
CSC/DSCC 574 Continuous Algorithms for Optimization and Sampling Lecture 9

Proximal Sampling

Lecturer: Jiaming Liang March 26, 2024

1 Alternating sampling framework

Our goal in this lecture is again to sample from ν(x) ∝ exp(−f(x)). Recall that one step of

Langevin Monte Carlo (LMC) is

xk+1 = xk − η∇f(xk) +
√

2ηz, z ∼ N (0, I)

and is equivalent to sampling xk+1 ∼ p(y|xk) where

p(y|xk) ∝ exp

(
− 1

2η
∥x− (xk − η∇f(xk))∥2

)
.

We have also seen that LMC is biased, namely ρk → ρ̄ as k → ∞, but KL(ρ̄|ν) > 0. A natural

way to fix this bias issue is to use the Metropolis-Hastings filter. Given xk, we take p(·|xk) as a

proposal density, draw yk ∼ p(yk|xk), and accept yk with probability

min

{
1,

ν(yk)p(xk|yk)
ν(xk)p(yk|xk)

}
.

This is the so-called Metropolis-adjusted Langevin algorithm. Since the Metropolis-Hastings filter

makes the Markov chain reversible and hence ν is the stationary distribution.

We will explore another idea in this lecture, namely the Gibbs sampling, to generate an unbiased

sample. Consider a joint distribution

π(x, y) ∝ exp

(
−f(x)− 1

2η
∥x− y∥2

)
where η > 0 is a regularization parameter (or the stepsize of Algorithm 1 below), and apply Gibbs

sampling on π(x, y), i.e., alternatively sampling from conditional distributions πY |X and πX|Y .

Algorithm 1 Alternating Sampling Framework

1. Sample yk ∼ πY |X(y | xk) ∝ exp
(
− 1

2η∥xk − y∥2
)

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp
(
−f(x)− 1

2η∥x− yk∥2
)

Proximal Sampling-1

Observe that the X-marginal of π is the target distribution ν, whereas the conditional dis-

tribution of Y given X is Gaussian: πY |X(· | x) = N (x, ηI). Therefore, the Y -marginal is the

convolution of πX with a Gaussian, πY = πX ∗ N (0, ηI).

It is known from Gibbs sampling that {xk, yk}k≥1 form a reversible Markov chain with stationary

distribution π(x, y), whose X-marginal is ν(x). Therefore, assuming we can exactly implement

Steps 1 and 2 of Algorithm 1, then we eventually generate an unbiased sample from the target

ν(x).

1.1 Restricted Gaussian oracle

The conditional distribution of X given Y in Step 2 of Algorithm 1 is the “regularized” distribution

πX|Y (x | y) ∝ exp

(
−f(x)− 1

2η
∥x− y∥2

)
.

Definition 1. Given a point y ∈ Rd and stepsize η > 0, the restricted Gaussian oracle (RGO) for

f : Rd → R is a sampling oracle that returns a random sample from a distribution proportional to

exp(−f(·)− ∥ · −y∥2/(2η)).

In view Definition 1, Step 2 of Algorithm 1 is an RGO, whose implementation is nontrivial and

needs a subroutine for the exact realization.

Algorithm 2 Exact Implementation of the RGO

1. Compute x∗ = argmin
x∈Rd

{
fη
y (x) := f(x) + 1

2η∥x− y∥2
}
;

2. Generate X ∼ exp(−h1(x)) where h1(x) :=
1
2η∥x− x∗∥2 + fη

y (x∗);

3. Generate U ∼ U [0, 1];
4. If

U ≤ exp(−fη
y (X))

exp(−h1(X))
, (1)

then accept X; otherwise, reject X and go to step 2.

Lemma 1. Assume f is convex and M -Lipschitz continuous. Define

h2 :=
1

2η
∥ · −x∗∥2 + 2M∥ · −x∗∥+ fη

y (x
∗).

Then, for every x ∈ Rd, we have h1(x) ≤ fη
y (x) ≤ h2(x).

Proof. The first inequality follows from Step 1 of Algorithm 1 and the strong convexity of fη
y (x)

fη
y (x) ≥ fη

y (x
∗) +

1

2η
∥x− x∗∥2 = h1(x).

Proximal Sampling-2

Also, noting from Step 1 of Algorithm 1 that

y − x∗

η
∈ ∂f(x∗). (2)

It follows from the assumption that f is M -Lipschitz continuous that

f(x)− ℓf (x;x
∗) ≤ 2M∥x− x∗∥.

