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Stochastic Approximation
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Kaczmarz method???

1 Stochastic optimization
Sampling from a probability distribution Py(z) o exp(—f(x)) can be cast as an optimization

min  KL(P||P).
PeP3(RY)
Note that KL(-||-) is not symmetric, KL(u||v) > 0, and KL(u||v) = 0 if and only if p = v. If
we parametrize the target distribution Fy as Py, where 6y € R" and switch P and P, then we

reformulate the problem as

min  KL(Py, || Py).
p,mn (Poo 1 F9)

By the definition of KL divergence, we have

P,
min  KL(Py,||P) = min )/log QO(Z)Pgo(z)dz

PGGPQ(]R(Z) PQEPQ(Rd PQ(Z)
-, min [ 108 )P 21z~ [ 1og Pate) Py ()
— [og Py (2)Puy (2)dz - e [ 108 Pute) P21

— [ tog Puy(2)Puy ()= — s B o o)
The infinite dimensional optimization problem thus reduces to an n-dimensional problem
renefg( EZNPQO [IOg P@(z)]a (1)

and can be generalized as stochastic optimization (SO)

min {¢(z) := f(z) + h(z)}, [f(r) =Ee[F(2,)]. (2)

zeR™

Problem (1) is indeed the maximum likelihood estimation (MLE). A standard way to solve MLE
(1) (and SO (2) in general) is to solve its sample average approximation (SAA), namely, taking
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independent and identically distributed (i.i.d.) samples Zi,...,Zy of Z ~ Py, and optimizing the
average of the function value samples,

N
1
max {5(9\2) = ;log Pg(zi)} .

Since we take the i.i.d. samples first and then solve the deterministic optimization problem, this is
an offline approach. In contrast, we can take a sample of the function value (if necessary) and its
first-order information, and perform a (proximal) gradient step. This method is called stochastic
approximation (SA) and is an online approach.

2 Stochastic approximation

To study the SA approach for solving (2), we need the following assumptions.

(A1) both f and h are closed and convex functions;

(A2) for almost every £ € =, a functional oracle F(-,£) : domh — R and a stochastic gradient
oracle s(-,&) : dom h — R™ satisfying

f(x) =E[F(z,8)], f'(z) =E[s(z,§)] € 0f(x)
for every x € dom h are available;
(A3) for every x € dom h, we have E|||s(x, &) — f/(2)|?] < 0%

(A4) for every x,y € domh,
F@) = £0) — (P @) — ) < 2MJo — g + o ] ®

In this section, we are particularly interested in the stochastic version of the proximal subgra-
dient method, which is an SA-type method.

Algorithm 1 Stochastic subgradient method
Input: Initial point xy € R™
for £ > 0 do
Step 1. Choose A\ € (0,1/(2L)) and generate a stochastic gradient s(xg; &)
Step 2. Compute

. 1
Tpy1 = argmin {<s(mk;§k),u> + h(u) + oW ||lu — xk\Q} )
u€eR™ k

end for
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2.1 Convergence in expectation

Lemma 1. For every k > 0, we have

1 1 AN2 M2
M (P(@nr1) = d(z+)) < 5 llaw — | — ller —= 112 JTJCL
+ Mo (8(mr: &) — f (@), 2o — k) + Aplls(z: &) — £/ (z)] (4)

Proof. 1t follows from step 2 of Algorithm 1 that for every u € dom h,

1 1
(8(3 &), uh+hu)+ o lu=ap ] = (s(on; &), 1) h(r)+ o [ w2 el

2k 2k

Taking u = x, in the above inequality and using the convexity of f and (3) with (x,y) = (zg+1, k),
we have

F(@) = (f'(@r), s — zp) + h(zs) + (s(@h; &), Ta) + 21\ lzp — x|
> F(ax) + h(zs) + (s(ek: &), 24) + iuxk C?

> f(xg) + h@ps1) + (8(xn; &)y Tht1) + =—2es1 — zal® + o l|lwesr — s

20
1— ML
20

22Xk

>faps1) — (F (wn), Tp1 — xn) — 2M||@pgr — ]| + @1 — il

+ h(@pr1) + 8@k ), Trr1) + =1 Tpr1 — 2

2Ag
Rearranging the terms, we have

1 1 1— AL
M (k1) = B(@2)) < gllaw = 2ull® = Sl — 2l + 20 M [l — apll = —

+ Ne(s(zr; &) — f/(@n), xe — ) + + N6 (s(2r; E6) — f(2h), Tl — Thgr)-

1 — x|

Using the above inequality, the Cauchy-Schwarz inequality, and the fact Ay < 1/(2L), we have

1 1 1— ML
M (O(xhg1) — O(24)) < 5\\% —z.|” — §HU%+1 — @ |” + 20 M ||zp 1 — ]| — 5 " g — @)
1
+ e (8(@r; &) — (1), 20 — xk) + AR 8(z; &) — f (2p) |12 + Zkaz-i-l — |2
1 1 1—2)\.L
< 5\\% — z.|” — 5\\xk+1 — @ |” + 20 M ||z — x| — 1 P ok — @)?

