DSCC/CSC 435 & ECE 412 Optimization for Machine Learning

Lecture 10

Stochastic Approximation

Lecturer: Jiaming Liang

October 31, 2024

Kaczmarz method???

1 Stochastic optimization

Sampling from a probability distribution $P_0(x) \propto \exp(-f(x))$ can be cast as an optimization

$$\min_{P \in \mathcal{P}_2(\mathbb{R}^d)} \mathrm{KL}(P||P_0).$$

Note that $\mathrm{KL}(\cdot||\cdot)$ is not symmetric, $\mathrm{KL}(\mu||\nu) \geq 0$, and $\mathrm{KL}(\mu||\nu) = 0$ if and only if $\mu = \nu$. If we parametrize the target distribution P_0 as P_{θ_0} where $\theta_0 \in \mathbb{R}^n$ and switch P and P_0 , then we reformulate the problem as

$$\min_{P_{\theta} \in \mathcal{P}_2(\mathbb{R}^d)} \mathrm{KL}(P_{\theta_0}||P_{\theta}).$$

By the definition of KL divergence, we have

$$\begin{split} \min_{P_{\theta} \in \mathcal{P}_{2}(\mathbb{R}^{d})} \mathrm{KL}(P_{\theta_{0}} || P_{\theta}) &= \min_{P_{\theta} \in \mathcal{P}_{2}(\mathbb{R}^{d})} \int \log \frac{P_{\theta_{0}}(z)}{P_{\theta}(z)} P_{\theta_{0}}(z) dz \\ &= \min_{P_{\theta} \in \mathcal{P}_{2}(\mathbb{R}^{d})} \int \log P_{\theta_{0}}(z) P_{\theta_{0}}(z) dz - \int \log P_{\theta}(z) P_{\theta_{0}}(z) dz \\ &= \int \log P_{\theta_{0}}(z) P_{\theta_{0}}(z) dz - \max_{P_{\theta} \in \mathcal{P}_{2}(\mathbb{R}^{d})} \int \log P_{\theta}(z) P_{\theta_{0}}(z) dz \\ &= \int \log P_{\theta_{0}}(z) P_{\theta_{0}}(z) dz - \max_{\theta \in \Theta} \mathbb{E}_{z \sim P_{\theta_{0}}} [\log P_{\theta}(z)]. \end{split}$$

The infinite dimensional optimization problem thus reduces to an n-dimensional problem

$$\max_{\theta \in \Theta} \mathbb{E}_{z \sim P_{\theta_0}}[\log P_{\theta}(z)],\tag{1}$$

and can be generalized as stochastic optimization (SO)

$$\min_{x \in \mathbb{R}^n} \{ \phi(x) := f(x) + h(x) \}, \quad f(x) = \mathbb{E}_{\xi}[F(x, \xi)].$$
 (2)

Problem (1) is indeed the maximum likelihood estimation (MLE). A standard way to solve MLE (1) (and SO (2) in general) is to solve its sample average approximation (SAA), namely, taking

independent and identically distributed (i.i.d.) samples Z_1, \ldots, Z_N of $Z \sim P_{\theta_0}$ and optimizing the average of the function value samples,

$$\max_{\theta \in \Theta} \left\{ \ell(\theta|Z) := \frac{1}{N} \sum_{i=1}^{N} \log P_{\theta}(Z_i) \right\}.$$

Since we take the i.i.d. samples first and then solve the deterministic optimization problem, this is an offline approach. In contrast, we can take a sample of the function value (if necessary) and its first-order information, and perform a (proximal) gradient step. This method is called stochastic approximation (SA) and is an online approach.

2 Stochastic approximation

To study the SA approach for solving (2), we need the following assumptions.

- (A1) both f and h are closed and convex functions;
- (A2) for almost every $\xi \in \Xi$, a functional oracle $F(\cdot, \xi) : \text{dom } h \to \mathbb{R}$ and a stochastic gradient oracle $s(\cdot, \xi) : \text{dom } h \to \mathbb{R}^n$ satisfying

$$f(x) = \mathbb{E}[F(x,\xi)], \quad f'(x) = \mathbb{E}[s(x,\xi)] \in \partial f(x)$$

for every $x \in \text{dom } h$ are available;

- (A3) for every $x \in \text{dom } h$, we have $\mathbb{E}[\|s(x,\xi) f'(x)\|^2] \le \sigma^2$;
- (A4) for every $x, y \in \text{dom } h$,

$$f(x) - f(y) - \langle f'(y), x - y \rangle \le 2M \|x - y\| + \frac{L}{2} \|x - y\|^2.$$
 (3)

In this section, we are particularly interested in the stochastic version of the proximal subgradient method, which is an SA-type method.