Using the above inequality and (2), we have

fη
y (x) ≤ ℓf (x;x

∗) +
1

2η
∥x− y∥2 + 2M∥x− x∗∥

(2)
= f(x∗) + ⟨f ′(x∗), x− x∗⟩+ 1

2η
∥x− y∥2 + 2M∥x− x∗∥

=
1

2η
∥ · −x∗∥2 + 2M∥ · −x∗∥+ fη

y (x
∗) = h2(x).

The following lemma summarizes basic properties of Algorithm 2.

Lemma 2. The sample X generated by Algorithm 2 follows the distribution πX|Y . Let S denote

the event that (1) happens. Then,

P(S) =
∫
exp(−fη

y (x))dx∫
exp(−h1(x))dx

.

Proof. Let k(x|S) denote the conditional density of X given S. We have

k(x|S) = P(S|X = x)q(x)

P(S)
, P(S|X = x) =

exp(−fη
y (x))

exp(−h1(x))
, q(x) =

exp(−h1(x))∫
exp(−h1(x))dx

Also,

P(S) =
∫

P(S|X = x)q(x)dx =

∫
exp(−gη(x))

exp(−h1(x))

exp(−h1(x))∫
exp(−h1(x))dx

dx =

∫
exp(−fη

y (x))dx∫
exp(−h1(x))dx

.

So,

k(x|S) = P(S|X = x)q(x)

P(S)
=

exp(−fη
y (x))∫

exp(−fη
y (x))dx

= πX|Y (x|y),

where πX|Y (x|y) is the nomalized density of exp(−fη
y (x). Therefore, we verify X ∼ πX|Y .

We need the following technical lemma about Gaussian integrals.

Proposition 1. The following statements hold:

Proximal Sampling-3

a)
∫
exp

(
−∥x∥2/(2η)

)
dx = (2πη)d/2 for every η > 0;

b) let a ≥ 0 and d ≥ 1, if

2a(ηd)1/2 ≤ 1, (3)

then ∫
Rd

exp

(
− 1

2η
∥x∥2 − a∥x∥

)
dx ≥ (2πη)d/2√

e
. (4)

Proof. a) This statement is a well-known result.

b) First note the fact that

a∥x∥ ≤ a2∥x∥2 + 1

4
.

This inequality and a) imply that∫
Rd

exp

(
− 1

2η
∥x∥2 − a∥x∥

)
dx ≥

∫
Rd

exp

(
− 1

2η
∥x∥2 − a2∥x∥2 − 1

4

)
dx

=exp

(
−1

4

)∫
Rd

exp

(
− 1

2η̃
∥x∥2

)
dx = exp

(
−1

4

)
(2πη̃)

d
2

where η̃ = (1/η + 2a2)−1. It follows from (3) that

η̃ ≥
(
1 +

1

2d

)−1

η.

Combining the above inequalities, we have∫
Rd

exp

(
− 1

2η
∥x∥2 − a∥x∥

)
dx ≥ (2πη)

d
2

(
1 +

1

2d

)− d
2

exp

(
−1

4

)
.

Hence, (4) holds due to the fact that(
1 +

1

2d

) d
2

≤ exp

(
1

4

)
.

Finally, we are ready to present the complexity of Algorithm 2.

Proposition 2. Assume f is convex and M -Lipschitz continuous. If

η ≤ 1

16M2d
, (5)

then the expected number of iterations in the rejection sampling of Algorithm 2 is at most
√
e.

Proximal Sampling-4

Proof. If follows directly from the definition of h2 that∫
Rd

exp(−h2(x))dx = exp(−fη
y (x

∗))

∫
Rd

exp

(
− 1

2η
∥x− x∗∥2 − 2M∥x− x∗∥

)
dx

Applying Proposition 1(b) to the above yields∫
Rd

exp(−h2(x))dx ≥ exp(−fη
y (x

∗))
(2πη)d/2√

e
.

Note that the condition (3) in Proposition 1 holds thanks to (5). By Lemma 1, the above inequality

leads to ∫
Rd

exp(−fη
y (x))dx ≥

∫
Rd

exp(−h2(x))dx ≥ exp(−fη
y (x

∗))
(2πη)d/2√

e
. (6)

Using the definition of h1 and Proposition 1(a), we have∫
Rd

exp(−h1(x))dx = exp(−fη
y (x

∗))(2πη)d/2.

Using Lemma 2, (6), and the above identity, we conclude that P(S) ≥ 1√
e
, and the expected number

of the iterations is 1
P(S) ≤

√
e.

