CSC/DSCC 574 Continuous Algorithms for Optimization and Sampling Lecture 8

Langevin Monte Carlo

Lecturer: Jiaming Liang February 29, 2024

1 Langevin dynamics

The Langevin dynamics for sampling from v o e~ 1 is a stochastic process {X¢}t>0 where X; € R4
evolves following the stochastic differential equation:

dX; = —Vf(X;)dt + V2dB, (1)

where {B;};>0 is the standard Brownian motion in R? starting from By = 0. If X; € R? evolves
following the Langevin dynamics (1), then its probability density function p; € P2(R%) evolves
following the Fokker-Planck equation:

Ipt

5=V (ptVIOg %) =V - (pVf)+ Ap;. (2)

It is known that the Fokker-Planck equation has an optimization interpretation as the gradient
flow for minimizing the relative entropy KL(- || v) in the space of probability distributions with
the Wasserstein W, metric. Conditions on v such as log-concavity or log-Sobolev inequality (LSI)
can be interpreted as convexity-type conditions on the objective function (relative entropy) that
guarantee fast convergence of the gradient flow (Fokker-Planck equation). Since the Fokker-Planck
equation (2) is the continuity equation of Langevin dynamics (1), the latter is well suited for
sampling.

It is easy to check that % =0 in (2) with p; = v, so v is the stationary/invariant distribution
of Fokker-Planck equation (2).

1.1 Continuity equation

There are two complementary perspectives on fluid flows: the Lagrangian perspective which em-
phasizes particle trajectories, and the Eulerian perspective which tracks the evolution of the fluid
density. Since (1) describes the evolution of the particle trajectory, it is the Lagrangian description
of the dynamics. The corresponding Eulerian description is the continuity equation (2).

Suppose v(x,t) is a vector field and p(z,t) is the density of some material g. Then, we define
the flux J = pv to be the amount of ¢ flowing per unit time through a unit volume. Te continuity
equation is

dp _Op B
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If ¢ > 0, then it is a source that generates q. If 0 < 0, then it is a sink that removes ¢q. If 0 = 0,
then the continuity equation is indeed the conservation law. It appears in fluid mechanics (Navier-
Stokes equations), electromagnetism (Maxwell’s equations), statistical mechanics (Fokker-Planck
equation), and thermodynamics (heat equation). It states the conservation of mass, electric charge,
probability mass, and energy.

In fluid dynamics, we define material derivative

Dp  0p
ﬁ = ot + Vp - v,
which can be understood using the chain rule.
dp(z,t) _ Op Dp
— P iy . p==2L
dt ot TVP VT Dy

If the flow is incompressible flow (e.g., water but not air), i.e., p(x,t) = p is a constant over space
and time, then the continuity equation becomes

V.v=0.
This means divergence is zero. It applies to hydrodynamics but not aerodynamics.

Theorem 1. Let v; be a vector field and consider the evolution of particle X; following dX; =
v (Xy)dt. Then, the law p; of Xy evolves according to the continuity equation

0
% + V- (tht> =0.

Proof. For any given test function ¢, we have
Ex~p [0(X)] = E[o(Xy)].

Then, we have

0

0 0 0
[o%an =2 [omde = S B 00)] = 5 EIG(X)

— E[(V(X,), X)] = / (Vo v)prde = / OV - (ppoy)de,

where we use the integration by parts in the last equality. Since the above identity holds for an
arbitrary ¢, the continuity equation holds. O

Fact 1 (Integration by parts). Given differentiable functions f,g : R* — R and a smooth vector
field v : R — RY that approaches 0 at infinity, we have the following integration by parts formulas:

[tV s@)ds = - [ 1@ - v)a)da,

and

/f(ﬂf)Ag(x)dfv = —/(Vf(fﬂ)aVQ(x))dw = /g(x)Af(ﬂf)dﬂf-
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Lemma 1 (It6’s lemma). For any process ©; € RY satisfying dz; = b(xy)dt + o(x;)dB; where
b(xy) € R? is the drift term and o(x;) € R¥X™ is the diffusion term, we have

46 (2) = V6 (2) " b () dt + V6 (20) o () By + 5 tr (o () V26 () (22)) .