Algorithm 1 Stochastic subgradient method

Input: Initial point $x_0 \in \mathbb{R}^n$

for $k \ge 0$ do

Step 1. Choose $\lambda_k \in (0, 1/(2L))$ and generate a stochastic gradient $s(x_k; \xi_k)$

Step 2. Compute

$$x_{k+1} = \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \langle s(x_k; \xi_k), u \rangle + h(u) + \frac{1}{2\lambda_k} ||u - x_k||^2 \right\}.$$

end for

2.1 Convergence in expectation

Lemma 1. For every $k \geq 0$, we have

$$\lambda_{k} \left(\phi(x_{k+1}) - \phi(x_{*}) \right) \leq \frac{1}{2} \|x_{k} - x_{*}\|^{2} - \frac{1}{2} \|x_{k+1} - x_{*}\|^{2} + \frac{4\lambda_{k}^{2} M^{2}}{1 - 2\lambda_{k} L} + \lambda_{k} \langle s(x_{k}; \xi_{k}) - f'(x_{k}), x_{*} - x_{k} \rangle + \lambda_{k}^{2} \|s(x_{k}; \xi_{k}) - f'(x_{k})\|^{2}.$$

$$(4)$$

Proof. It follows from step 2 of Algorithm 1 that for every $u \in \text{dom } h$,

$$\langle s(x_k;\xi_k),u\rangle + h(u) + \frac{1}{2\lambda_k}\|u - x_k\|^2 \ge \langle s(x_k;\xi_k),x_{k+1}\rangle + h(x_{k+1}) + \frac{1}{2\lambda_k}\|x_{k+1} - x_k\|^2 + \frac{1}{2\lambda_k}\|x_{k+1} - u\|^2$$

Taking $u = x_*$ in the above inequality and using the convexity of f and (3) with $(x, y) = (x_{k+1}, x_k)$, we have

$$f(x_{*}) - \langle f'(x_{k}), x_{*} - x_{k} \rangle + h(x_{*}) + \langle s(x_{k}; \xi_{k}), x_{*} \rangle + \frac{1}{2\lambda_{k}} \|x_{k} - x_{*}\|^{2}$$

$$\geq f(x_{k}) + h(x_{*}) + \langle s(x_{k}; \xi_{k}), x_{*} \rangle + \frac{1}{2\lambda_{k}} \|x_{k} - x_{*}\|^{2}$$

$$\geq f(x_{k}) + h(x_{k+1}) + \langle s(x_{k}; \xi_{k}), x_{k+1} \rangle + \frac{1}{2\lambda_{k}} \|x_{k+1} - x_{k}\|^{2} + \frac{1}{2\lambda_{k}} \|x_{k+1} - x_{*}\|^{2}$$

$$\geq f(x_{k+1}) - \langle f'(x_{k}), x_{k+1} - x_{k} \rangle - 2M \|x_{k+1} - x_{k}\| + \frac{1 - \lambda_{k}L}{2\lambda_{k}} \|x_{k+1} - x_{k}\|^{2}$$

$$+ h(x_{k+1}) + \langle s(x_{k}; \xi_{k}), x_{k+1} \rangle + \frac{1}{2\lambda_{k}} \|x_{k+1} - x_{*}\|^{2}.$$

Rearranging the terms, we have

$$\lambda_k \left(\phi(x_{k+1}) - \phi(x_*) \right) \le \frac{1}{2} \|x_k - x_*\|^2 - \frac{1}{2} \|x_{k+1} - x_*\|^2 + 2\lambda_k M \|x_{k+1} - x_k\| - \frac{1 - \lambda_k L}{2} \|x_{k+1} - x_k\|^2 + \lambda_k \langle s(x_k; \xi_k) - f'(x_k), x_* - x_k \rangle + \lambda_k \langle s(x_k; \xi_k) - f'(x_k), x_k - x_{k+1} \rangle.$$

