DSCC/CSC 435 & ECE 412 Optimization for Machine Learning Lecture 10

Augmented Lagrangian

Lecturer: Jiaming Liang October 24, 2023

1 Augmented Lagrangian

In this section, we are interested in solving optimization problems with simple inequality contraints.
We begin our discussion on solving constrained optimization using augmented Lagrangian method
by first presenting the dual ascent method. Intuitively, dual ascent is the counterpart of (primal)

gradient descent in the dual space.

1.1 Dual ascent

Consider the problem

min f(z)

st. Az =10
where A : R™ — R™, b € R™ and f is a closed and convex function. We define the Lagrangian as
L(z,y) = f(z) +y' (Az —b),
and the dual function is
d(y) = inf L(z, y)

= iI%f {f(x) + yTAa?} —y'b

= —sup {(=ATy) T~ f@)} —yTo

=—f"(=ATy) —yb, (1)
where f* denotes the conjugate of f. Thus, the dual problem is

max d(y).
yeR” (y)
An iteration of the dual ascent method reads as

Yk+1 = Yk + oxd (yi),
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where (in view of (1))
d'(yy) € ADf*(—=ATyy) — .

It follows from Corollary 1 of Lecture 5 and (1) that
d’(yk) = Al‘k —-b

where
), € Argmin yegn{f(z) +y, (Az —b)}.

Summarizing the steps above, we have the dual ascent method.

Algorithm 1 Dual ascent method
Input: Initial point yp € R™
for £ > 0 do
Step 1. Compute x11 = argmin zern L(z, Yk ).

Step 2. Choose oy > 0 and set yp1+1 = yg + ax(Azkr1 — b).
end for

1.2 Method of Multipliers

The method of multipliers shares the same idea as dual ascent, but we augment the Lagrangian to
make the primal update more robust. It is clear that

min f(z)
st. Az =10
and
min f(x) + 2] Az — b|]
zeR? 2
st. Ax =10
have exactly the same set of solutions for all p > 0. The Lagrangian for the second program is

Ly(x,y) = f(@) + Sl Az = b + y 7 (Az — b).

This is called the augmented Lagrangian of the original problem. Let us apply the proximal point
method to the dual problem

1
Yk+1 = argmax yerm {d(y) - %Hy - yk||2} ,
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ie.,
. 1
s = avgmin ez { <) + 51— l? -
The optimality condition is

1
0€ —d'(ypr1) + ;(yk—i-l = Yk),
and hence (as in the derivation of dual ascent)
Yk+1 = Uk + p(ATpy1 — D)

where

Tt1 € Argmin gepn {f(z) + yi, 1 (Az — )}
= Argmin ern{ f(z) + (Yr+1, Az)}
= Argmin zern{f(z) + (yr + p(Azgy1 — 1), Az)}.

Moreover, on the one hand, the optimality condition of the above program is
0€ AT lyr + p(Azp1 — b)] + Of (wh41),
which, on the other hand, is also the optimality condition of
Tp+1 € Argmin yegn {Lp(xayk:) = f(x) +yi (Az —b) + gHAfE - bHQ} :

Summarizing the discussion above, we have the method of multipliers.

Algorithm 2 Method of multipliers/Augmented Lagrangian method

Input: Initial point yy € R™

for £ > 0 do
Step 1. Compute xj1 = argmin gern Ly(2, yi).
Step 2. Set yp+1 = yr + p(Azpr —b).

end for

It is worth noting that the method of multipliers is the proximal point method applied to the
dual problem.

2 Alternating Direction Method of Multipliers
Consider the problem

min fi(x) + fo(Ax)
st.zxe X, AreZ,
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we reformulate the problem as

min f1 () + f2(z)
st.xeX, ze€Z, Axr=z.

The augmented Lagarangian is
Ly(z,z,y) = fi(z) + fa(2) + (y, Az — z) + gHAa: — 7).

