.

Definition 1. We say f is L-smooth relative to h on Q if for any x, y ∈ intQ, there is a scalar L

for which

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ LDh(y, x),

where Dh is the Bregman divergence of h.

Definition 2. We say f is µ-strongly convex relative to h on Q if for any x, y ∈ intQ, there is a

scalar µ ≥ 0 for which

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µDh(y, x).

Note that h does not need to strongly nor strictly convex. We refer to h as the reference

function.

In the case when both f and h are twice differentiable, f is both µ-strongly convex and L-smooth

relative to h can be written as

µ∇2h(x) ⪯ ∇2f(x) ⪯ L∇2h(x) for all x ∈ intQ.
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Lemma 1. The following conditions are equivalent:

(a) f(·) is L-smooth relative to h(·);

(b) Lh(·)− f(·) is a convex function on Q;

(c) under twice differentiability ∇2f(x) ⪯ L∇2h(x) for any x ∈ intQ;

(d) ⟨∇f(x)−∇f(y), x− y⟩ ≤ L⟨∇h(x)−∇h(y), x− y⟩ for all x, y ∈ intQ.

Lemma 2. The following conditions are equivalent:

(a) f(·) is µ-strongly convex relative to h(·);

(b) f(·)− µh(·) is a convex function on Q;

(c) under twice differentiability ∇2f(x) ⪰ µ∇2h(x) for any x ∈ int Q;

(d) ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ⟨∇h(x)−∇h(y), x− y⟩ for all x, y ∈ intQ.

Example 1. Suppose that f is a twice-differentiable convex function on Q := Rn and let
∥∥∇2f(x)

∥∥
denote the operator norm of ∇2f(x) with respect to the ℓ2-norm on Rn. Suppose that

∥∥∇2f(x)
∥∥ ≤

pr (∥x∥2) where pr(α) =
∑r

i=0 aiα
i is an r-degree polynomial of α. Let

h(x) :=
1

r + 2
∥x∥r+2

2 +
1

2
∥x∥22.

Then the following lemma shows that f is L-smooth relative to h with a certain L.

Lemma 3. Let L be such that pr(α) ≤ L (1 + αr) for α ≥ 0. Then f is L-smooth relative to h.

Proof. Calculation gives the gradient of h

∇h(x) = ∥x∥r+1 x

∥x∥
+ x = ∥x∥rx+ x,

and its Hessian

∇2h(x) = ∥x∥rI + xr∥x∥r−1 x
⊤

∥x∥
+ I = (1 + ∥x∥r)I + r∥x∥r−2xx⊤

⪰ (1 + ∥x∥r)I ⪰ 1

L
pr(∥x∥)I ⪰ 1

L
∇2f(x),

where the last two relations follow from the assumptions on f and pr. So, f is L-smooth relative

to h by Lemma 1(c).
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Example 2. D-optimal design In this case, we choose h to be the logarithmic barrier function,

namely,

h(x) := −
n∑
j=1

ln (xj)

defined on the positive orthant R++.

Lemma 4. The f in D-optimal design is 1-smooth relative to h on R++.

Proof. The gradient and Hessian of h are

∇f(x) = diag(−C), C = H⊤(HXH⊤)−1H,

and

∇2f(x) = C ◦ C

where ◦ denotes the Hadamard product. Let U = HX1/2, then

U⊤(UU⊤)−1U ⪯ I

since the left side of this matrix inequality is a projection operator. Then, we have

X
1
2H⊤

(
HXH⊤

)−1
HX

1
2 ⪯ I.

Multiplying this matrix inequality on the left and right by X− 1
2 , then we have

C ⪯ X−1.

Moreover, we get

∇2f(x) = C ◦ C ⪯ C ◦X−1 ⪯ X−1 ◦X−1 = X−2 = ∇2h(x)

where the first and the second matrix inequalities above follows from the fact that C ⪯ X−1 and

the Hadamard product of two symmetric positive semidefinite matrices is also a symmetric positive

semidefinite matrix. The result then follows using Lemma 1(c).

2 Algorithms

2.1 Primal gradient method

Algorithm 1 Primal gradient method with reference h

Input: Initial point x0 ∈ Q, L and h satisfying Definition 1 be given

for k ≥ 0 do

Compute xk+1 = argmin x∈Q{ℓf (x;xk) + LDh(x, xk)}.
end for

The following lemma is a stronger version of the three-points lemma.
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Lemma 5. Suppose ϕ is convex and let

z+ := argmin
x∈Q

{ϕ(x) +Dh(x, z)} ,

then for all x ∈ Q

ϕ(x) +Dh(x, z) ≥ ϕ
(
z+
)
+Dh

(
z+, z

)
+Dh

(
x, z+

)
.

Theorem 1. If f is L-smooth and µ-strongly convex ralative to h, then {xk} generated by the

primal gradient method satisfies

f (xk)− f(x∗) ≤
µDh (x∗, x0)(
1 + µ

L−µ

)k
− 1

≤ L− µ

k
Dh (x∗, x0) .

Proof. It follows from Definitions 1 and 2 that

f (xk) ≤ f (xk−1) + ⟨∇f (xk−1) , xk − xk−1⟩+ LDh (xk, xk−1)

≤ f (xk−1) + ⟨∇f (xk−1) , x− xk−1⟩+ LDh (x, xk−1)− LDh (x, xk)

≤ f(x) + (L− µ)Dh (x, xk−1)− LDh (x, xk) .

