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1 Online linear optimization

The online linear optimization problem can be described as the following game. We are given a

closed convex set S ⊆ Rn (strategy space) and we select some strategy xt ∈ S in each round t ≥ 0.

We are then revealed (by the environment or the adversary) a penalty pt ∈ Rn. Our goal is to

minimize the regret of T rounds of this game:

regret(T ) =
T−1∑
t=0

p>t xt −min
x∈S

T−1∑
t=0

p>t x. (1)

The online convex optimization problem generalizes online linear optimization in that after choosing

a decision xt ∈ S, the penalty is ft(xt) instead of p>t xt, where ft is convex. The regret of T rounds

becomes

regret(T ) =
T−1∑
t=0

ft(xt)−min
x∈S

T−1∑
t=0

ft(x).

We focus the online linear optimization problem in the rest of the lecture. The ultimate goal

is to design algorithms so that limT→∞ regret(T )/T = 0, i.e., the average regret over the rounds

converges to 0. Such an algorithm is said to have sublinear regret as regret(T ) = o(T ).

Lemma 1. Consider a convex function f : S → R and assume that f has a subgradient oracle and

minimizer x∗ = argmin x∈Sf(x). If pt ∈ ∂f(xt) for every t ≥ 0, letting f∗ = f(x∗), then we have

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤

regret(T )

T
.

Proof. It follows from the defition of regret in (1) and the convexity of f that

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤

1

T

T−1∑
t=0

f (xt)− f∗ ≤
1

T

T−1∑
t=0

p>t (xt − x∗)

≤ 1

T

[
T−1∑
t=0

p>t xt −min
x∈S

T−1∑
t=0

p>t x

]
=

regret(T )

T
.
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We note that the above lemma gives an important reduction: if we have an algorithm to solve

online linear optimization, given pt ∈ ∂f(xt) for every t ≥ 0, then the same algorithm also solves

the offline optimization minx∈S f(x).

2 Follow the regularized leader

In online linear optimization, a standard algorithm is the follow the regularized leader (FTRL):

pick a regularizer r : Rn → R, that is differentiable and µ-strongly convex on S with respect to

some norm ‖ · ‖, then FTRL generates xT as follows.

Algorithm 1 FTRL

Input: pick an initial strategy x0 ∈ S
for T ≥ 1 do

Step 1. Enviroment reveals a penalty pT−1 ∈ Rn.

Step 2. Compute xT = argmin
x∈S

{
ΦT (x) := η

∑T−1
t=0 p

>
t x+ r(x)

}
.

end for

Note that ΦT is defined as in FTRL for T ≥ 1 and Φ0(x) = r(x). We assume there exists an

oracle to solve the subproblem in step 2 of FTRL. For example, if r(x) is `2-norm squared, then the

oracle for step 2 is just projS . It is interesting to observe that FTRL is the same as the constant

stepsize dual averaging (see Lecture 9). As a result, the regret analysis of FTRL is very close to

the convergence analysis of dual averaging, while we still present the analysis for completeness.

Lemma 2. If ‖pt‖∗ ≤ G for all t ≥ 0, applying FTRL on the online linear optimization problem,

then for every T ≥ 0, we have

−η
2G2T

2µ
+ η

T−1∑
t=0

p>t xt + min
x∈S

r(x) ≤ min
x∈S

ΦT (x).

Proof. Proof by induction. Since ΦT (x) = r(x), the case T = 0 is trivial. Assume the claim is true

for some T ≥ 0. Using the definition of ΦT in FTRL and the induction hypothesis, we have

ΦT+1(xT+1) = ΦT (xT+1) + ηp>T xT+1

≥ ΦT (xT ) +
µ

2
‖xT+1 − xT ‖2 + ηp>T xT+1

≥ −η
2G2T

2µ
+ η

T−1∑
t=0

p>t xt + min
x∈S

r(x) + η

[
p>T xT+1 +

µ

2η
‖xT+1 − xT ‖2

]
,

where the first inequality is due to the fact that ΦT is µ-strongly convex in ‖ · ‖. It follows from

the Cauchy-Schwarz inequality and the assumption that ‖pt‖∗ ≤ G that

p>T xT+1 +
µ

2η
‖xT+1 − xT ‖2 ≥ −‖pT ‖∗‖xT+1 − xT ‖+

µ

2η
‖xT+1 − xT ‖2 + p>T xT ≥ −

ηG2

2µ
+ p>T xT .
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Therefore, combining the above two equations, we verify that the claim holds for the case T+1.