2 Convergence of ASF

Step 1 of Algorithm 1 is a forward step: starting from xk ∼ ν = πX , the law of yk is πY =∫
πXπY |Xdx = πX ∗ N (0, ηI). Step 2 of Algorithm 1 is a backward step: starting from yk ∼ πY ,

the law of xk+1 is πX =
∫
πY πX|Y dy.

The perspective that we adopt in the convergence analysis is that: in the forward step, πY is

obtained by evolving πX along the heat flow for time η; in the backward step, πX is obtained by

reversing the heat flow starting from πY for time η.

Example: time reversal of ODE Consider ẋt = b(xt) and yt = xT−t for 0 ≤ t ≤ T . The

reversed ODE for 0 ≤ t ≤ T is

ẏt = −ẋT−t = −b(xT−t) = −b(yt).

Now we want to reverse the heat flow Xt = X0 +Wt, dXt = dWt,

∂νt
∂t

=
1

2
∆νt.

Define Yt = XT−t for 0 ≤ t ≤ T . The law of Yt is Yt ∼ ν−t = νT−t, and hence ν−0 = νT and ν−T = ν0.

The backward heat flow for 0 ≤ t ≤ T is

∂ν−t
∂t

= −∂νT−t

∂t
= −1

2
∆νT−t = −1

2
∆ν−t .

Proximal Sampling-5

It is equivalent to

∂ν−t
∂t

= −∆νt +
1

2
∆νt = −∇ ·

(
ν−t ∇ log ν−t

)
+

1

2
∆νt = −∇ ·

(
ν−t ∇ log νT−t

)
+

1

2
∆νt,

which is also the Fokker-Plank equation for the following SDE

dYt = ∇ log νT−t(Yt)dt+ dWt. (7)

So if Y0 ∼ ν−0 = νT , then Yt ∼ ν−t = νT−t and YT ∼ ν−T = ν0.

Now, we consider two simultaneous flows: there are two input distributions ν0 = πX and

ρ0 = ρXk (which is the law of xk) to the Gaussian channel πY |X , that is they evolve along the

same heat flow, and their corresponding output distributions are νη = πY and ρη = ρYk . We

also have the backward simutaneous heat flow: the outputs of the Gaussian channel are the input

distributions ν−0 = πY and ρ−0 = ρYk to the RGO, that is they evolve along the same backward heat

flow, and their corresponding output distributions are ν−η = πX and ρη = ρXk+1. Note that after

simultaneous forward and backward heat flows, ν0 gets back to itself, but ρ0 starts from ρXk and

ends at ρ−η = ρXk+1, which will be shown to be closer to the target ν then ρXk . The process is as in

Figure 1.

Figure 1: Simutaneous flows

Next, following a similar argument as in the analysis of LMC, we derive the rate of change of

KL divergence along simultaneous heat flows, which is a de Bruijn’s identity.

Lemma 3. Let ρt and νt follow two simultaneous heat flows for t ≥ 0,

∂ρt
∂t

=
1

2
∆ρt ,

∂νt
∂t

=
1

2
∆νt . (8)

Then, we have
d

dt
KL(ρt ∥ νt) = −1

2
FI(ρt ∥ νt) . (9)

Proximal Sampling-6

Proof. Taking the time derivative of KL(ρt ∥ νt) and using (8), we have

d

dt
KL(ρt ∥ νt) =

d

dt

∫
ρt log

ρt
νt
dx =

∫
∂ρt
∂t

log
ρt
νt
dx+

∫
ρt
νt
ρt

∂

∂t

(
ρt
νt

)
dx

=

∫
∂ρt
∂t

log
ρt
νt
dx+

∫
νt

(
1

νt

∂ρt
∂t

− ρt
ν2t

∂νt
∂t

)
dx

=

∫
∂ρt
∂t

log
ρt
νt
dx−

∫
ρt
νt

∂νt
∂t

dx
(8)
=

1

2

∫
∆ρt log

ρt
νt
dx− 1

2

∫
ρt
νt
∆νtdx. (10)

Using integration by parts and Fact 1 with h = ρt/νt, we have∫
∆ρt log

ρt
νt
dx =

∫
ρt∆ log

ρt
νt
dx =

∫
ρt

(
νt
ρt
∆
ρt
νt

−
∥∥∥∥∇ log

ρt
νt

∥∥∥∥2
)
dx

=

∫
νt∆

ρt
νt
dx−

∫
ρt

∥∥∥∥∇ log
ρt
νt

∥∥∥∥2 dx =

∫
ρt
νt
∆νtdx− FI(ρt ∥ νt),

where we use integration by parts again in the last identity. The above relation, (10), and Fact 1

imply that (9) holds.