With the Itd’s lemma above, we are able to extend Theorem (1) to the continuity equation of
a general Itd’s diffusion process (SDE).

Theorem 2. Consider an Ité’s diffusion process, i.e., Xy follows dX; = b(Xy)dt + o(X¢)dBy then
the law ps of Xy evolves according to

Opt

1
o —V - (psb) + §<V2 ,thUT> (3)

where

Z Z (%szaac]

Proof. For any given test function ¢, we have

Exnp[0(X)] = E[p(X1)]-

Taking differential on both sides and using Lemma 1, we have
[ 4@ = Bxp 46(X)] = E[d6(X0)
—E [w (@) f(m)dt + Ve (z) T o (z) dB; + %tr (cr (z)" V20 (z;) 0 (xt)) dt}
_E [ws ()T f (z) dt + %tr (V26 (20) D (1)) dt]

where we use E[dB;] = 0 and tr(ABC) = tr(BCA) in the last identity. Using X; ~ p;, we have

[o%as = [Vow) f@mas+ 5 [ (Vo) m@oo@ ae. @

Using integrating by parts on the first integral in (4), we have

[ V6@ 1@ mi)ds =~ [ o@)v

Using integrating by parts twice on the second integral in (4) gives

/<V2¢(a:) , pe(x)o(x) d:c = /QS 2 po(x T(:c)>d:L‘.

Plugging the above identities into (4), we have
0
/¢ Pa /¢ (peb)dz + = /¢ WV2, po()o | (z))da.
Since the above identity holds for an arbitrary ¢, the continuity equation (3) holds. O
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Now, we are ready to prove that (2) is the continuity equation of (1).
Corollary 1. If X; follows (1), then the law p; of Xy evolves according to (2).

Proof. This claim immediately follows from Theotem 2 with b(x) = —V f(z) and o = v/2I. O

1.2 Divergences

Throughout the notes, we abuse notation by identifying a probability measure with its density
w.r.t. Lebesgue measure. For a probability measure p < v (i.e., p is absolutely continuous w.r.t.
v), we define the total variation (TV) distance, the Kullback-Leibler (KL) divergence, and the
chi-squared (x?) divergence, respectively, as

P p 2
lo = vlv = sup [p(A) — u(A), KL(p||lv) = / plog 2dx, 2(p|v) = / (2-1) vaz. ()
AeF v v
In general, for a convex function ¢, we can define the ¢-divergence
_ P
Dipllv)=E, [¢(2)].
The three divergences in (5) are all instances of the ¢-divergence.

1. TV distance, ¢(z) = 3|z — 1|

1 1
]p—I/HTV:2/]p—u|dx:2/’5—1‘l/dx.

Note that E,[p/v] = 1. The TV distance is half of the L! distance between the probability
measures.

2. KL divergence, ¢(x) = xlogz

KL(p | v) = /plogpdm —/plog Pz
v v Cwv

Pinker’s inequality
1
2llp = vllty = gllo = VIt <KL(p || ).

3. x? divergence, ¢(z) = (z — 1)?

o= [(2-1) ve= [(2-&[2]) var=var, () = [ w1

Lemma 2. If ¢ is convex and ¢(1) = 0, then the ¢-divergence is always nonnegative, i.e.,

D(p||v) 20, Vp,vePRY.
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Proof. 1t follows from the convexity of ¢ and the Jensen’s inequality that

o (4)] 2 (5 [2]) =t =0

Note that ¢(1) = 0 holds for each corresponding ¢ used in TV distance, KL divergence, and x>
divergence. Hence, the three divergences are all nonnegative.

Definition 1. The Fisher information functional FI: Po(R?) — R is defined by:
IVo()l®
p(x)

The relative Fisher information with respect to v € Po(R?) is a functional FI(- | v): P2(R?) — R
defined by:

Fil) = 5, [IVlog 7] = [ otV Iog e ae = [ dr

p() |
Vlog H dz.

Aol =5, |[Tos || = [ o) | 710857

If p £ v, then Fl(p || v) == 400

1.3 Transport inequalities

Definition 2. A probability distribution v is said to be a-strongly log-concave (a-SLC) with con-
stant o > 0 if al < —V?logv. When o = 0, we say that the v is log-concave.

