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Optimization in Relative Scale

Lecturer: Jiaming Liang November 2, 2023

1 Relative smoothness and relative strong convexity

There are many differentiable convex functions in practice that do not satisfy a uniform smoothness
condition, e.g., the D-optimal design problem. Given a matrix H € R™*" of rank m, where
n > m + 1, the D-optimal design problem is

min {f(x) = —Indet (HXHT>}

Z'GA'VL
where X = Diag(x). In statistics, the D-optimal design problem corresponds to maximizing the
determinant of the Fisher information matrix E[HH']. In computational geometry, D-optimal

design arises as a Lagrangian dual problem of the minimum volume covering ellipsoid problem.
We are interested in solving a constrained problem

min f(x),

mip. ()
where f is closed and convex and @ is a closed and convex set. We do not assume that f is uniformly
smooth or strongly convex, but instead we resort to the following notions of relative smoothness
and strong convexity.

Definition 1. We say f is L-smooth relative to h on Q if for any x,y € int Q, there is a scalar L
for which

fy) < f(x) +(V[f(z),y — z) + LDp(y, z),

where Dy, is the Bregman divergence of h.

Definition 2. We say f is u-strongly convex relative to h on Q if for any x,y € int Q, there is a
scalar p > 0 for which

fy) = f(x) +(Vf(2),y — ) + uDn(y, ).

Note that h does not need to strongly nor strictly convex. We refer to h as the reference
function.

In the case when both f and h are twice differentiable, f is both u-strongly convex and L-smooth
relative to h can be written as

puNV2h(z) =< V2f(z) < LV?h(z) for all z € int Q.
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Lemma 1. The following conditions are equivalent:

(a) f(-) is L-smooth relative to h(-);

(b) Lh(-) — f(-) is a convex function on Q;

(c) under twice differentiability V2 f(z) < LV?h(z) for any = € int Q;

(@) (Vf(z) = V[f({y),z —y) < L(Vh(z) — Vh(y),z —y) for all z,y € int Q.
Lemma 2. The following conditions are equivalent:

(a) f(-) is p-strongly convex relative to h(-);

(b) f(:) — ph(-) is a convex function on Q;

(c) under twice differentiability V2 f(z) = uV2h(z) for any x € int Q;

(d) (Vf(z) =V fy),z—y) = u(Vh(z) = Vi(y),z — y) for all z,y € int Q.

Example 1. Suppose that f is a twice-differentiable convex function on @) := R" and let HV2 f(x) H
denote the operator norm of V2 f(z) with respect to the fo-norm on R™. Suppose that HVQf(a:) H <
pr (|z]|2) where p,(a) = 31, a;a is an r-degree polynomial of a. Let

1 CONE ST
h(z) = meH? + §||53||2-
Then the following lemma shows that f is L-smooth relative to h with a certain L.

Lemma 3. Let L be such that p,(a) < L(1+a") for o > 0. Then f is L-smooth relative to h.

Proof. Calculation gives the gradient of h

T
Vh(z) = IIxHTHm +o=[lz]"z +

and its Hessian

'

VEh(@) = lall T arllal™ g 1 = (U fal D o rlal™ e

1 1
= (L + |21 = zpe(ll=lDI = EV2f(£E),

where the last two relations follow from the assumptions on f and p,. So, f is L-smooth relative
to h by Lemma 1(c). O

Optimization in Relative Scale-2



Example 2. D-optimal design In this case, we choose h to be the logarithmic barrier function,
namely,

h(z) == — Zln (z5)
j=1

defined on the positive orthant R ;.
Lemma 4. The f in D-optimal design is 1-smooth relative to h on Ry 4.
Proof. The gradient and Hessian of h are
Vf(z) =diag(-C), C=H'(HXH")'H,
and
Vif(z)=CoC
where o denotes the Hadamard product. Let U = HX'/2, then
vt tu=<r
since the left side of this matrix inequality is a projection operator. Then, we have
X2HT (HXHT)_1 HX? <1,
Multiplying this matrix inequality on the left and right by X 7%, then we have
c=Xx"

Moreover, we get

Vif(x)=CoC<CoX ' <X toX 1 =X"2=Vh(z)

where the first and the second matrix inequalities above follows from the fact that C < X! and
the Hadamard product of two symmetric positive semidefinite matrices is also a symmetric positive
semidefinite matrix. The result then follows using Lemma 1(c). O

2 Algorithms

2.1 Primal gradient method

Algorithm 1 Primal gradient method with reference h
Input: Initial point x¢ € @), L and h satisfying Definition 1 be given
for £ > 0 do
Compute xy1 = argmin zeq{€¢(r;xx) + LDy (x, z1)}

end for

The following lemma is a stronger version of the three-points lemma.
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Lemma 5. Suppose ¢ is convexr and let
2T = argmin {¢(z) + Dy(z,2)},
zeQ

then for all x € QQ
Ba) + Dular, ) > 6 (=) + Dy (=,2) + Dy (1,27,

Theorem 1. If f is L-smooth and p-strongly convex ralative to h, then {xy} generated by the
primal gradient method satisfies