Using the above inequality, the Cauchy-Schwarz inequality, and the fact $\lambda_k < 1/(2L)$, we have

$$\lambda_{k} (\phi(x_{k+1}) - \phi(x_{*})) \leq \frac{1}{2} \|x_{k} - x_{*}\|^{2} - \frac{1}{2} \|x_{k+1} - x_{*}\|^{2} + 2\lambda_{k} M \|x_{k+1} - x_{k}\| - \frac{1 - \lambda_{k} L}{2} \|x_{k+1} - x_{k}\|^{2}$$

$$+ \lambda_{k} \langle s(x_{k}; \xi_{k}) - f'(x_{k}), x_{*} - x_{k} \rangle + \lambda_{k}^{2} \|s(x_{k}; \xi_{k}) - f'(x_{k})\|^{2} + \frac{1}{4} \|x_{k+1} - x_{k}\|^{2}$$

$$\leq \frac{1}{2} \|x_{k} - x_{*}\|^{2} - \frac{1}{2} \|x_{k+1} - x_{*}\|^{2} + 2\lambda_{k} M \|x_{k+1} - x_{k}\| - \frac{1 - 2\lambda_{k} L}{4} \|x_{k+1} - x_{k}\|^{2}$$

$$+ \lambda_{k} \langle s(x_{k}; \xi_{k}) - f'(x_{k}), x_{*} - x_{k} \rangle + \lambda_{k}^{2} \|s(x_{k}; \xi_{k}) - f'(x_{k})\|^{2}.$$

Finally, (4) follows from the above inequality and the AM-GM inequality.

Theorem 1. If $\lambda_k < 1/(2L)$ for every $k \ge 0$, then

$$\mathbb{E}_{\xi_{[k-1]}}\left[\phi(\bar{x}_k)\right] - \phi(x_*) \le \frac{d_0^2 + \sum_{i=0}^{k-1} \frac{8\lambda_i^2 M^2}{1 - \lambda_i L} + \sum_{i=0}^{k-1} 2\lambda_i^2 \sigma^2}{2\sum_{i=0}^{k-1} \lambda_i}$$
(5)

where

$$\bar{x}_k := \frac{\sum_{i=0}^{k-1} \lambda_i x_{i+1}}{\sum_{i=0}^{k-1} \lambda_i}, \quad d_0 := \|x_0 - x_*\|.$$

$$(6)$$

As a consequence, if

$$\lambda_k = \lambda = \min\left\{\frac{\varepsilon}{16M^2 + 2\sigma^2}, \frac{1}{4L}\right\},\tag{7}$$

then we find \bar{x}_k such that $\mathbb{E}_{\xi_{[k-1]}} \left[\phi(\bar{x}_k) \right] - \phi(x_*) \leq \varepsilon$ in at most

$$\max\left\{\frac{4Ld_0^2}{\varepsilon}, \frac{(16M^2 + 2\sigma^2)d_0^2}{\varepsilon^2}\right\}$$

iterations.

Proof. Taking expectation of (4) w.r.t. ξ_k conditioned on $\xi_{[k-1]}$ and using (A2) and (A3), we have

$$\begin{split} \lambda_k \mathbb{E}_{\xi_k} \left[\phi(x_{k+1}) | \xi_{[k-1]} \right] - \lambda_k \phi(x_*) &\leq \frac{1}{2} \|x_k - x_*\|^2 - \frac{1}{2} \mathbb{E}_{\xi_k} \left[\|x_{k+1} - x_*\|^2 | \xi_{[k-1]} \right] + \frac{4\lambda_k^2 M^2}{1 - 2\lambda_k L} \\ &\quad + \lambda_k^2 \mathbb{E}_{\xi_k} \left[\|s(x_k; \xi_k) - s_k\|^2 | \xi_{[k-1]} \right] \\ &\leq \frac{1}{2} \|x_k - x_*\|^2 - \frac{1}{2} \mathbb{E}_{\xi_k} \left[\|x_{k+1} - x_*\|^2 | \xi_{[k-1]} \right] + \frac{4\lambda_k^2 M^2}{1 - 2\lambda_k L} + \lambda_k^2 \sigma^2. \end{split}$$

Taking expectation of the above inequality w.r.t. $\xi_{[k-1]}$ and using the law of total expectation, we have

$$\lambda_k \mathbb{E}_{\xi_{[k]}} \left[\phi(x_{k+1}) \right] - \lambda_k \phi(x_*) \le \frac{1}{2} \mathbb{E}_{\xi_{[k-1]}} \left[\|x_k - x_*\|^2 \right] - \frac{1}{2} \mathbb{E}_{\xi_{[k]}} \left[\|x_{k+1} - x_*\|^2 \right] + \frac{4\lambda_k^2 M^2}{1 - 2\lambda_k L} + \lambda_k^2 \sigma^2.$$