It is easy to see that v o< exp(—f) is a-SLC if and only if f is a-strongly convex.

Definition 3. A probability distribution v satisfies a-log-Sobolev inequality (c-LSI) with constant
a > 0 if for any p,
20KL(p || v) < Fl(p|| »).

Definition 4. A probability distribution v satisfies a-Poincareé inequality («-PI) with constant
a > 0 if for any smooth g : R — R,

1
Var,(g) < aEu[HVQHz],

where Var,(g) = E,[¢%] — E,[g])? is the variance of g under v.

It is known a-SLC implies a-LSI and a-LSI implies a-PI. Indeed, PI is the linearization of LSI
(taking p = (1 4+ eg)v for € > 0).

Definition 5. For any two distributions u and v, the Wasserstein-2 distance between them is
defiened as

W2 () = im‘l/nm—ywdway»
YET (V)

where T is the set of couplings v of u and v, i.e., the marginal distributions of v are p and v.
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Definition 6. A probability distribution v satisfies a-Talagrand’s inequality (a-TI) with constant

a > 0 if for any p, N
W (p.) < KL(p | ).

Note that a-LSI implies o-TT and PI is also the linearization of TI with the same constant.

1.4 Convergence

The following result presents the rate of change of KL divergence along Langevin dynamics (1),
which is a variant of de Bruijn’s identity.

Lemma 3. Let X; evolves following Langevin dynamics (1). Then, the law p; of Xy satisfies

d

aKL(Pt | v) = —Fl(pt | v).

Proof. The time derivative of KL divergence along any flow is given by

d _d pt . [ Op Pt
EKL(Pt lv) = a /Pt log ;dx = & log ;dx (6)
since the second part of the chain rule is zero:
9. pt Opi d
Dt 5 g~ dz 5 dz & pedx =0

It follows from Corollary 1 that p; satisfies the Fokker-Planck equation (2). Therefore, we have

d
KLt || v) = /v. (ptVlog %) log %dx
2
= —/pt HVIog&H dx
v
= —Fl(p: || v).
where the second identity follows from integration by parts. O

Theorem 3. Suppose v satisfies a-LSI. Along the Langevin dynamics (1), we have

KL(pt || v) < e**'KL(po || v). (7)

w2
Wa(pr,v) < e ~KL(po || v).

Moreover, we have
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Proof. 1t follows from Lemma 3 and a-LSI that

d
KL | ) = —Fl(py || v) < —2aKL(py || ).

Integrating gives the desired bound (7). Moreover, since a-LSI implies a-TI, we have

o _
SWa(pev) < KL(pe || v) < e KL(po || ).
O
Similar to Lemma 3, we have the rate of change of x? divergence along Langevin dynamics (1).

Lemma 4. Let Xy evolves following Langevin dynamics (1). Then, the law p; of Xy satisfies

oo =2 [[v2 ]

Proof. The time derivative of x? divergence along any flow is given by

d d pi pt Opt
Plgp—1) =2 .
X ellv) = dt( d ) /V(?tdx

Therefore, along the Fokker-Planck equation (2), we have

d Pt
v)=2 | =V Vlo dx
X ol v) / ” (p g )

= —2/<th ,ptVIOg&>dx
v v

:—Q/HV[:"zljd:E
- [Je2]

where the second identity follows from integration by parts. O

Theorem 4. Suppose v satisfies a-PI. Along the Langevin dynamics (1), we have

X2 (pe | v) < €72 (po || v)- (8)

Proof. Tt follows from Lemma 4 and «o-PI that

d P2 Pt 2
— — < — — ) = — .
X (pi | v) = —2E, [HV ” H ] 2aVar, ( 1/) 2ax*(pe || v)
Integrating gives (8). O
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We conclude this section by giving another proof of convergence in terms of W, distance based
on the technique of coupling.

Theorem 5. Suppose v is a-SLC. Assume (Xo,Yp) ~ v(x,y) is sampled from the optimal coupling
of po and my. Let X; andY; evolve along the same Langevin dynamics (1), then the laws p; and my
of X¢ and Yy, respectively, satisfy

W3 (pr,m) < e 2*"W3 (po, o) - (9)
In particular, we have
W3 (pi,v) < e >*"W3 (po, v) - (10)
Proof. Along the Langevin dynamics (1), using the same Brownian motion dB; for both processes,
we have q
X (@t —ye) = VI (y) = V().
Hence,
1d 9
557 I = il = 2 (9 () = V1 1) o0 — ).