+ Ae(8(@r; &) — f(xn), 20 — mk) + A2l s(2; &) — f(21)|12

Finally, (4) follows from the above inequality and the AM-GM inequality. O
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Theorem 1. If A\, < 1/(2L) for every k > 0, then

k—1
d3+ i) T ,\L "’Z 2)\}o”

Ee, ., [6(Z1)] — d(x.) < 25T, (5)
where o1
—0 Aii
Ty = % do == ||z — 4. (6)
2i=o Ni
As a consequence, if
€ 1
M =A=mind ——— o
k mm{16M2+202’4L}’ (7)

then we find Ty, such that B, _, [¢(Zk)] — ¢(z+) < € in al most

g’ g2

. {4Ld3 (16M72 + 202)d3}
iterations.
Proof. Taking expectation of (4) w.r.t. & conditioned on §j,_;) and using (A2) and (A3), we have

1 , 1 9 AN M?

+ MiEe, [IIs(xn; &) — sl *p—1]]

1 2 1 2 4)\%M2 9 9
< §||xk o LL’*H B §E§k [ka—i-l - .I*H !f[k,”] + m + )\kO'
Taking expectation of the above inequality w.r.t. {_;) and using the law of total expectation, we
have
! o 1 o ANM? L,
)\kEg[’ﬁ] {¢(xk+1)] B )\k(f)(d?*) < §E5[k~—1] “|xk - x*” ] - §]E§[k] [ka—i-l — JJ*H ] + m + )\kO'

Summing the above inequality from k = 0 to k — 1, we obtain

_ k—1 )\2 2 k—1
5 s [Beg 0t 000)] < 58+ 3 72y + 3N

1=0

Using the convexity of ¢ and the definition of Z in (6), we show (5) holds. Using the constant
stepsize A as defined in (7), we have that relation (5) implies

d3 d2
E T)] — ¢(s) < o~ M? TRt
Elk—1] [9(Zk)] — P(24) < BV + 8\ + o2 < 2)\k‘ —|—
The last conclusion of the theorem follows from the above inequality and (7). ]
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Corollary 1. Assume A\, = X is as in (7), then the complexity to find Ty, such that

P(¢(Tk) —ds <€) 2 1—p,

o <max { Ld% (M? + o2)d? }) ' ®)

ep’ g2p?

where p € (0,1), is

Proof. If we have

Elp(zk)] — d« < pe, (9)
then it follows from the Markov’s inequality that
E ff - *
Plo(e) — 6. > 2) < DA )

Hence, using Theorem 1, we obtain the complexity to find Zj, such that (9) holds is (8). Therefore,
the corollary follows. O

2.2 High probability result

It is possible, however, to obtain much finer bounds on deviation probabilities when imposing more
restrictive assumptions on the distribution of s(x, ). Specifically, assume the following “light-tail”
condition.

Assumption 1. For any x € dom h, we have

E [exp (||s(z, &) — Vf(2)[?/0?)] < exp(1).

It can be seen that Assumption 1 implies (A3). Indeed, if a random variable X satisfies
Elexp(X/a)] < exp(1l) for some a > 0, then by Jensen’s inequality

exp(E[X/a]) < E[exp(X/a)] < exp(1),

and thus E[X] < a. Of course, Assumption 1 holds if ||s(z,&) — Vf(z)||?> < o2 for all x € domh
and almost every & € =.

Assumption 1 is sometimes called the sub-Gaussian assumption. Many different random vari-
ables, such as Gaussian, uniform, and any random variables with a bounded support, will satisfy
this assumption.

The following result is well-known for the martingale-difference sequence.

Lemma 2. Let {) = {&1,&2,...,&k} be a sequence of i.i.d. random variables, and (i, = (j, (5[@) be
deterministic Borel functions of &) such that E [ | 5[1:—1}] =0 a.s. and E [exp ((2/0?) | §[k_1]] <
exp(1) a.s., where o, > 0 are deterministic. Then for any v > 0, we have
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Proof. Denote (j, = (/0o%. Then, we have

E[Ck | €p—1y] =0, Elexp(Cr) | €—17] < exp(1). (10)

Also note that exp(z) < z + exp(922/16) for all z € R. Using this relation with » = a(j for
a € [0,4/3] and (10), we have

_ 9042
Elexp(ae) | §u-y] < Blexp(0aG/10) | €4y < e (). (1)