Summing the above inequality from k = 0 to k - 1, we obtain

$$\sum_{i=0}^{k-1} \lambda_i \left[\mathbb{E}_{\xi_{[i]}} \left[\phi(x_{i+1}) \right] - \phi(x_*) \right] \le \frac{1}{2} d_0^2 + \sum_{i=0}^{k-1} \frac{4\lambda_i^2 M^2}{1 - 2\lambda_i L} + \sum_{i=0}^{k-1} \lambda_i^2 \sigma^2.$$

Using the convexity of ϕ and the definition of \bar{x}_k in (6), we show (5) holds. Using the constant stepsize λ as defined in (7), we have that relation (5) implies

$$\mathbb{E}_{\xi_{[k-1]}}\left[\phi(\bar{x}_k)\right] - \phi(x_*) \le \frac{d_0^2}{2\lambda k} + 8\lambda M^2 + \lambda \sigma^2 \le \frac{d_0^2}{2\lambda k} + \frac{\varepsilon}{2}$$

The last conclusion of the theorem follows from the above inequality and (7).

Corollary 1. Assume $\lambda_k = \lambda$ is as in (7), then the complexity to find \bar{x}_k such that

$$\mathbb{P}(\phi(\bar{x}_k) - \phi_* \le \varepsilon) \ge 1 - p,$$

where $p \in (0,1)$, is

$$\mathcal{O}\left(\max\left\{\frac{Ld_0^2}{\varepsilon p}, \frac{(M^2 + \sigma^2)d_0^2}{\varepsilon^2 p^2}\right\}\right).$$
(8)

Proof. If we have

$$\mathbb{E}[\phi(\bar{x}_k)] - \phi_* \le p\varepsilon,\tag{9}$$

then it follows from the Markov's inequality that

$$\mathbb{P}(\phi(\bar{x}_k) - \phi_* \ge \varepsilon) \le \frac{\mathbb{E}[\phi(\bar{x}_k)] - \phi_*}{\varepsilon} \le p.$$

Hence, using Theorem 1, we obtain the complexity to find \bar{x}_k such that (9) holds is (8). Therefore, the corollary follows.

2.2 High probability result

It is possible, however, to obtain much finer bounds on deviation probabilities when imposing more restrictive assumptions on the distribution of $s(x,\xi)$. Specifically, assume the following "light-tail" condition.

Assumption 1. For any $x \in \text{dom } h$, we have

$$\mathbb{E}\left[\exp\left(\|s(x,\xi) - \nabla f(x)\|^2 / \sigma^2\right)\right] \le \exp(1).$$

It can be seen that Assumption 1 implies (A3). Indeed, if a random variable X satisfies $\mathbb{E}[\exp(X/a)] \leq \exp(1)$ for some a > 0, then by Jensen's inequality

$$\exp(\mathbb{E}[X/a]) \le \mathbb{E}[\exp(X/a)] \le \exp(1),$$

and thus $\mathbb{E}[X] \leq a$. Of course, Assumption 1 holds if $||s(x,\xi) - \nabla f(x)||^2 \leq \sigma^2$ for all $x \in \text{dom } h$ and almost every $\xi \in \Xi$.

Assumption 1 is sometimes called the sub-Gaussian assumption. Many different random variables, such as Gaussian, uniform, and any random variables with a bounded support, will satisfy this assumption.

The following result is well-known for the martingale-difference sequence.

Lemma 2. Let $\xi_{[k]} \equiv \{\xi_1, \xi_2, \dots, \xi_k\}$ be a sequence of i.i.d. random variables, and $\zeta_k = \zeta_k \left(\xi_{[k]}\right)$ be deterministic Borel functions of $\xi_{[k]}$ such that $\mathbb{E}\left[\zeta_k \mid \xi_{[k-1]}\right] = 0$ a.s. and $\mathbb{E}\left[\exp\left(\zeta_k^2/\sigma_k^2\right) \mid \xi_{[k-1]}\right] \leq \exp(1)$ a.s., where $\sigma_k > 0$ are deterministic. Then for any $\gamma \geq 0$, we have

$$\mathbb{P}\left(\sum_{i=1}^{k} \zeta_i > \gamma \sqrt{\sum_{i=1}^{k} \sigma_i^2}\right) \le \exp\left(-\frac{\gamma^2}{3}\right).$$