Theorem 1. If ‖pt‖∗ ≤ G for every t ≥ 0, applying FTRL on the online linear optimization

problem, then for every T ≥ 1, we have the following regret bound

regret(T ) ≤ ηG2T

2µ
+

1

η

(
max
x∈S

r(x)−min
x∈S

r(x)

)
.

Moreover, if pt ∈ ∂f(xt) for every t ≥ 0 and maxx∈S r(x)−minx∈S r(x) ≤ R2 for some R > 0, and

using stepsize η =
√

(2R2µ)/ (TG2), then the regret of FTRL is bounded as follows

regret(T ) ≤ RG

√
2T

µ
,

and FTRL gives an optimality gap of minx∈S f(x) as follows

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤ RG

√
2

Tµ
.

Proof. It follows from Lemma 2 and the definition of ΦT that for every x ∈ S

−η
2G2T

2µ
+ η

T−1∑
t=0

p>t xt + min
x∈S

r(x) ≤ η
T−1∑
t=0

p>t x+ r(x).

Rearranging the terms, we have

T−1∑
t=0

p>t (xt − x) ≤ ηG2T

2µ
+

1

η

(
r(x)−min

x∈S
r(x)

)
.

Maximizing over x ∈ S and using the definition of regret in (1), we obtain

regret(T ) ≤ ηG2T

2µ
+

1

η

(
max
x∈S

r(x)−min
x∈S

r(x)

)
.

Using stepsize η =
√

(2R2µ)/ (TG2) and bound R2, we derive the regret of FTRL bounded by

regret(T ) ≤ RG

√
2T

µ
.

It immediately follows from the above regret of FTRL and Lemma 1 that

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤

regret(T )

T
=
RG
√

2T/µ

T
= RG

√
2

Tµ
.
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Clearly, the complexity for FTRL to find an ε-solution to minx∈S f(x) is

O
(
R2G2

µε2

)
,

which matches that of dual averaging for solving nonsmooth optimization problems.

As we know dual averaging is also applicable to smooth optimization problems, we now use

FTRL to recover the convergence of projected gradient-type methods (such as dual averaging and

the projected gradient method) for minimizing smooth functions.

Lemma 3. Assume that f is L-smooth over S, and let r(x) = ‖x− x0‖22/2 in step 2 of FTRL and

let pt = ∇f (xt) for every t ≥ 0. Applying FTRL with η = 1/L on the online linear optimization

problem, then for every T ≥ 0, we have

η
T∑
t=1

f(xt)− η
T−1∑
t=0

(
f(xt)− p>t xt

)
≤ min

x∈S
ΦT (x)

Proof. Proof by induction. Since Φ0(x) = ‖x− x0‖22/2, the case T = 0 is trivial. Assume the claim

is true for some T ≥ 0. Using the definition of ΦT in FTRL and the induction hypothesis, we have

ΦT+1(xT+1) = ΦT (xT+1) + ηp>T xT+1

≥ ΦT (xT ) +
1

2
‖xT+1 − xT ‖22 + ηp>T xT+1

≥ η
T∑
t=1

f(xt)− η
T−1∑
t=0

(
f(xt)− p>t xt

)
+ η

[
p>T xT+1 +

1

2η
‖xT+1 − xT ‖22

]
,

where the first inequality is due to the fact that ΦT is 1-strongly convex in ‖ · ‖2. It follows from

the fact thats pt = ∇f(xt) and η = 1/L, and the assumption that f is L-smooth that

p>T xT+1+
1

2η
‖xT+1−xT ‖22 = ∇f(xT )>xT+1+

L

2
‖xT+1−xT ‖22 ≥ f(xT+1)−

(
f(xT )−∇f(xT )>xT

)
.

