DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 12

Online Optimization

Lecturer: Jiaming Liang November 14, 2024

1 Online linear optimization

The online linear optimization problem can be described as the following game. We are given a
closed convex set S C R™ (strategy space) and we select some strategy z; € S in each round ¢ > 0.
We are then revealed (by the environment or the adversary) a penalty p; € R™. Our goal is to
minimize the regret of T rounds of this game:
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The online convex optimization problem generalizes online linear optimization in that after choosing
a decision x; € S, the penalty is f;(z;) instead of p; z;, where f; is convex. The regret of T’ rounds
becomes
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We focus the online linear optimization problem in the rest of the lecture. The ultimate goal
is to design algorithms so that limp_, regret(7")/T = 0, i.e., the average regret over the rounds
converges to 0. Such an algorithm is said to have sublinear regret as regret(7") = o(T).

Lemma 1. Consider a convex function f: S — R and assume that f has a subgradient oracle and
minimizer x, = argmin zesf(x). If py € df(xy) for every t > 0, letting f. = f(xx), then we have

1 — regret(7T")

Proof. 1t follows from the defition of regret in (1) and the convexity of f that
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We note that the above lemma gives an important reduction: if we have an algorithm to solve
online linear optimization, given p; € df(z;) for every ¢t > 0, then the same algorithm also solves
the offline optimization mingcg f(x).

2 Follow the regularized leader

In online linear optimization, a standard algorithm is the follow the regularized leader (FTRL):
pick a regularizer r : R™ — R, that is differentiable and p-strongly convex on S with respect to
some norm || - ||, then FTRL generates xp as follows.

Algorithm 1 FTRL
Input: pick an initial strategy xg € S
for T'>1do
Step 1. Enviroment reveals a penalty pr_1 € R™.

Step 2. Compute z7 = argmin {@T(x) =1 Z;fzfol Pl + 7’(3:)}
x€S

end for

Note that ®7 is defined as in FTRL for 7" > 1 and ®g(z) = r(z). We assume there exists an
oracle to solve the subproblem in step 2 of FTRL. For example, if r(x) is fo-norm squared, then the
oracle for step 2 is just projg. It is interesting to observe that FTRL is the same as the constant
stepsize dual averaging (see Lecture 9). As a result, the regret analysis of FTRL is very close to
the convergence analysis of dual averaging, while we still present the analysis for completeness.

Lemma 2. If ||p||« < G for allt > 0, applying FTRL on the online linear optimization problem,
then for every T' > 0, we have
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Proof. Proof by induction. Since ®7(x) = r(z), the case T' = 0 is trivial. Assume the claim is true
for some T' > 0. Using the definition of ®7 in FTRL and the induction hypothesis, we have
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where the first inequality is due to the fact that (I)T is ,U,—Stl“OHgly convex in H : H It follows from

the Cauchy-Schwarz inequality and the assumption that ||p¢||« < G that
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Therefore, combining the above two equations, we verify that the claim holds for the case T+1. [

Theorem 1. If ||p|l« < G for every t > 0, applying FTRL on the online linear optimization
problem, then for every T' > 1, we have the following regret bound

G*T
regret(7T) < 1

1 (maxr(q;) — min r(:z:)) .
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Moreover, if p; € Of (z4) for everyt > 0 and maxzegs r(x) — mingegs r(x) < R? for some R > 0, and
using stepsize n = /(2R%pu)/ (T'G?), then the regret of FTRL is bounded as follows

2T
regret(7T') < RG\ | "

and FTRL gives an optimality gap of mingegs f(x) as follows

1 = 5
f <T§mt) — fx gRG,/TTL.

Proof. 1t follows from Lemma 2 and the definition of ®7 that for every = € S
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Rearranging the terms, we have
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Maximizing over z € S and using the definition of regret in (1), we obtain
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Using stepsize 7 = /(2R%u)/ (TG?) and bound R?, we derive the regret of FTRL bounded by

2T
regret(1) < RGy| —.
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It immediately follows from the above regret of FTRL and Lemma 1 that
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Clearly, the complexity for FTRL to find an e-solution to mingecg f(z) is
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which matches that of dual averaging for solving nonsmooth optimization problems.

As we know dual averaging is also applicable to smooth optimization problems, we now use
FTRL to recover the convergence of projected gradient-type methods (such as dual averaging and
the projected gradient method) for minimizing smooth functions.