Proof. Denote $\bar{\zeta}_k = \zeta_k/\sigma_k$. Then, we have

$$\mathbb{E}[\bar{\zeta}_k \mid \xi_{[k-1]}] = 0, \quad \mathbb{E}[\exp(\bar{\zeta}_k) \mid \xi_{[k-1]}] \le \exp(1). \tag{10}$$

Also note that $\exp(x) \leq x + \exp(9x^2/16)$ for all $x \in \mathbb{R}$. Using this relation with $x = \alpha \bar{\zeta}_k$ for $\alpha \in [0, 4/3]$ and (10), we have

$$\mathbb{E}[\exp(\alpha \bar{\zeta}_k) \mid \xi_{[k-1]}] \le \mathbb{E}[\exp(9\alpha^2 \bar{\zeta}_k^2 / 16) \mid \xi_{[k-1]}] \le \exp\left(\frac{9\alpha^2}{16}\right). \tag{11}$$

It follows from the fact that $\alpha x \leq \frac{3}{8}\alpha^2 + \frac{2}{3}x^2$ that

$$\mathbb{E}[\exp(\alpha \bar{\zeta}_k) \mid \xi_{[k-1]}] \le \exp\left(\frac{3\alpha^2}{8}\right) \mathbb{E}[\exp(2\bar{\zeta}_k^2/3) \mid \xi_{[k-1]}] \le \exp\left(\frac{3\alpha^2}{8} + \frac{2}{3}\right),$$

and hence that for $\alpha \geq 4/3$,

$$\mathbb{E}[\exp(\alpha \bar{\zeta}_k) \mid \xi_{[k-1]}] \le \exp\left(\frac{3\alpha^2}{4}\right). \tag{12}$$

Combining (11) and (12), we have for every $\alpha \geq 0$,

$$\mathbb{E}[\exp(\alpha \bar{\zeta}_k) \mid \xi_{[k-1]}] \le \exp\left(\frac{3\alpha^2}{4}\right),\,$$

or equivalently every $t \geq 0$,

$$\mathbb{E}[\exp(t\zeta_k) \mid \xi_{[k-1]}] \le \exp\left(\frac{3t^2\sigma_k^2}{4}\right).$$

Since ζ_k is a deterministic function of $\xi_{[k]}$, we have the recurrence

$$\mathbb{E}\left[\exp\left(t\sum_{i=1}^{k}\zeta_{i}\right)\right] = \mathbb{E}\left[\exp\left(t\sum_{i=1}^{k-1}\zeta_{i}\right)\mathbb{E}\left[\exp(t\zeta_{k})\mid\xi_{[k-1]}\right]\right]$$

$$\leq \exp\left(\frac{3t^{2}\sigma_{k}^{2}}{4}\right)\mathbb{E}\left[\exp\left(t\sum_{i=1}^{k-1}\zeta_{i}\right)\right].$$

Hence, we have for every $t \geq 0$,

$$\mathbb{E}\left[\exp\left(t\sum_{i=1}^{k}\zeta_{i}\right)\right] \leq \exp\left(\frac{3t^{2}\sum_{i=1}^{k}\sigma_{i}^{2}}{4}\right).$$

Applying the Chebyshev's inequality, we have for $\gamma > 0$ and every $t \geq 0$,

$$\mathbb{P}\left(\sum_{i=1}^{k} \zeta_{i} \geq \gamma \sqrt{\sum_{i=1}^{k} \sigma_{i}^{2}}\right) \leq \exp\left(-t\gamma \sqrt{\sum_{i=1}^{k} \sigma_{i}^{2}}\right) \mathbb{E}\left[\exp\left(t\sum_{i=1}^{k} \zeta_{i}\right)\right]$$

$$\leq \exp\left(-t\gamma \sqrt{\sum_{i=1}^{k} \sigma_{i}^{2}}\right) \exp\left(\frac{3t^{2} \sum_{i=1}^{k} \sigma_{i}^{2}}{4}\right).$$

