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1 Augmented Lagrangian

In this section, we are interested in solving optimization problems with simple inequality contraints.

We begin our discussion on solving constrained optimization using augmented Lagrangian method

by first presenting the dual ascent method. Intuitively, dual ascent is the counterpart of (primal)

gradient descent in the dual space.

1.1 Dual ascent

Consider the problem

min
x∈Rn

f(x)

s.t. Ax = b

where A : Rm → Rn, b ∈ Rm, and f is a closed and convex function. We define the Lagrangian as

L(x, y) = f(x) + y⊤(Ax− b),

and the dual function is

d(y) = inf
x
L(x, y)

= inf
x

{
f(x) + y⊤Ax

}
− y⊤b

= − sup
x

{
(−A⊤y)⊤x− f(x)

}
− y⊤b

= −f∗(−A⊤y)− y⊤b, (1)

where f∗ denotes the conjugate of f . Thus, the dual problem is

max
y∈Rn

d(y).

An iteration of the dual ascent method reads as

yk+1 = yk + αkd
′(yk),
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where (in view of (1))

d′(yk) ∈ A∂f∗(−A⊤yk)− b.

It follows from Corollary 1 of Lecture 5 and (1) that

d′(yk) = Axk − b

where

xk ∈ Argmin x∈Rn{f(x) + y⊤k (Ax− b)}.

Summarizing the steps above, we have the dual ascent method.

Algorithm 1 Dual ascent method

Input: Initial point y0 ∈ Rn

for k ≥ 0 do

Step 1. Compute xk+1 = argmin x∈RnL(x, yk).

Step 2. Choose αk > 0 and set yk+1 = yk + αk(Axk+1 − b).

end for

1.2 Method of Multipliers

The method of multipliers shares the same idea as dual ascent, but we augment the Lagrangian to

make the primal update more robust. It is clear that

min
x∈Rn

f(x)

s.t. Ax = b

and

min
x∈Rn

f(x) +
ρ

2
∥Ax− b∥2

s.t. Ax = b

have exactly the same set of solutions for all ρ ≥ 0. The Lagrangian for the second program is

Lρ(x, y) = f(x) +
ρ

2
∥Ax− b∥2 + y⊤(Ax− b).

This is called the augmented Lagrangian of the original problem. Let us apply the proximal point

method to the dual problem

yk+1 = argmax y∈Rm

{
d(y)− 1

2ρ
∥y − yk∥2

}
,
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i.e.,

yk+1 = argmin y∈Rm

{
−d(y) +

1

2ρ
∥y − yk∥2

}
.

The optimality condition is

0 ∈ −d′(yk+1) +
1

ρ
(yk+1 − yk),

and hence (as in the derivation of dual ascent)

yk+1 = yk + ρ(Axk+1 − b)

where

xk+1 ∈ Argmin x∈Rn{f(x) + y⊤k+1(Ax− b)}
= Argmin x∈Rn{f(x) + ⟨yk+1, Ax⟩}
= Argmin x∈Rn{f(x) + ⟨yk + ρ(Axk+1 − b), Ax⟩}.

Moreover, on the one hand, the optimality condition of the above program is

0 ∈ A⊤[yk + ρ(Axk+1 − b)] + ∂f(xk+1),

which, on the other hand, is also the optimality condition of

xk+1 ∈ Argmin x∈Rn

{
Lρ(x, yk) = f(x) + y⊤k (Ax− b) +

ρ

2
∥Ax− b∥2

}
.

Summarizing the discussion above, we have the method of multipliers.

Algorithm 2 Method of multipliers/Augmented Lagrangian method

Input: Initial point y0 ∈ Rn

for k ≥ 0 do

Step 1. Compute xk+1 = argmin x∈RnLρ(x, yk).

Step 2. Set yk+1 = yk + ρ(Axk+1 − b).

end for

It is worth noting that the method of multipliers is the proximal point method applied to the

dual problem.

2 Alternating Direction Method of Multipliers

Consider the problem

min f1(x) + f2(Ax)

s.t. x ∈ X, Ax ∈ Z,

Augmented Lagrangian-3



we reformulate the problem as

min f1(x) + f2(z)

s.t. x ∈ X, z ∈ Z, Ax = z.

The augmented Lagarangian is

Lρ(x, z, y) = f1(x) + f2(z) + ⟨y,Ax− z⟩+ ρ

2
∥Ax− z∥2.

The alternating direction method of multipliers (ADMM) to solve the above augmented Lagarangian

has three updates

xk+1 ∈ Argmin x∈Rn {Lρ(x, zk, yk)}
zk+1 ∈ Argmin z∈Rm {Lρ(xk+1, z, yk)}
yk+1 = yk + ρ(Axk+1 − zk+1).