Dy (24, x L—
o)~ fan) < APERI)El D (4 ).
(1 + ﬁ) -1
Proof. 1t follows from Definitions 1 and 2 that

flag) < fap—1) +(Vf(zr-1), 2k — 2k—1) + LDp (z), T—1)
f(@r—1) +(Vf(rp—1),2 —xp_1) + LDy (2, 211) — LDy (z,71)
f

() + (L — pu)Dp (x,2—1) — LDp, (x, 1) -

IN N INA

i
Taking = = xp_1 in the above inequality, we know {f(zj)} is monotone. Multiplying (ﬁ) to
the above inequality and summing, we have

k

2 () 1= (e5)

i=1 =1

i

k
F(x) + LDy (z,0) — (M) LDy (2,21).

and thus

k i .
(; <qu> ) (f (zx) = f(2)) < LDy (,20) — <L£M> LDy, (x,x) < LDy, (x,x0) .

It follows from the monotonicity of {f(zx)} that

puDy, (z,x0)

flar) = flz) <

The first inequality of the theorem follows from the above inequality with x = x, and the second
inequality holds by simple algebra. O

Example 1 continued. A key step in Algorithm 1 is to solve the subproblem with Dj. We know
specify how to solve it in Example 1. The subproblem can be abstracted as

1
. 2
min (¢, z) + )15 + ngEHQ-

zER™ r—+2
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Its first-order optimality condition is
c+ (1+ ||lz]|y) =z = 0.

Clearly, we know z = —6fc for some 6 > 0, and it remains to simply determine the value of the
nonnegative scalar 6. If ¢ = 0, then x = 0 satisfies the optimality conditions. For ¢ # 0, notice
from above that 6 must satisfy

L—0—|efz- 0" =0,

which is a univariate polynomial in 6 with a unique positive root.
Example 2 continued. The subproblem in D-optimal design is

min (¢, x) — Z In (z;),
j=1

FASYANS

and its optimality condition is
n
x>0, ij =1, c—X'1=-01,
j=1

where 6 is the lagrange multiplier. We thus have

1
Cj—|—0

Lj

and can solve

for 6.

2.2 Dual averaging method

Algorithm 2 Dual averaging method with reference h

Input: Initial point z¢ = argmin yeqh(x), L, p and h satisfying Definitions 1 and 2 be given
for £ > 0 do

1 L \*
Compute apy1 = yomr (H) and

k
Try1 = argmin e {h(z) + Z aip1 (f (2) +(Vf (2") ;2 — 23) + pDy (z,2)) }.
i=0

end for
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Theorem 2. If f is L-smooth and p-strongly convex ralative to h, then {xy} generated by the dual
averaging method satisfies

min [z~ () < )R L
N (1425) -1

Proof. We first define 1o(z) = h(x) and for k£ > 1,

[ () = h(o)].

k-1
Yr(a) = h(@) + Y aipr (f (@) + (Y (@), 2 = @i) + uDy (2, 21))
i=0

and ¥} := mingeq ¥ (x). Thus, we have x, = argmingeq ¥ (x) and ¥y, (xx) = ). It follows from
the above definition and the relative strong convexity that

U < h(z) + Arf(z) (1)

k—1 1 1 k
A = Aiy1 = — (1—1—) —11.
Observe that the function 1 is a sum of a linear function and the reference function h multiplied

by the coefficient 1 + pAy. Therefore (1 4+ pAg) h and vy define the same Bregman distance, i.e.,
for any z € @) it holds that

(14 pAy) Dy (2, 21) = Dy, (2, 21) = Y1(x) — ¥p (1) — (Vibi (21) , 2 — 21) < () — Y.
The above inequality with x = z;4; and the definition of ¥4 imply that
¢Z+1
= Ypt1 (Tp41)
= ¥k (Trt1) + apr1 (f (o) +(Vf (@k) s Tpr1 — k) + pDp (Thy1, T1))

> 0+ <f (21) + (VF (2) s ps1 — i) + (u sl uAk>> Dy <xk+l,mk>> .

Using the fact that

where

1 1+ uA 1 L \M!
A —— (14 pdy) = — L ( ) =L
aj+1 A1 ag+1 \ L —p

and the relative smoothness of f, we obtain for k£ > 0,

Viy1 = Vg + apr1 f (T11) -

Summing up and using (1), we obtain

k—1
> a1 f (1) < ;= hlwo) < h(@) + Arf(x) — hi).
i=0
The conclusions of the theorem immediately follow. O
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