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1 Smoothing

Recall that the convex nonsmooth optimization complexity is

O
(
M2d20
ε2

)
,

which is optimal for a black-box model, i.e., unstructured problems. However, if we know some

structure of the problem, the complexity could be improved by taking advantage of this structural

information. In this lecture, we explore the smoothable structure in nonsmooth optimization. The

goal is to improve the complexity form O(ε−2) to O(ε−1).

Consider

min
x∈Rn

{ϕ(x) := f(x) + h(x) + θ(x)} (1)

where f is convex, differentiable everywhere and L-smooth, h is closed, convex and simple, and θ

is convex (but not simple) and smoothable.

Definition 1. A function θ is (C1, C2)-smoothable if there exist a scalar µ > 0 and a convex and

differentiable function θµ such that

• θµ(x) ≤ θ(x) ≤ θµ(x) + C2µ;

• ∇θµ is C1
µ -Lipschitz continuous.

For some µ > 0, we consider an auxiliary problem

min
x∈Rn

{ϕµ(x) := f(x) + h(x) + θµ(x)}.

Let fµ(x) = f(x) + θµ(x), then we know fµ is convex , differentiable everywhere, and ∇fµ is(
L+ C1

µ

)
-Lipschitz continuous. Apply the ACG method with FISTA update to solve the auxiliary

problem.
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Algorithm 1 FISTA

Input: Initial point x0 ∈ domh, Lµ = L+ C1
µ , set y0 = x0, A0 = 0.

for k ≥ 0 do

Step 1. Compute

ak =
1 +

√
1 + 4LkAk

2Lk
, Ak+1 = Ak + ak, x̃k =

Akyk + akxk
Ak+1

(2)

Step 2. Compute xk+1 and yk+1

yk+1 = argmin

{
ℓfµ(x; x̃k) + h(x) +

Lµ

2
∥x− x̃k∥2 : x ∈ Rn

}
,

xk+1 =
Ak+1

ak
yk+1 −

Ak

ak
yk.

end for

Theorem 1. If µ = ε
2C2

, then FISTA finds yk such that ϕ(yk)− ϕ∗ ≤ ε in at most

O

(
∥x0 − x∗∥

(√
L

ε
+

√
C1C2

ε

))

iterations.

Proof. In view of the first condition in Definition 1, we have for every x ∈ domh,

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) + C2µ.

Using this inequality and Theorem 1 of Lecture 7, we have

ϕ(yk)− ϕ∗ = ϕ(yk)− ϕµ(yk) + ϕµ(yk)− ϕµ(x∗) + ϕµ(x∗)− ϕ∗

≤ C2µ+ ϕµ(yk)− ϕµ(x∗) + 0

=
ε

2
+

2Lµ∥x0 − x∗∥2

k2

=
ε

2
+ 2

(
L+

C1

µ

)
∥x0 − x∗∥2

k2
,

where the last identity is due to the definition of Lµ in Algorithm 1. To find ε-solution, the

complexity is

O

(
∥x0 − x∗∥

(√
L

ε
+

√
C1C2

ε

))
.
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Example

Consider the saddle point problem

min
x∈Rn

max
y∈Rm

f(x) + h(x) + ⟨Ax, y⟩ − g(y)

or

min
x∈Rn

f(x) + h(x) + max
y∈Rm

⟨Ax, y⟩ − g(y),

where f is convex, differentiable everywhere and L-smooth, h is closed, convex and simple, g is a

closed and convex fucntion, and dom g is bounded.

Define

θ(x) = max
y∈Rm

⟨Ax, y⟩ − g(y) = g∗(Ax), A ∈ Rm×n.

Then, the problem is in the form of (1) and θ(x) is convex but not necessarily smooth.

Lemma 1. Assume g̃ is a closed and µ-strongly convex function, then

θ̃(z) = (g̃)∗(z) = sup
y∈Rm

⟨z, y⟩ − g̃(y)

is convex and differentiable everywhere, and ∇θ̃(z) = y(z). Moreover, ∇θ̃ is 1
µ -Lipschitz continuous.

Proof. See Lecture 5.

In our setup, we let

g̃(y) = g(y) +
µ

2
∥y − y0∥

for some y0 ∈ domh and

θ̃µ(z) = sup
y∈Rm

{
⟨z, y⟩ − g(y)− µ

2
∥y − y0∥2

}
.

Then,

∇θ̃µ(z) = yµ(z)

and it is 1
µ -Lipschitz continuous. Now let

θµ(x) = θ̃µ(Ax),

then θµ is ∥A∥2
µ -Lipschitz continuous. So we have C1 = ∥A∥2. Moreover, we have for every x ∈

domh,

θµ(x)− θ(x) ≤ µ

2
max

y∈dom g
∥y − y0∥2,

so

C2 =
1

2
Diam(g)2.

Finally, applying Theorem 1, the complexity to find ε-solution is

O

(
∥x0 − x∗∥

(√
L

ε
+

∥A∥Diam(g)

ε

))
.
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