Taking x = xk−1 in the above inequality, we know {f(xk)} is monotone. Multiplying
(

L
L−µ

)i
to

the above inequality and summing, we have

k∑
i=1

(
L

L− µ

)i
f (xi) ≤

k∑
i=1

(
L

L− µ

)i
f(x) + LDh (x, x0)−

(
L

L− µ

)k
LDh (x, xk) ,

and thus(
k∑
i=1

(
L

L− µ

)i)
(f (xk)− f(x)) ≤ LDh (x, x0)−

(
L

L− µ

)k
LDh (x, xk) ≤ LDh (x, x0) .

It follows from the monotonicity of {f(xk)} that

f (xk)− f(x) ≤ µDh (x, x0)(
1 + µ

L−µ

)k
− 1

.

The first inequality of the theorem follows from the above inequality with x = x∗ and the second

inequality holds by simple algebra.

Example 1 continued. A key step in Algorithm 1 is to solve the subproblem with Dh. We know

specify how to solve it in Example 1. The subproblem can be abstracted as

min
x∈Rn

⟨c, x⟩+ 1

r + 2
∥x∥r+2

2 +
1

2
∥x∥2.
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Its first-order optimality condition is

c+ (1 + ∥x∥r2)x = 0.

Clearly, we know x = −θc for some θ ≥ 0, and it remains to simply determine the value of the

nonnegative scalar θ. If c = 0, then x = 0 satisfies the optimality conditions. For c ̸= 0, notice

from above that θ must satisfy

1− θ − ∥c∥r2 · θr+1 = 0,

which is a univariate polynomial in θ with a unique positive root.

Example 2 continued. The subproblem in D-optimal design is

min
x∈∆n

⟨c, x⟩ −
n∑
j=1

ln (xj) ,

and its optimality condition is

x ≥ 0,
n∑
j=1

xj = 1, c−X−11 = −θ1,

where θ is the lagrange multiplier. We thus have

xj =
1

cj + θ

and can solve
n∑
j=1

1

cj + θ
− 1 = 0

for θ.

2.2 Dual averaging method

Algorithm 2 Dual averaging method with reference h

Input: Initial point x0 = argmin x∈Qh(x), L, µ and h satisfying Definitions 1 and 2 be given

for k ≥ 0 do

Compute ak+1 =
1

L−µ

(
L

L−µ

)k
and

xk+1 = argmin x∈Q{h(x) +
k∑
i=0

ai+1

(
f
(
xi
)
+
〈
∇f

(
xi
)
, x− xi

〉
+ µDh (x, xi)

)
}.

end for
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Theorem 2. If f is L-smooth and µ-strongly convex ralative to h, then {xk} generated by the dual

averaging method satisfies

min
1≤i≤k

f(xi)− f(x∗) ≤
µ[h (x∗)− h(x0)](
1 + µ

L−µ

)k
− 1

≤ L− µ

k
[h (x∗)− h(x0)].

Proof. We first define ψ0(x) = h(x) and for k ≥ 1,

ψk(x) := h(x) +
k−1∑
i=0

ai+1 (f (xi) + ⟨∇f (xi) , x− xi⟩+ µDh (x, xi))

and ψ∗
k := minx∈Q ψk(x). Thus, we have xk = argminx∈Q ψk(x) and ψk (xk) = ψ∗

k. It follows from

the above definition and the relative strong convexity that

ψ∗
k ≤ h(x) +Akf(x) (1)

where

Ak :=

k−1∑
i=0

ai+1 =
1

µ

[(
1 +

µ

L− µ

)k
− 1

]
.

Observe that the function ψk is a sum of a linear function and the reference function h multiplied

by the coefficient 1 + µAk. Therefore (1 + µAk)h and ψk define the same Bregman distance, i.e.,

for any x ∈ Q it holds that

(1 + µAk)Dh (x, xk) = Dψk
(x, xk) = ψk(x)− ψk (xk)− ⟨∇ψk (xk) , x− xk⟩ ≤ ψk(x)− ψ∗

k.

The above inequality with x = xk+1 and the definition of ψk+1 imply that

ψ∗
k+1

= ψk+1 (xk+1)

= ψk (xk+1) + ak+1 (f (xk) + ⟨∇f (xk) , xk+1 − xk⟩+ µDh (xk+1, xk))

≥ ψ∗
k + ak+1

(
f (xk) + ⟨∇f (xk) , xk+1 − xk⟩+

(
µ+

1

ak+1
(1 + µAk)

)
Dh (xk+1, xk)

)
.

Using the fact that

µ+
1

ak+1
(1 + µAk) =

1 + µAk+1

ak+1
=

1

ak+1

(
L

L− µ

)k+1

= L

and the relative smoothness of f , we obtain for k ≥ 0,

ψ∗
k+1 ≥ ψ∗

k + ak+1f (xk+1) .

Summing up and using (1), we obtain

k−1∑
i=0

ai+1f (xi+1) ≤ ψ∗
k − h(x0) ≤ h(x) +Akf(x)− h(x0).

The conclusions of the theorem immediately follow.
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