Therefore, combining the above two equations, we verify that the claim for the case T+1 holds.

Theorem 2. Assuming the conditions in Lemma 3 hold and S has a diameter D > 0, and applying

FTRL with η = 1/L on the online linear optimization problem, then for every T ≥ 1, we have the

following regret bound

regret(T ) ≤ f(x0)− f∗ +
LD2

2
,

and FTRL gives an optimality gap of minx∈S f(x) as follows

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤

2[f(x0)− f∗] + LD2

2T
.
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Proof. It follows from Lemma 3 that for every x ∈ S

η[f(xT )− f(x0)] + η
T−1∑
t=0

p>t xt ≤ η
T−1∑
t=0

p>t x+
1

2
‖x− x0‖22.

Rearranging the terms and using the fact that η = 1/L yields

T−1∑
t=0

p>t (xt − x) ≤ f(x0)− f(xT ) +
L

2
‖x− x0‖22.

Maximizing over x ∈ S and using the definition of regret in (1) and the boundedness of S, we

obtain

regret(T ) ≤ f(x0)− f∗ +
LD2

2
.

It immediately follows from the above regret of FTRL and Lemma 1 that

f

(
1

T

T−1∑
t=0

xt

)
− f∗ ≤

regret(T )

T
≤ 2[f(x0)− f∗] + LD2

2T
.

The following theorem gives a different convergence result of FTRL without using the reduction,

i.e., Lemma 1. It recovers the convergence rate of dual averaging for solving smooth optimization

problems.

Theorem 3. Assuming the conditions in Lemma 3 hold and applying FTRL with η = 1/L on the

online linear optimization problem, then for every T ≥ 1, we have

f

(
1

T

T∑
t=1

xt

)
− f∗ ≤

L‖x0 − x∗‖22
2T

.

Proof. It immediately follows from the fact that pt = ∇f(xt) for every t ≥ 0 and Lemma 3 that

for every x ∈ S

η
T∑
t=1

f(xt)− η
T−1∑
t=0

(
f(xt)−∇f(xt)

>xt

)
≤ η

T−1∑
t=0

∇f(xt)
>x+

1

2
‖x− x0‖22.

Rearranging the terms and using the fact that η = 1/L yields

T∑
t=1

f(xt) ≤
T−1∑
t=0

(f(xt) + 〈∇f(xt), x− xt〉) +
L

2
‖x− x0‖22 ≤ Tf(x) +

L

2
‖x− x0‖22,
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where the second inequality is due to the convexity of f . Taking x = x∗ in the above inequality

and using the convexity of f again, we obtain

f

(
1

T

T∑
t=1

xt

)
− f∗ ≤

L‖x0 − x∗‖22
2T

.

Note that Theorem 3 shows convergence at 1
T

∑T
t=1 xt, which is different from 1

T

∑T−1
t=0 xt in

Theorems 1 and 2.

3 Saddle point problem

In Section 2, we have seen FTRL originally designed for online linear optimization can be readily

applied to offline optimization, both smooth and nonsmooth minimization problems. We discuss

another interesting application of FTRL in this section, that is, the saddle point problem.

The saddle point problem considered in this section is as follows

min
x∈X

max
y∈Y

f(x, y)

where X ⊆ Rn and Y ∈ Rm are closed convex sets and f : X × Y → R is differentiable and

convex-concave (i.e., f(·, y) is convex for any y ∈ Y and f(x, ·) is concave for any x ∈ X ). It is

equivalent to

min
x∈X

{
fX (x) := max

y∈Y
f(x, y)

}
.