Since the above inequality holds for every $t \geq 0$,

$$\mathbb{P}\left(\sum_{i=1}^{k} \zeta_i \ge \gamma \sqrt{\sum_{i=1}^{k} \sigma_i^2}\right) \le \inf_{t \ge 0} \exp\left(-t\gamma \sqrt{\sum_{i=1}^{k} \sigma_i^2}\right) \exp\left(\frac{3t^2 \sum_{i=1}^{k} \sigma_i^2}{4}\right)$$
$$= \exp\left(-\frac{\gamma^2}{3}\right).$$

Theorem 2. Assume dom h has finite diameter D. Then, for every $\gamma \geq 0$, the average point \bar{x}_k as in (6) satisfies

$$\mathbb{P}\left(\phi(\bar{x}_k) - \phi_* \ge \left[2\sum_{i=0}^{k-1} \lambda_i\right]^{-1} \left[d_0^2 + \sum_{i=0}^{k-1} \frac{8\lambda_i^2 M^2}{1 - 2\lambda_i L} + 2\gamma D\sigma \sqrt{\sum_{i=0}^{k-1} \lambda_i^2} + 2(1+\gamma)\sigma^2 \sum_{i=0}^{k-1} \lambda_i^2\right]\right) \le \exp\left(-\frac{\gamma^2}{3}\right) + \exp(-\gamma).$$
(13)

Proof. Let $\zeta_k = \lambda_k \langle s(x_k; \xi_k) - f'(x_k), x_* - x_k \rangle$ and $\Delta_k = \|s(x_k; \xi_k) - f'(x_k)\|$. Then, (4) becomes

$$\lambda_k \left(\phi(x_{k+1}) - \phi(x_*) \right) \le \frac{1}{2} \|x_k - x_*\|^2 - \frac{1}{2} \|x_{k+1} - x_*\|^2 + \frac{4\lambda_k^2 M^2}{1 - 2\lambda_k L} + \zeta_k + \lambda_k^2 \Delta_k^2.$$

Summing the above inequality over iterations gives

$$\phi(\bar{x}_k) - \phi(x_*) \le \frac{d_0^2 + \sum_{i=0}^{k-1} \frac{8\lambda_i^2 M^2}{1 - 2\lambda_i L} + \sum_{i=0}^{k-1} 2\zeta_i + \sum_{i=0}^{k-1} 2\lambda_i^2 \Delta_i^2}{2\sum_{i=0}^{k-1} \lambda_i}.$$
(14)

Clearly, it follows (A2) that $\mathbb{E}\left[\zeta_k \mid \xi_{[k-1]}\right] = 0$, i.e., $\{\zeta_k\}$ is a martingale-difference sequence. Moreover, it follows from the Cauchy-Schwarz inequality, the boundedness of dom h, and Assumption 1 that

$$\mathbb{E}\left[\exp\left\{\zeta_k^2/(\lambda_k D\sigma)^2\right\} \mid \xi_{[k-1]}\right] \leq \mathbb{E}\left[\exp\left\{(\lambda_k D\Delta_k)^2/(\lambda_k D\sigma)^2\right\} \mid \xi_{[k-1]}\right] \leq \exp(1).$$

Stochastic Approximation-7

Using the previous two observations and Lemma 2, we have for every $\gamma \geq 0$,

$$\mathbb{P}\left(\sum_{i=0}^{k-1} \zeta_i > \gamma D\sigma \sqrt{\sum_{i=0}^{k-1} \lambda_i^2}\right) \le \exp\left(-\frac{\gamma^2}{3}\right). \tag{15}$$

It follows from the convexity of $\exp(\cdot)$ that

$$\exp\left\{ \sum_{i=0}^{k-1} \lambda_i^2 \Delta_i^2 \middle/ \left(\sigma^2 \sum_{i=1}^{k-1} \lambda_i^2 \right) \right\} \le \sum_{i=1}^{k-1} \frac{\lambda_i^2}{\sum_{i=1}^{k-1} \lambda_i^2} \exp(\Delta_i^2 / \sigma^2).$$

Taking expectation of the above inequality and using Assumption 1, i.e., $\mathbb{E}[\exp(\Delta_i^2/\sigma^2)] \leq \exp(1)$, we obtain

$$\mathbb{E}\left[\exp\left\{\sum_{i=0}^{k-1} \lambda_i^2 \Delta_i^2 \middle/ \left(\sigma^2 \sum_{i=1}^{k-1} \lambda_i^2\right)\right\}\right] \le \exp(1). \tag{16}$$