The alternating direction method of multipliers (ADMM) to solve the above augmented Lagarangian
has three updates

Tpt+1 € Argmin gepn {L, (2, 2k, yk) }
21 € Argmin erm {Ly(Tp11, 2, Yk) }

Ye+1 = Y + p(ATht1 — 241)-
2.1 ADMM as an instance of IPP
In this subsection, we show that ADMM is an instance of the IPP framework. Define
Jet1 = Yk + p(AZk1 — 21),  (Tht1s Zk1) = (Th41, 2k41),
Skr1 = (Thats Zoa 1> Unr1)s Skl = (Tha1, 2h41, Yht1)-
Then, the three updates of ADMM can be rewritten as

Of1(Fk+1) + AT ki1 30

Of2(Zkv1) — Urr1 + p(2kr1 — 26) 2 0
—ATpy1 + Zpy1 + Yetl Z Uk _ 0,

which are equivalent to
Vuw(sk) = Vw(sgi1)

T+ (5541) 2

Ak+1
with Ag11 =1, g1 =0,
0 0 AT x Ofi(x)
T(s)=T(z,z,y):=| 0 0 —I z |+ | 0fa2)
-A -1 0 Y 0

and 1
_ — Puonz o a2
w(s) = w. %) = Gl + 5yl
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Recall that the Bregman divergence for w is
Dy(s',8) = w(s') — Lw(s'; s).
We have shown the inclusion in the IPP framework. It remains to prove the inequality
Duy(8k+1, 8k+1) + Me16k+1 < 0Dy (Sk41, Sk)-
By the definition, we have

y p . 1 .
Dy(3k41, Sk+1) = §sz+1 — Zep|? + %Hykﬂ — g1

_ 1 ~ 2 P 2
= 2p||yk+1 yk—HH = 2H2k+1 Zk||
and

- P - 1 5
Dy(3k41, 81) = 5”% — Zp|? + %Hyk — G|

p 1 s
= ink - Zk+1||2 + %Hyk - yk+1”2-

So the IPP inequality holds with A\y+1 =1, €41 =0, and o = 1.

2.2 Examples of ADMM

Least absolute deviations
Consider the problem

min ||Az — bl|;

s.t. z € R”

where A is an m x n matrix of rank n and b € R™ is a given vector. We reformulate the problem
as

min fi(z) + f2(2)
s.t. Az — b=z,

where f1(z) =0 and f2(z) = ||z||i. The augmented Lagrangian is given by
Ly(z,z,y) = |21 + (y, Az — 2 — b) + gHAx —z—b|>
The ADMM iteration takes the form
T = (ATA)TIAT <2k +b— y:)
21 € Argmin zegn {12l = (e 2) + Sl Azier — 2 — b}

Yk+1 = Yk + p(Axpq1 — 2p11 — D).
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Setting yr = yi/p, the iteration can be written in the notationally simpler form
w1 = (ATA) AT (2 + b= )
. P _
2ot € Avgminerm { ||zl + Sl Awier — 2 — b+ g2
Yk+1 = Uk + AZpq1 — 2p41 — b
The minimization over z is expressed in terms of soft-shrinkage as
z+1 = Tiyp(ATps1 — b+ Ui)

where Ty (y) is the soft-thresholding operator introduced in Lecture 6. Recall that it can be imple-
mented component-wisely

proxy.|(y) = Ta(y) = [ly| — A+ sgn(y) = 0, lyl <A

Lasso
Consider the problem

o1
min — || Az — ng + 7|1
z 2
Taking

1
filz) = Sl Az — b3, falz) = Tl2ll,

we can rewrite the problem as

min f1(z) + f2(2)

st.x—2=0.
The augmented Lagrangian is given by
Ly(,29) = 5l Az — bl + izl + (g7 — 2) + 2l — 213
The ADMM iteration takes the form
wepr = (AT A+ pI)™! (ATb + pzi — yk)

21 € Argmin segm {712l = (g 2) + S llana - 22}

Yk+1 = Uk + P(Thg1 — Zk41)-
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Setting yr = yi/p, the iteration can be written in the notationally simpler form
T = (AT A+ pI)™! (ATb + p(2k — gk))
241 € Argmin e {7121+ 5 arsn — 2 + 5}
Yk+1 = Yk + Tkl — Zk41-
The minimization over z is expressed in terms of soft-shrinkage as
zit1 = Tr/p(Tht1 + Uk)

where T (y) is the soft-thresholding operator.