For simplicity, we denote f(z) = f(zX , zY), where z ∈ Z = X × Y and zX (resp., zY) denotes the

X -component (resp., Y-component) of z.

For every z ∈ Z, we define the duality gap as

gap(z) = gap(zX , zY) = max
y∈Y

f(zX , y)−min
x∈X

f(x, zY) = fX (zX )− fY (zY) ,

where fY(y) := minx∈X f(x, y). We say that z ∈ Z is an ε-Nash equilibrium, or has ε-duality gap,

or is ε-optimal if gap(z) ≤ ε. Further, we call z ∈ Z a Nash equilibrium if gap(z) = 0. An intuitive

interpretation of the duality gap is as follows: consider there are two players x and y in a zero-sum

game, the goal of x is to minimize f(x, y) and hence save cost, while the goal of y is to maximize

f(x, y) and hence make profit. The duality gap can be written as

gap(z) =

[
max
y∈Y

f (zX , y)− f(z)

]
+

[
f(z)−min

x∈X
f (x, zY)

]
,

where the first gap term is the profit that y makes with zX being fixed and the second gap term

is the cost that x saves with zY being fixed. A Nash equilibrium is a pair of stategies z at which
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both x and y are not willing to change their individual strategies zX and zY , as none of them would

increase their own utility functions (i.e., saving cost and making profit) by doing so.

Note that fX (zX ) ≥ f(z) ≥ fY(zY) for every z ∈ Z by definition, and hence f∗X ≥ f∗Y where

f∗X = minx∈X fX (x) and f∗Y = maxy∈Y fY(y). This is indeed the weak duality and it is equivalent

to

min
x∈X

max
y∈Y

f(x, y) ≥ max
y∈Y

min
x∈X

f(x, y).

If f(x, y) is convex-concave, then “=” holds. Clearly, gap(z) ≥ fX (zX ) − f∗X + f∗Y − fY(zY) and

therefore if z ∈ Z is an ε-Nash equilibrium, then zX (resp., zY) is an ε-solution for minx∈X fX
(resp., maxy∈Y fY). Furthermore, this reasoning implies that if there exists a Nash equilibrium,

i.e., z∗ ∈ Z with gap (z∗) = 0, then fX (z∗X ) = f∗X and fY
(
z∗Y
)

= f∗Y and correspondingly f∗X = f∗Y .

This is called the strong duality.

The discussions above reflect some key ideas in Lecture 9.

Analogous to the reduction from online linear optimization to offline optimization (see Lemma 1),

we next develop the reduction from online linear optimization to the saddle point problem. Thus,

we can apply FTRL to solve the saddle point problem.

Lemma 4. Let g : X×Y → X×Y denote the gradient for f(x, y), i.e., g(x, y) = (∇X f(x, y),−∇Yf(x, y)).

For z0, . . . , zT−1 ∈ Z and z̄ = 1
T

∑T−1
t=0 z

t, we have

gap(z̄) ≤ regret(T )

T
.

Proof. Since f is convex-concave, we have for every u ∈ Z,

f(uX , z
t
Y) ≥ f(zt) +∇X f(zt)>(uX − ztX),

f(ztX , uY) ≤ f(zt) +∇Yf(zt)>(uY − ztY ).

Combining the above two inequalities yields that

g(zt)>(zt − u) ≥ f(ztX , uY)− f(uX , z
t
Y).

Summing the above inequality from t = 0 to T − 1 and applying Jensen’s inequality, we have

1

T

T−1∑
t=0

g(zt)>(zt − u) ≥ 1

T

T−1∑
t=0

[f(ztX , uY)− f(uX , z
t
Y)] ≥ f(z̄X , uY)− f(uX , z̄Y).

Maximizing over u ∈ Z and using the definition of regret in (1), we obtain

regret(T )

T
≥ max

u∈Z
f(z̄X , uY)− f(uX , z̄Y).