Fact 1. For any twice differentiable function h such that h(x) ̸= 0 for any x ∈ Rd, we have

∇ log h =
∇h

h
, ∆ log h =

∆h

h
− ∥∇ log h∥2 .

Indeed, we have that,

∆ log h = ∇ · (∇ log h) = ∇ ·
(
∇h

h

)
=

∆h

h
− ⟨∇h,∇h⟩

h2
=

∆h

h
−
∥∥∥∥∇h

h

∥∥∥∥2 = ∆h

h
− ∥∇ log h∥2 .

We also derive the de Bruijn’s identity for simultaneous backward heat flows.

Lemma 4. Consider the backward SDE (7) for the heat equation and let ν−t and ρ−t denote the

laws of Yt starting from ν−0 (= πY) and ρ−0 (= ρYk), respectively. We know

∂tν
−
t = −∇ ·

(
ν−t ∇ log ν−t

)
+

1

2
∆ν−t = −1

2
∆ν−t ,

∂tρ
−
t = −∇ ·

(
ρ−t ∇ log ν−t

)
+

1

2
∆ρ−t = ∇ ·

(
ρ−t ∇ log

ρ−t
ν−t

)
− 1

2
∆ρ−t .

Then, we have
d

dt
KL(ρ−t ∥ ν−t) = −1

2
FI(ρ−t ∥ ν−t) . (11)

Proximal Sampling-7

Proof. Following a similar argument as in the proof of Lemma 3, we have

d

dt
KL(ρ−t ∥ ν−t) =

d

dt

∫
ρ−t log

ρ−t
ν−t

dx =

∫
∂ρ−t
∂t

log
ρ−t
ν−t

dx+

∫
ρ−t

ν−t
ρ−t

∂

∂t

(
ρ−t
ν−t

)
dx

=

∫
∂ρ−t
∂t

log
ρ−t
ν−t

dx+

∫
ν−t

(
1

ν−t

∂ρ−t
∂t

− ρ−t
(ν−t)

2

∂ν−t
∂t

)
dx

=

∫
∂ρ−t
∂t

log
ρ−t
ν−t

dx+
∂

∂t

∫
ρ−t dx−

∫
ρ−t
ν−t

∂ν−t
∂t

dx

=

∫
∂ρ−t
∂t

log
ρ−t
ν−t

dx−
∫

ρ−t
ν−t

∂ν−t
∂t

dx,

and then

d

dt
KL(ρ−t ∥ ν−t) =

∫ [
∇ ·
(
ρ−t ∇ log

ρ−t
ν−t

)
− 1

2
∆ρ−t

]
log

ρ−t
ν−t

dx+
1

2

∫
ρ−t
ν−t

∆ν−t dx

= −
∫

ρ−t
〈
∇ log

ρ−t
ν−t

,∇ log
ρ−t
ν−t

〉
dx− 1

2

∫
∆ρ−t log

ρ−t
ν−t

dx+
1

2

∫
ρ−t
ν−t

∆ν−t dx

= −FI(ρ−t ∥ ν−t) +
1

2
FI(ρ−t ∥ ν−t) = −1

2
FI(ρ−t ∥ ν−t).

Fact 2. If ν satisfies α-LSI, then νt = ν ∗ N (0, ηI) satisfies αt-LSI with αt = (1/α + t)−1 and

ν−t = ν ∗ N (0, (η)− tI) satisfies αη−t-LSI.

Theorem 1. Suppose ν satisfies α-LSI. Along ASF, we have

KL(ρXk ∥ πY) ≤
KL(ρXk ∥ πX)

1 + αη
, KL(ρXk+1 ∥ πX) ≤

KL(ρYk ∥ πY)

1 + αη
. (12)

Therefore, we have

KL(ρXk ∥ ν) ≤ KL(ρX0 ∥ ν)
(1 + αη)2k

.

Proof. For the forward step, it follows from Lemma 3 and Fact 2 that

d

dt
KL(ρt ∥ νt) = −1

2
FI(ρt ∥ νt) ≤ −αtKL(ρt ∥ νt) = − α

1 + αt
KL(ρt ∥ νt).

Integrating gives the first inequality in (12). For the backward step, it follows from Lemma 4 and

Fact 2 that

d

dt
KL(ρ−t ∥ ν−t) = −1

2
FI(ρ−t ∥ ν−t) ≤ −αη−tKL(ρ

−
t ∥ ν−t) = − α

1 + α(η − t)
KL(ρ−t ∥ ν−t).