2.3 ADMM applied to separable problems

Separable problem of the form
m
min Z fl(xz)
i=1
m
s.t. ZAll‘z:b, r, € X, t=1,...,m,
i=1

where f; : R™ — R are convex and X; are closed convex sets. Since the primary attractive feature
of ADMM is that it decouples the augmented Lagrangian optimization calculations, it is natural
to consider its application to this problem.

An idea that readily comes to mind is to form the augmented Lagrangian

Ly(z1,... 2m,y) = Zfz(xz) + <yvaixi —b)+ 5 ZANC@' —b| ,
i=1 i=1 i=1
and use an ADMM-like iteration, whereby we minimize L, sequentially w.r.t. x1,...,Zm, ie.,
a:,’f“ € Argminxiexin(:clfH, e ,xffll,:ci,mfﬂ, e ,xfn,yk), i1=1,...,m,

and follow these minimization with the multiplier iteration

m
Y=k 1) (Z Aixfﬂ _ b) ‘

i=1

When m = 1, this is the method of multipliers. When m = 2, this is ADMM. On the other
hand, when m > 3, this is a special case of the ADMM that we have discussed and the method is
not convergent in general.
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In what follows, we develop an ADMM by formulating the separable problem as a two-block
minimization problem. By introducing additional variables z1,..., z,,, we rewrite the problem as

min i fl (:L'l)
=1

st Ay =2z, T €X;, 1=1,...,m,
m
Zzi =b.
i=1
We denote © = (z1,...,2y) and z = (z1,...,2n). We view X = X3 X ... x X,,, as a constraint set
for x and view
m
Z = {z : Zzi = b}
i=1

as a constraint set for z. We introduce a multiplier y; for each of the equality constraints A;x; = z;.
The augmented Lagrangian has the separable form

Ly(w.z,y) = > (Fila) + yis Aszi = ) + Sl Aiai — ]12)
i=1

and the ADMM is given by

z ! € Argmin g ex, {fz‘(%i) + (yf, Aimi — 27) + gHAiwi - ZlkHQ}
m

Zp+1 € Argminygm {Z@f, At — z) + gHAiwa - Zz'Hz}
=1

k k k k
Y; = Y + P(AixiH — % H)-

We will show how to simplify the algorithm. Introducing a multiplier A**! for the constraint
>, zi = b, we have the Lagrangian corresponding to the z-minimization

m

p

> (ks At =z + Dl At =zl + (8 ) ) — (L),

i=1
Settinf its gradient w.r.t. z; to zero, we see zf“ is given by

k _ )\k+1
zf“ _ Aixf—l-l + Yi
p
A key observation is that
AFL = gk (At —2F Y =1, m.
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Hence,

k+1 _ )\k+1
)

Yy 1i=1,...,m.

Given z¥ and ¥ (which is equal to y¥ for every i), we have

k+1 € Argmin 4, ¢x; {fl(:rl) + <)\k,Aixi — zf) + gHAszz — zf\|2}

and k k+1
AP — A
B S Sk
1)
Note . i
A — \k+1
E (Ai$§+l + ) § k-i-l _ b
i=1
SO

AR+ — \k 4 P AgzFt —p )
+m ; x;

In summary, given (z*, 2%, A\F), the iteration to obtain (xF*1!, 2F+1 \k+1)

(4).
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by applying (2), (3), and