It follows from the fact that ax < %az + %mZ that
Blexp(a6) | 1] < ex (20 ) Blewp(26/3) | ) < oxp (P + )
and hence that for ao > 4/3,
Blexp(aG) | €4-1] <o (2. (12)
Combining (11) and (12), we have for every a > 0,

2
Blexp(ads) | o] < exp ().

or equivalently every ¢t > 0,

3 2 2
Elexp(tCx) | {r—y) < exp< tf’“) :

Since (j, is a deterministic function of ), we have the recurrence

[exp (tz CZ> exp <t29> [exp(tCk) | & 1]]]

E |exp (tZQ)] .
i=1
Hence, we have for every ¢ > 0,

k 2\k 2
E |exp (tZQ)] < exp <3tz41101> .
i=1
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Applying the Chebyshev’s inequality, we have for v > 0 and every ¢t > 0,
k k k
S G2y e | <o [ty 3207 ) B e (tzci)]
i=1 i=1 J i=1

k
3t2 2
< exp —t’y\ Za? exp <M> )

4

Since the above ineqaulity holds for every ¢ > 0,

k k L L )
E § Z 3t25F o
2 CZ Z ~y 2 0'7:2 < 1nf exp —t"}/ o; exp (%)
1= 1=

=1

O

Theorem 2. Assume domh has finite diameter D. Then, for every v > 0, the average point Ty,
as in (6) satisfies

k-1 771 k—1 8AZM? k—1 k—1
P | (k) — 6x > [22&-] Z 2/\L+27Da D A2 47y)0? )Y N
=0 =0 =0
,Y2
<exp <—3> + exp(—7). (13)

Proof. Let Gy = Ai(s(zk; &) — f'(xr), 2 — xp) and Ag = ||s(zg; &) — f'(zx)]]. Then, (4) becomes

2 4N3 M

A2AZ.
+1_2)\kL+<k+ [YAVA

1 1
Ak (D(@ri1) = ¢(22)) < gllow = 2ull® = Sllzwss — 2
Summing the above inequality over iterations gives

k 8)\M k
d8+21011 2)\L+Z 2<1+Zz 012)\2A2
k—1
221 O>\

Clearly, it follows (A2) that E [Ck | f[k—1]] = 0, i.e., {¢x} is a martingale-difference sequence.

O(Tk) — ¢(z) < (14)

Moreover, it follows from the Cauchy-Schwarz inequality, the boundedness of dom h, and Assump-
tion 1 that

E [exp {2/ (MDo)?} | €p—1)] < E [exp {(MDAR)?/(\eD0)?} | Epery] < exp(1).
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Using the previous two observations and Lemma 2, we have for every ~v > 0,

k—1

§£:<i>>71)0

(15)

It follows from the convexity of exp(-) that

k-1 k-1 k-1 22
exp {Z )\?A?/ <02 Z )\12) } Z W exp(AZ/c?).
i=1

=0 =1

Taking expectation of the above inequality and using Assumption 1, i.e., E[exp(A?/0?)] < exp(1),

k—1
E exp{ZA§A$/< 2ZA2) }] < exp(1). (16)
=0

This inequality and the Markov’s inequality imply that for every ~v > 0,

k—1 k—1 k—1
P(ZA?A?2(1+7)022/\?> :IP(exp{ A2 A/( 22)\2)} > exp 1+7)>
=0 =0 ]

we obtain

1=0

k—1
<E |ex )\2A2 2 22 exp(1l
() )
(16)
< exp(—y). (17)

M k—1 k—1
P 7+27Da D A2 47y)0? ) N
= =0 1=0
k—1
<P )022)\?
=0
k—1
<P 1+7022)\?>
=0

where in the second inequality we use the fact that
P(X4+Y >a+b) <PH{X >a}U{Y >b}) <P(X >a)+P(Y >0).

It immediately follows from (15) and (17) that (13) holds. O
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Corollary 2. Assume dom h has finite diameter D and

Ak = A= mi © L
B= AT 2RM2 + (1 —logp)o?] 4L [
then the complexity to find i such that
P(¢(z) — dx <€) 21 —p,

where p € (0,1), is

2 [M? +0%(1+1logd)|d2 D242
O<maX{Ld0’[ ( 2 g5l o’D;f e 1Y (18)
€ € € P

Proof. Let v = O(log1/p). In view of Theorem 2, it suffices to derive the bound on k for

d? s Do 1 ( 1) 5
— 4+ 8A\M*“+ —log—+ |1+log— ) oA <e.
2Nk N &
Using the choice of A, it boils down to deriving the bound on & for
d? L Doyl
— 4+ —log— < —.
Ak VE p T2
Hence, we prove (18) is the complexity bound to find Zj such that it is an e-solution with probability
at least 1 — p. O
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