Therefore, just as in the forward step, integration yields the second inequality in (12).

Proximal Sampling-8

A channel in information theory is a conditional distribution P Y |X taking input distribution

ρX and generating output distrinution ρY =
∫
ρX(x)P Y |X(y|x)dx.

Figure 2: Channel

Lemma 5 (Data processing inequality). Consider a channel that produces Y given X based on

the law PY |X (see Figure 2). If ρY (resp., ρ̃Y) is the distribution of Y when X is generated by ρX

(resp., ρ̃X), then for any ϕ-divergence D(·∥·) (where ϕ is a convex function),

D(ρY ∥ ρ̃Y) ≤ D(ρX ∥ ρ̃X).

Proof. By the definition of ϕ-divergence and Jensen’s inequality, we have

D(ρX ∥ ρ̃X) = Eρ̃X

[
ϕ

(
ρX

ρ̃X

)]
= Eρ̃XY

[
ϕ

(
ρXY

ρ̃XY

)]
= Eρ̃Y

[
Eρ̃X|Y

[
ϕ

(
ρXY

ρ̃XY

)]]
≥ Eρ̃Y

[
ϕ

(
Eρ̃X|Y

[
ρXY

ρ̃XY

])]
= Eρ̃Y

[
ϕ

(
EρX|Y

[
ρY

ρ̃Y

])]
= Eρ̃Y

[
ϕ

(
ρY

ρ̃Y

)]
= D(ρY ∥ ρ̃Y).

If the channel is deterministic (e.g., Y = g(X) and g is invertible), then “=” holds. If the strict

inequality holds, it is called a strong data processing inequality.

In our case, ϕ-divergence is KL divergence, and we have

KL(ρY ∥ ρ̃Y) ≤ KL(ρX ∥ ρ̃X).

So Theorem 1 gives a strong data processing inequality with a contraction factor (1 + αη)−1. In

the forward step, the channel is Gaussian, and in the backward step, the channel is RGO.

3 LMC as an approximate implementation of ASF

We prove that LMC is indeed an instance of ASF whose implementation of RGO is inexact.

Assume f in the target distribution π ∝ exp(−f) is convex and smooth and recall that the

iterative step in LMC can be described as

yk+1 = yk − η∇f(yk) +
√
2ηz, z ∼ N (0, I). (13)

Proximal Sampling-9

We claim that the following algorithm gives an equivalent form of LMC (13) from the proximal

sampling perspective.

Algorithm 3 Langevin Monte Carlo

1. Sample yk ∼ πY |X(y | xk) ∝ exp
(
− 1

2η∥xk − y∥2
)

2. Sample xk+1 ∼ exp
(
− 1

2η∥x− yk + η∇f(yk)∥2
)

Indeed, steps 1 and 2 above can be equivalently written as

xk+1 = yk − η∇f(yk) +
√
ηzk, zk ∼ N(0, I),

yk+1 = xk+1 +
√
ηz′k, z′k ∼ N (0, I),

where yk+1 is the sample from step 1 in the next iteration. Combining the above identities, we

have

yk+1 = yk − η∇f(yk) +
√
η(zk + z′k)

d
= yk − η∇f(yk) +

√
2ηz, z ∼ N (0, I).

Moreover, LMC and ASF share the same step 1, and step 2 of LMC equivalently generates xk+1

from exp(−h1(x)) where

h1(x) := f(yk) + ⟨∇f(yk), x− yk⟩+
1

2η
∥x− yk∥2. (14)

Using the definition of h1 in (14) and the convexity of f , we have

h1(x) ≤ f(x) +
1

2η
∥x− yk∥2 = fη

yk
(x).

Note that fη
yk(x) is the potential function of the RGO in step 2 of ASF. Hence, step 2 of LMC

can be interpreted as an RGO implementation with the proposal density exp(−h1(x)) but without

rejection. As a result, LMC is an approximate implementation of ASF and thus LMC is biased.

More generally, from the proximal sampling perspective, the basic idea behind LMC (or its

inexact RGO implementation) is to approximate f(x) by its linearization f(yk)+ ⟨∇f(yk), x− yk⟩,
and this idea has been widely used to implement the proximal mapping of f in optimization methods

such as gradient descent and accelerated gradient descent.

Proximal Sampling-10

	Alternating sampling framework
	Restricted Gaussian oracle

	Convergence of ASF
	LMC as an approximate implementation of ASF

