

Smoothing Techniques

Lecturer: Jiaming Liang \Box November 12, 2024

Recall that the convex nonsmooth optimization complexity is

$$
\mathcal{O}\left(\frac{M^2d_0^2}{\varepsilon^2}\right),
$$

which is optimal for a black-box model, i.e., unstructured problems. However, if we know some structure of the problem, the complexity could be improved by taking advantage of this structural information. In this lecture, we explore the smoothable structure in nonsmooth optimization. The goal is to improve the complexity from $\mathcal{O}(\varepsilon^{-2})$ to $\mathcal{O}(\varepsilon^{-1})$.

Consider

$$
\min_{x \in \mathbb{R}^n} \{ \phi(x) := f(x) + h(x) + \theta(x) \}
$$
\n(1)

where f is convex, differentiable everywhere and L-smooth, h is closed, convex and simple, and θ is convex (but not simple) and smoothable.

Definition 1. A function θ is (C_1, C_2) -smoothable if there exist a scalar $\mu > 0$ and a convex and differentiable function θ_{μ} such that

- $\theta_{\mu}(x) \leq \theta(x) \leq \theta_{\mu}(x) + C_2 \mu;$
- $\nabla \theta_{\mu}$ is $\frac{C_1}{\mu}$ -Lipschitz continuous.

For some $\mu > 0$, we consider an auxiliary problem

$$
\min_{x\in\mathbb{R}^n}\{\phi_\mu(x):=f(x)+h(x)+\theta_\mu(x)\}.
$$

Let $f_{\mu}(x) = f(x) + \theta_{\mu}(x)$, then we know f_{μ} is convex, differentiable everywhere, and ∇f_{μ} is $\left(L+\frac{C_1}{\mu}\right)$ -Lipschitz continuous. Apply the ACG method with FISTA update to solve the auxiliary problem.

Smoothing Techniques-1

Algorithm 1 FISTA

Input: Initial point $x_0 \in \text{dom } h$, $L_\mu = L + \frac{C_1}{\mu}$, set $y_0 = x_0$, $A_0 = 0$. for $k \geq 0$ do Step 1. Compute

$$
a_k = \frac{1 + \sqrt{1 + 4L_\mu A_k}}{2L_\mu}, \quad A_{k+1} = A_k + a_k, \quad \tilde{x}_k = \frac{A_k y_k + a_k x_k}{A_{k+1}}
$$
(2)

Step 2. Compute x_{k+1} and y_{k+1}

$$
y_{k+1} = \underset{a_k}{\text{argmin}} \left\{ \ell_{f_\mu}(x; \tilde{x}_k) + h(x) + \frac{L_\mu}{2} \|x - \tilde{x}_k\|^2 : x \in \mathbb{R}^n \right\},\,
$$

$$
x_{k+1} = \frac{A_{k+1}}{a_k} y_{k+1} - \frac{A_k}{a_k} y_k.
$$

end for

Theorem 1. If $\mu = \frac{\varepsilon}{26}$ $\frac{\varepsilon}{2C_2}$, then FISTA finds y_k such that $\phi(y_k) - \phi_* \leq \varepsilon$ in at most

$$
\mathcal{O}\left(\|x_0 - x_*\| \left(\sqrt{\frac{L}{\varepsilon}} + \frac{\sqrt{C_1 C_2}}{\varepsilon}\right)\right)
$$

iterations.

Proof. In view of the first condition in Definition 1, we have for every $x \in \text{dom } h$,

$$
\phi_{\mu}(x) \le \phi(x) \le \phi_{\mu}(x) + C_2 \mu.
$$

Using this inequality and Theorem 1 of Lecture 7, we have

$$
\phi(y_k) - \phi_* = \phi(y_k) - \phi_\mu(y_k) + \phi_\mu(y_k) - \phi_\mu(x_*) + \phi_\mu(x_*) - \phi_*
$$

\n
$$
\leq C_2 \mu + \phi_\mu(y_k) - \phi_\mu(x_*) + 0
$$

\n
$$
= \frac{\varepsilon}{2} + \frac{2L_\mu \|x_0 - x_*\|^2}{k^2}
$$

\n
$$
= \frac{\varepsilon}{2} + 2\left(L + \frac{C_1}{\mu}\right) \frac{\|x_0 - x_*\|^2}{k^2},
$$

where the last identity is due to the definition of L_{μ} in Algorithm 1. To find ε -solution, the complexity is

$$
\mathcal{O}\left(\|x_0-x_*\|\left(\sqrt{\frac{L}{\varepsilon}}+\frac{\sqrt{C_1C_2}}{\varepsilon}\right)\right).
$$

Smoothing Techniques-2

Example

Consider the saddle point problem

$$
\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} f(x) + h(x) + \langle Ax, y \rangle - g(y)
$$

or

$$
\min_{x \in \mathbb{R}^n} f(x) + h(x) + \max_{y \in \mathbb{R}^m} \langle Ax, y \rangle - g(y),
$$

where f is convex, differentiable everywhere and L -smooth, h is closed, convex and simple, g is a closed and convex fucntion, and dom g is bounded.

Define

$$
\theta(x) = \max_{y \in \mathbb{R}^m} \langle Ax, y \rangle - g(y) = g^*(Ax), \quad A \in \mathbb{R}^{m \times n}.
$$

Then, the problem is in the form of (1) and $\theta(x)$ is convex but not necessarily smooth.

Lemma 1. Assume \tilde{g} is a closed and μ -strongly convex function, then

$$
\tilde{\theta}(z) = (\tilde{g})^*(z) = \sup_{y \in \mathbb{R}^m} \langle z, y \rangle - \tilde{g}(y)
$$

is convex and differentiable everywhere, and $\nabla \tilde{\theta}(z) = y(z)$. Moreover, $\nabla \tilde{\theta}$ is $\frac{1}{\mu}$ -Lipschitz continuous. Proof. See Lecture 5. \Box

In our setup, we let

$$
\tilde{g}(y) = g(y) + \frac{\mu}{2} ||y - y_0||
$$

for some $y_0 \in \text{dom } h$ and

$$
\tilde{\theta}_{\mu}(z) = \sup_{y \in \mathbb{R}^m} \left\{ \langle z, y \rangle - g(y) - \frac{\mu}{2} ||y - y_0||^2 \right\}.
$$

Then,

$$
\nabla \tilde{\theta}_{\mu}(z) = y_{\mu}(z)
$$

and it is $\frac{1}{\mu}$ -Lipschitz continuous. Now let

$$
\theta_{\mu}(x) = \tilde{\theta}_{\mu}(Ax),
$$

then θ_{μ} is $\frac{\|A\|^2}{\mu}$ $\frac{4\mathbb{I}^2}{\mu}$ -smooth. So we have $C_1 = ||A||^2$. Moreover, we have for every $x \in \text{dom } h$,

$$
\theta_{\mu}(x) - \theta(x) \le \frac{\mu}{2} \max_{y \in \text{dom } g} ||y - y_0||^2,
$$

so

$$
C_2 = \frac{1}{2} \operatorname{Diam}(\operatorname{dom} g)^2.
$$

Finally, applying Theorem 1, the complexity to find ε -solution is

$$
\mathcal{O}\left(\|x_0-x_*\|\left(\sqrt{\frac{L}{\varepsilon}}+\frac{\|A\|\operatorname{Diam}(\operatorname{dom} g)}{\varepsilon}\right)\right).
$$

Smoothing Techniques-3