This inequality and the Markov's inequality imply that for every $\gamma \geq 0$,

$$\mathbb{P}\left(\sum_{i=0}^{k-1} \lambda_i^2 \Delta_i^2 \ge (1+\gamma)\sigma^2 \sum_{i=0}^{k-1} \lambda_i^2\right) = \mathbb{P}\left(\exp\left\{\sum_{i=0}^{k-1} \lambda_i^2 \Delta_i^2 \middle/ \left(\sigma^2 \sum_{i=1}^{k-1} \lambda_i^2\right)\right\} \ge \exp(1+\gamma)\right) \\
\le \mathbb{E}\left[\exp\left(\sum_{i=0}^{k-1} \lambda_i^2 \Delta_i^2\right) \middle/ \left(\sigma^2 \sum_{i=1}^{k-1} \lambda_i^2\right)\right] \middle/ \exp(1+\gamma) \\
\le \exp(-\gamma). \tag{17}$$

Now, we are ready to summarize the results. It follows from (14) that

$$\mathbb{P}\left(\phi(\bar{x}_{k}) - \phi_{*} \geq \left[2\sum_{i=0}^{k-1}\lambda_{i}\right]^{-1} \left[d_{0}^{2} + \sum_{i=0}^{k-1} \frac{8\lambda_{i}^{2}M^{2}}{1 - 2\lambda_{i}L} + 2\gamma D\sigma\sqrt{\sum_{i=0}^{k-1}\lambda_{i}^{2}} + 2(1 + \gamma)\sigma^{2}\sum_{i=0}^{k-1}\lambda_{i}^{2}\right]\right) \\
\leq \mathbb{P}\left(\sum_{i=0}^{k-1}\zeta_{i} + \sum_{i=0}^{k-1}\lambda_{i}^{2}\Delta_{i}^{2} \geq \gamma D\sigma\sqrt{\sum_{i=0}^{k-1}\lambda_{i}^{2}} + (1 + \gamma)\sigma^{2}\sum_{i=0}^{k-1}\lambda_{i}^{2}\right) \\
\leq \mathbb{P}\left(\sum_{i=0}^{k-1}\zeta_{i} > \gamma D\sigma\sqrt{\sum_{i=0}^{k-1}\lambda_{i}^{2}}\right) + \mathbb{P}\left(\sum_{i=0}^{k-1}\lambda_{i}^{2}\Delta_{i}^{2} \geq (1 + \gamma)\sigma^{2}\sum_{i=0}^{k-1}\lambda_{i}^{2}\right),$$

where in the second inequality we use the fact that

$$\mathbb{P}(X+Y\geq a+b)\leq \mathbb{P}(\{X\geq a\}\cup \{Y\geq b\})\leq \mathbb{P}(X\geq a)+\mathbb{P}(Y\geq b).$$

It immediately follows from (15) and (17) that (13) holds.

Corollary 2. Assume dom h has finite diameter D and

$$\lambda_k = \lambda = \min \left\{ \frac{\varepsilon}{2[8M^2 + (1 - \log p)\sigma^2]}, \frac{1}{4L} \right\},\,$$

then the complexity to find \bar{x}_k such that

$$\mathbb{P}(\phi(\bar{x}_k) - \phi_* \le \varepsilon) \ge 1 - p,$$

where $p \in (0,1)$, is

$$\mathcal{O}\left(\max\left\{\frac{Ld_0^2}{\varepsilon}, \frac{[M^2 + \sigma^2(1 + \log\frac{1}{p})]d_0^2}{\varepsilon^2}, \frac{D^2\sigma^2}{\varepsilon^2}\log\frac{1}{p}\right\}\right). \tag{18}$$

Proof. Let $\gamma = \Theta(\log 1/p)$. In view of Theorem 2, it suffices to derive the bound on k for

$$\frac{d_0^2}{2\lambda k} + 8\lambda M^2 + \frac{D\sigma}{\sqrt{k}} \log \frac{1}{p} + \left(1 + \log \frac{1}{p}\right) \sigma^2 \lambda \le \varepsilon.$$

Using the choice of λ , it boils down to deriving the bound on k for

$$\frac{d_0^2}{2\lambda k} + \frac{D\sigma}{\sqrt{k}}\log\frac{1}{p} \le \frac{\varepsilon}{2}.$$

Hence, we prove (18) is the complexity bound to find \bar{x}_k such that it is an ε -solution with probability at least 1-p.