2.1 ADMM as an instance of IPP

In this subsection, we show that ADMM is an instance of the IPP framework. Define

ỹk+1 = yk + ρ(Axk+1 − zk), (x̃k+1, z̃k+1) = (xk+1, zk+1),

s̃k+1 = (x̃k+1, z̃k+1, ỹk+1), sk+1 = (xk+1, zk+1, yk+1).

Then, the three updates of ADMM can be rewritten as

∂f1(x̃k+1) +A⊤ỹk+1 ∋ 0

∂f2(z̃k+1)− ỹk+1 + ρ(zk+1 − zk) ∋ 0

−Ax̃k+1 + z̃k+1 +
yk+1 − yk

ρ
= 0,

which are equivalent to

T εk+1(s̃k+1) ∋
∇w(sk)−∇w(sk+1)

λk+1

with λk+1 = 1, εk+1 = 0,

T (s) = T (x, z, y) :=

 0 0 A⊤

0 0 −I

−A −I 0


 x

z

y

+

 ∂f1(x)

∂f2(z)

0


and

w(s) = w(x, z, y) =
ρ

2
∥z∥2 + 1

2ρ
∥y∥2.
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Recall that the Bregman divergence for w is

Dw(s
′, s) = w(s′)− ℓw(s

′; s).

We have shown the inclusion in the IPP framework. It remains to prove the inequality

Dw(s̃k+1, sk+1) + λk+1εk+1 ≤ σDw(s̃k+1, sk).

By the definition, we have

Dw(s̃k+1, sk+1) =
ρ

2
∥zk+1 − z̃k+1∥2 +

1

2ρ
∥yk+1 − ỹk+1∥2

=
1

2ρ
∥yk+1 − ỹk+1∥2 =

ρ

2
∥zk+1 − zk∥2

and

Dw(s̃k+1, sk) =
ρ

2
∥zk − z̃k+1∥2 +

1

2ρ
∥yk − ỹk+1∥2

=
ρ

2
∥zk − zk+1∥2 +

1

2ρ
∥yk − ỹk+1∥2.

So the IPP inequality holds with λk+1 = 1, εk+1 = 0, and σ = 1.

2.2 Examples of ADMM

Least absolute deviations

Consider the problem

min ∥Ax− b∥1
s.t. x ∈ Rn

where A is an m× n matrix of rank n and b ∈ Rm is a given vector. We reformulate the problem

as

min f1(x) + f2(z)

s.t. Ax− b = z,

where f1(x) ≡ 0 and f2(z) = ∥z∥1. The augmented Lagrangian is given by

Lρ(x, z, y) = ∥z∥1 + ⟨y,Ax− z − b⟩+ ρ

2
∥Ax− z − b∥2.

The ADMM iteration takes the form

xk+1 = (A⊤A)−1A⊤
(
zk + b− yk

ρ

)
zk+1 ∈ Argmin z∈Rm

{
∥z∥1 − ⟨yk, z⟩+

ρ

2
∥Axk+1 − z − b∥2

}
yk+1 = yk + ρ(Axk+1 − zk+1 − b).
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Setting ȳk = yk/ρ, the iteration can be written in the notationally simpler form

xk+1 = (A⊤A)−1A⊤ (zk + b− ȳk)

zk+1 ∈ Argmin z∈Rm

{
∥z∥1 +

ρ

2
∥Axk+1 − z − b+ ȳk∥2

}
ȳk+1 = ȳk +Axk+1 − zk+1 − b.

The minimization over z is expressed in terms of soft-shrinkage as

zk+1 = T1/ρ(Axk+1 − b+ ȳk)

where Tλ(y) is the soft-thresholding operator introduced in Lecture 6. Recall that it can be imple-

mented component-wisely

proxλ|·|(y) = Tλ(y) = [|y| − λ]+ sgn(y) =


y − λ, y ≥ λ

0, |y| < λ

y + λ, y ≤ −λ

Lasso

Consider the problem

min
x

1

2
∥Ax− b∥22 + τ∥x∥1.

Taking

f1(x) =
1

2
∥Ax− b∥22, f2(z) = τ∥z∥1,

we can rewrite the problem as

min f1(x) + f2(z)

s.t. x− z = 0.

The augmented Lagrangian is given by

Lρ(x, z, y) =
1

2
∥Ax− b∥22 + τ∥z∥1 + ⟨y, x− z⟩+ ρ

2
∥x− z∥22.