Lemma 3. Assume that f is L-smooth over S, and let r(x) = ||z — x0||3/2 in step 2 of FTRL and
let pp = V f (x) for every t > 0. Applying FTRL with n = 1/L on the online linear optimization
problem, then for every T > 0, we have
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Proof. Proof by induction. Since ®¢(x) = ||z — z¢]|3/2, the case T = 0 is trivial. Assume the claim
is true for some 7' > 0. Using the definition of ®7 in FTRL and the induction hypothesis, we have

Opy(2741) = Br(rr1) + NPrTTn

> Or(zr) + *\|$T+1 —ar3 +nprara
1
an (1) Z ( — Pt ft) +n|p TJJTH + H$T+1 —arl3|,
t=1
where the first inequality is due to the fact that ®7 is 1-strongly convex in || - ||2. It follows from

the fact thats p, = V f(z:) and n = 1/L, and the assumption that f is L-smooth that

1 L
Prari+ o7 lzrs1—arll3 = Vf(zr) wri+ Sz —arl3 > flrri) - (f(SUT) - Vf(xT)TW) :
Therefore, combining the above two equations, we verify that the claim for the case T+ 1 holds. [

Theorem 2. Assuming the conditions in Lemma 3 hold and S has a diameter D > 0, and applying
FTRL with n = 1/L on the online linear optimization problem, then for every T' > 1, we have the

following regret bound

LD?

regret(T) < f(xzo) — f« + —5

and FTRL gives an optimality gap of minges f(x) as follows

1+ 2[f (x0) — fu] + LD?
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Proof. 1t follows from Lemma 3 that for every z € §

T—1 T—1
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Rearranging the terms and using the fact that n = 1/L yields

f (a— ) < f(wo) ~ Flar) + £ |z — ol

Maximizing over € S and using the definition of regret in (1) and the boundedness of S, we

obtain D2
regret(T) < f(xo) — fu + ——

It immediately follows from the above regret of FTRL and Lemma 1 that

t=0
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The following theorem gives a different convergence result of FTRL without using the reduction,
i.e., Lemma 1. It recovers the convergence rate of dual averaging for solving smooth optimization
problems.

Theorem 3. Assuming the conditions in Lemma 8 hold and applying FTRL with n = 1/L on the
online linear optimization problem, then for every T > 1, we have

T
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Proof. Tt immediately follows from the fact that p, = V f(x;) for every ¢ > 0 and Lemma 3 that
for every x € S

T
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Rearranging the terms and using the fact that n = 1/L yields
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where the second inequality is due to the convexity of f. Taking x = x, in the above inequality
and using the convexity of f again, we obtain

T
1 Ll|zo — I3
= e
f <T t=1 :Ut) f* B 2T

O]

Note that Theorem 3 shows convergence at %Zthl x¢, which is different from %ZtT:_Ol ¢ in

Theorems 1 and 2.

3 Saddle point problem

In Section 2, we have seen FTRL originally designed for online linear optimization can be readily
applied to offline optimization, both smooth and nonsmooth minimization problems. We discuss
another interesting application of FTRL in this section, that is, the saddle point problem.

The saddle point problem considered in this section is as follows

min max f(x,
min max f(z, y)

where X C R™ and ) € R™ are closed convex sets and f : X x YV — R is differentiable and
convex-concave (i.e., f(-,y) is convex for any y € Y and f(x,-) is concave for any = € X). It is
equivalent to

min {fx(fv) = max f(z, y)} :

TEX
For simplicity, we denote f(z) = f(zx,2y), where z € Z = X x ) and zx (resp., zy) denotes the

X-component (resp., Y-component) of z.
For every z € Z, we define the duality gap as

gap(z) = gap(zx, zy) = ma flzx,y) — ggcl flz,2y) = fx (zx) — fy (2v),

where fy(y) := mingex f(z,y). We say that z € Z is an e-Nash equilibrium, or has e-duality gap,
or is e-optimal if gap(z) < e. Further, we call z € Z a Nash equilibrium if gap(z) = 0. An intuitive
interpretation of the duality gap is as follows: consider there are two players x and ¥ in a zero-sum
game, the goal of x is to minimize f(x,y) and hence save cost, while the goal of y is to maximize
f(x,y) and hence make profit. The duality gap can be written as

ean(s) = e f o) = 1) + [ ) = mi £ 29)].

where the first gap term is the profit that y makes with zy being fixed and the second gap term
is the cost that x saves with zy being fixed. A Nash equilibrium is a pair of stategies z at which
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both x and y are not willing to change their individual strategies zx and zy, as none of them would
increase their own utility functions (i.e., saving cost and making profit) by doing so.

Note that fx(zx) > f(2) > fy(zy) for every z € Z by definition, and hence f3 > f3, where
[y = mingex fx(z) and f3;, = maxyey fy(y). This is indeed the weak duality and it is equivalent

to
. S . '
min max flx,y) > max min f(@,y)
If f(x,y) is convex-concave, then “=" holds. Clearly, gap(z) > fx(zx) — f3 + f3 — fy(2y) and

therefore if z € Z is an e-Nash equilibrium, then zy (resp., zy) is an e-solution for min,cx fx
(resp., maxyey fy). Furthermore, this reasoning implies that if there exists a Nash equilibrium,
i.e., z* € Z with gap (2*) =0, then fy (%) = f4 and fy (23‘,) = f3 and correspondingly f3 = f3.
This is called the strong duality.