It follows from the definition of the duality gap that

gap(z̄) = max
y∈Y

f(z̄X , y)−min
x∈X

f(x, z̄Y) = max
u∈Z

f(z̄X , uY)− f(uX , z̄Y).

The conclusion of the lemma immediately follows.

We skip the regret of FTRL and its implication in the saddle point problem for shortness.
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4 Online mirror descent

As discussed in Lecture 9, dual averaging is quite similar to mirror descent. Interestingly, mirror

descent also has an online counterpart analogous to FTRL, which is known as online mirror descent

(OMD).

Consider the online linear optimization problem and OMD is as follows.

Algorithm 2 OMD

Input: pick an initial strategy x0 ∈ S, stepsize η > 0.

for t ≥ 0 do

Step 1. Enviroment reveals a penalty pt ∈ Rn.

Step 2. Compute xt+1 = argmin
x∈S

{
ηp>t x+Dw(x, xt)

}
.

end for

Theorem 4. Assume w is differentiable and ρ-strongly convex w.r.t. ‖ · ‖ and ‖pt‖∗ ≤ G for every

t ≥ 0. Derive the regret bound of OMD

regret(T ) ≤ maxx∈S Dw(x, x0)

η
+
ηG2T

2ρ
.

Further, assume maxx∈S Dw(x, x0) ≤ R2 for some R > 0 and take η =
√

2ρR2/
√
G2T , then show

the regret becomes

regret(T ) ≤
√

2TRG
√
ρ

.

The proof is left as a homework problem.

We end this section by discussing an interesting application of OMD in proving the minimax

theorem.

Theorem 5. Let X ∈ Rn and Y ∈ Rm be compact convex sets. Let f(x, y) be continuous and

convex-concave, with some upper bound G on the partial subgradients with respect to x and y.

Then, we have

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Proof. We have shown in Section 3 that

min
x∈X

max
y∈Y

f(x, y) ≥ max
y∈Y

min
x∈X

f(x, y).

We next show the other direction by the regret of OMD. We run a repeated game where the players

choose a strategy xt, yt at each round t. The x player chooses xt according to OMD, while yt is

always chosen as

yt = argmax y∈Yf(xt, y). (2)
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Let the average strategies be

x̄ =
1

T

T−1∑
t=0

xt, ȳ =
1

T

T−1∑
t=0

yt.

For the x player, using Theorem 4, we have

regret(T ) =
T−1∑
t=0

f(xt, yt)−min
x∈X

T−1∑
t=0

f(x, yt) ≤
√

2TRG
√
ρ

. (3)

Recall that fX (x) = maxy∈Y f(x, y) and fY(y) = minx∈X f(x, y). Noting that fX (x) is convex and

using the concavity of f(x, ·), we have

min
x∈X

max
y∈Y

f(x, y) = min
x∈X

fX (x) ≤ fX (x̄) ≤ 1

T

T−1∑
t=0

fX (xt), (4)

max
y∈Y

min
x∈X

f(x, y) = max
y∈Y

fY(y) ≥ fY(ȳ) = min
x∈X

f(x, ȳ) ≥ min
x∈X

1

T

T−1∑
t=0

f(x, yt). (5)

Moreover, it follows from (2) that

f(xt, yt) = max
y∈Y

f(xt, y) = fX (xt).

Combining the above relation and (4), we obtain

min
x∈X

max
y∈Y

f(x, y) ≤ 1

T

T−1∑
t=0

f(xt, yt).

Plugging this inequality and (5) into the regret (3), we have

min
x∈X

max
y∈Y

f(x, y)−max
y∈Y

min
x∈X

f(x, y) ≤ 1

T

T−1∑
t=0

f(xt, yt)−
1

T
min
x∈X

T−1∑
t=0

f(x, yt)

=
regret(T )

T

(3)

≤
√

2RG√
ρT

.

Taking the limit T →∞, we have

min
x∈X

max
y∈Y

f(x, y) ≤ max
y∈Y

min
x∈X

f(x, y).

Therefore, “=” holds and the theorem is proved.
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