The ADMM iteration takes the form

xk+1 = (A⊤A+ ρI)−1
(
A⊤b+ ρzk − yk

)
zk+1 ∈ Argmin z∈Rm

{
τ∥z∥1 − ⟨yk, z⟩+

ρ

2
∥xk+1 − z∥2

}
yk+1 = yk + ρ(xk+1 − zk+1).
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Setting ȳk = yk/ρ, the iteration can be written in the notationally simpler form

xk+1 = (A⊤A+ ρI)−1
(
A⊤b+ ρ(zk − ȳk)

)
zk+1 ∈ Argmin z∈Rm

{
τ∥z∥1 +

ρ

2
∥xk+1 − z + ȳk∥2

}
ȳk+1 = ȳk + xk+1 − zk+1.

The minimization over z is expressed in terms of soft-shrinkage as

zk+1 = Tτ/ρ(xk+1 + ȳk)

where Tλ(y) is the soft-thresholding operator.

2.3 ADMM applied to separable problems

Separable problem of the form

min
m∑
i=1

fi(xi)

s.t.
m∑
i=1

Aixi = b, xi ∈ Xi, i = 1, . . . ,m,

where fi : Rni 7→ R are convex and Xi are closed convex sets. Since the primary attractive feature

of ADMM is that it decouples the augmented Lagrangian optimization calculations, it is natural

to consider its application to this problem.

An idea that readily comes to mind is to form the augmented Lagrangian

Lρ(x1, . . . , xm, y) =

m∑
i=1

fi(xi) + ⟨y,
m∑
i=1

Aixi − b⟩+ ρ

2

∥∥∥∥∥
m∑
i=1

Aixi − b

∥∥∥∥∥
2

,

and use an ADMM-like iteration, whereby we minimize Lρ sequentially w.r.t. x1, . . . , xm, i.e.,

xk+1
i ∈ Argmin xi∈XiLρ(x

k+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
m, yk), i = 1, . . . ,m,

and follow these minimization with the multiplier iteration

yk+1 = yk + ρ

(
m∑
i=1

Aix
k+1
i − b

)
.

When m = 1, this is the method of multipliers. When m = 2, this is ADMM. On the other

hand, when m ≥ 3, this is a special case of the ADMM that we have discussed and the method is

not convergent in general.
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In what follows, we develop an ADMM by formulating the separable problem as a two-block

minimization problem. By introducing additional variables z1, . . . , zm, we rewrite the problem as

min

m∑
i=1

fi(xi)

s.t. Aixi = zi, , xi ∈ Xi, i = 1, . . . ,m,
m∑
i=1

zi = b.

We denote x = (x1, . . . , xm) and z = (z1, . . . , zm). We view X = X1 × . . .×Xm as a constraint set

for x and view

Z =

{
z :

m∑
i=1

zi = b

}
as a constraint set for z. We introduce a multiplier yi for each of the equality constraints Aixi = zi.

The augmented Lagrangian has the separable form

Lρ(x, z, y) =

m∑
i=1

(
fi(xi) + ⟨yi, Aixi − zi⟩+

ρ

2
∥Aixi − zi∥2

)
,

and the ADMM is given by

xk+1
i ∈ Argmin xi∈Xi

{
fi(xi) + ⟨yki , Aixi − zki ⟩+

ρ

2
∥Aixi − zki ∥2

}
zk+1 ∈ Argmin∑m

i=1 zi=b

{
m∑
i=1

⟨yki , Aix
k+1
i − zi⟩+

ρ

2
∥Aix

k+1
i − zi∥2

}
yk+1
i = yki + ρ(Aix

k+1
i − zk+1

i ).

We will show how to simplify the algorithm. Introducing a multiplier λk+1 for the constraint∑m
i=1 zi = b, we have the Lagrangian corresponding to the z-minimization

m∑
i=1

(
⟨yki , Aix

k+1
i − zi⟩+

ρ

2
∥Aix

k+1
i − zi∥2 + ⟨λk+1, zi⟩

)
− ⟨λk+1, b⟩.

Settinf its gradient w.r.t. zi to zero, we see zk+1
i is given by

zk+1
i = Aix

k+1
i +

yki − λk+1

ρ
.

A key observation is that

λk+1 = yki + ρ(Aix
k+1
i − zk+1

i ), i = 1, . . . ,m.
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Hence,

yk+1
i = λk+1, i = 1, . . . ,m.

Given zk and λk (which is equal to yki for every i), we have

xk+1
i ∈ Argmin xi∈Xi

{
fi(xi) + ⟨λk, Aixi − zki ⟩+

ρ

2
∥Aixi − zki ∥2

}
(2)

and

zk+1
i = Aix

k+1
i +

λk − λk+1

ρ
. (3)

Note
m∑
i=1

(
Aix

k+1
i +

λk − λk+1

ρ

)
=

m∑
i=1

zk+1
i = b,

so

λk+1 = λk +
ρ

m

(
m∑
i=1

Aix
k+1
i − b

)
. (4)

In summary, given (xk, zk, λk), the iteration to obtain (xk+1, zk+1, λk+1) by applying (2), (3), and

(4).
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