The discussions above reflect some key ideas in Lecture 9.

Analogous to the reduction from online linear optimization to offline optimization (see Lemma 1),
we next develop the reduction from online linear optimization to the saddle point problem. Thus,
we can apply FTRL to solve the saddle point problem.

Lemma 4. Let g : XxY — X x) denote the gradient for f(x,y), i.e., g(x,y) = (Vaf(z,y), —=Vyf(z,9)).
For20 ....2T7 ¢ Z and 2 = % Z;‘F:_Ol 2t we have

regret(T")
T )
Proof. Since f is convex-concave, we have for every u € Z,
f(u/\’7 Zﬁ)) > f(zt) =+ VXf(zt)T(uX - Zé()v
(2, uy) < f(25) + Vyf(2") (uy — 24).
Combining the above two inequalities yields that
g(2") " (2" = u) > [, uy) = flux, 25).

Summing the above inequality from ¢t = 0 to T' — 1 and applying Jensen’s inequality, we have

gap(z) <

1 T-1 1 T—1
72 9 —w) 2 5 D (f (e uy) = flu, ) = f(Fxuy) = Flu, 2).
t=0 t=0

Maximizing over u € Z and using the definition of regret in (1), we obtain
regret(7T)

T
It follows from the definition of the duality gap that

> max f(zx, uy) = f(ux, 2y).

gap(?) = max f(zx,y) — min f(z, zy) = max f(zx, uy) — f(ux, 2y)-
The conclusion of the lemma immediately follows. O

We skip the regret of FTRL and its implication in the saddle point problem for shortness.
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4 Online mirror descent

As discussed in Lecture 9, dual averaging is quite similar to mirror descent. Interestingly, mirror
descent also has an online counterpart analogous to FTRL, which is known as online mirror descent
(OMD).

Consider the online linear optimization problem and OMD is as follows.

Algorithm 2 OMD
Input: pick an initial strategy xg € S, stepsize n > 0.
for t >0 do
Step 1. Enviroment reveals a penalty p; € R™.

Step 2. Compute x;4+1 = argmin {nptT:c + Dy (z, a;t)}
€S

end for

Theorem 4. Assume w is differentiable and p-strongly conver w.r.t. || -| and ||p||« < G for every
t > 0. Derive the regret bound of OMD

maxgzes Dy ($a 370) + nGQT

regret(7T) <
n 2p

Further, assume max,es Diy(x,20) < R? for some R > 0 and take n = \/2pR2/VG2T, then show

the regret becomes
V2T RG

regret(7T) <
(T) 7

The proof is left as a homework problem.
We end this section by discussing an interesting application of OMD in proving the minimax
theorem.

Theorem 5. Let X € R™ and Y € R™ be compact convex sets. Let f(x,y) be continuous and
convez-concave, with some upper bound G on the partial subgradients with respect to x and y.
Then, we have

minmax f(x = maxmin f(z,vy).
mip ma f(x,y) s min f(, y)

Proof. We have shown in Section 3 that

minmax f(x,y) > maxmin f(x,y).
min max f(z,y) > maxmin f(z,y)

We next show the other direction by the regret of OMD. We run a repeated game where the players
choose a strategy xy,y; at each round ¢t. The z player chooses z; according to OMD, while y; is
always chosen as

Yt = argmax yeyf(l’t, ?J) (2)
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Let the average strategies be

o T—1 ! T—1
=T T, Y= T Yt-
t=0 t=0
For the = player, using Theorem 4, we have
T—1 T—1
\/ﬁRG
regret(T) = f(ze, yr) fle,y) < ——. (3)

t=0 t:O \/ﬁ

Recall that fx(z) = maxycy f(z,y) and fy(y) = mingex f(z,y). Noting that fx(z) is convex and
using the concavity of f(z,-), we have

1 T-1
gg)r(lf;leaff(ﬁf y) = min fx(2) < f2(2) < 7 2 fx (), (4)
1 T-1
max min f (2,y) = max fy(y) = fy(y) = min f(z,y) > min - 2 f(z,y). (5)

Moreover, it follows from (2) that
f(@e,y¢) = max f(xy,y) = fa(ze).
yey

Combining the above relation and (4), we obtain

=
min max f(x,y) E (e, yt)-
zEX yey —o ’

Plugging this inequality and (5) into the regret (3), we have

zeX yeY yeY reX

_ T—
min mas £z, y) — maxmin f(r,) < 7 > e - - min > Sl

_ regret(T) (i) V2RG

T ST

Taking the limit T" — oo, we have

min max f(x < maxmin f(x
TEX yey f( y) yeY zeX f( y)

Therefore, “=" holds and the theorem is proved. O
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