Next, since f is a-strongly convex, we have

) = £ (@) 2 VF @) =20+ 5 llee—wil

T = F () 2 VI @) (e =) + 5 lloe—wil*

Adding two equations together, we have

(VF (@) = V)" (e —we) > allzy — gl
Therefore,

1d
g e = vel* < —allze — e *
Integrating from 0 to ¢, we have

E |lze — mill* < e Jlzo — wo*.
Since (Xp, Yp) is generated from the optimal coupling of py and g, we have

E |z, — yel|* < e 2 |lzo — yol|* = e 2 W2 (po, o).

The proof of (9) is concluded upon noting that W3(ps,m:) < E |lz; — y¢||*. Finally, (10) follows
from (9) and the fact that v is the invariant distribution. O
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2 Langevin Monte Carlo

In discrete time, a simple discretization of the Langevin dynamics (1) is the Langevin Monte Carlo
(LMC) which updates the current iterate Xj € R? to

X1 = X =V f(Xk) + /202, (11)

where 7 > 0 is step size and Z; ~ N(0,I) is an independent Gaussian random variable. It is
known that LMC is biased, which means that for any fixed n > 0 and as k — oo, the law p of
X}, converges to a limiting distribution v, which is different from the true target v. We study the
convergence rate of LMC to v, in this section.
We first observe that one step of LMC (11) can be interpreted as the output at time ¢t = n of
the SDE
dX, = =V f(Xo)dt + V2dB,. (12)

Lemma 5. Let p; be the law of the process (12). Then, its Fokker-Planck equation is

Ipt

or =V (0B, [VF(X0)|Xi]) + Ay

Proof. We first note that

pot(To, T¢) = Po(ﬂfo)ﬂt\o($t|$0) = Pt(%)ﬂo|t($0|$t)-
Conditioning on xg, the drift vector field —V f(xg) is a constant. Following (2), the Fokker-Planck

equation for the conditional density pyo (v | zo) is

8Pt|0($t | o)

S =V (ol | 7)Y F (o)) + Dpugo (| o).

To derive the evolution of p;, we take expectation over xg ~ pg. Multiplying both sides of the above
Fokker-Planck equation by pg () and integrating over g, we obtain

ope(z) / dpeo(z | 20)
ot ot

- / (V- (ool | 20)VF(20)) + Apyo(e | 20)) polo)dag

po(xo)dzo

_ / (V - (pro(@, 20)V f(20)) + Apro(, 20)) dio
_v. (pt<x> [ pontao | x)Vf<mo>dmo) + Api(a)

=V (pi(@)Byy, [V (w0) | 1)) + Apy(a),
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Lemma 6. Let p; be the law of the process (12). Then, it satisfies

d

SKL(pe 7)< ~2Filpy [|0) + B, [IVf () = 97 (o)l (13)

Proof. 1t follows from (6) and Lemma 5 that

KL 0) = [ [V (0B (V1 () 1)) + 1] og 2

Hence, using integration by parts, we have

KU 9) = [ 9+ (o (T1082 + By, 195 (o) | ) = V4(@)) ) 10 2o

dt
—/Pt <Vlog% +Epy, [Vf (z0) | 24 —Vf(a:),Vlog%>dx
__/ptHVIOth’rdaH—/pt <Vf(x)—EpO|t [Vf(zo0) | xt],Vlog%>dx

= <Filpu [ )+ [ poc (a0, 2) (V) = V£ (a0) VIog 2 ) dado

— Filpt || 1)+ Ep, [<Vf (20) = Vf (20), V log ((x:; >] '

Using the fact that (a,b) < ||a||? + ||b]|?/4 for any a,b € R%, we have

1 2
B (970 = V5 (20) g ”fx))>] < B [I97 20) = 97 (@)?] + e {10822 ]
1
Epo, [V (2) = Vf @0)I] + 7F1(pe || v).
Finally, (13) follows from combining the above two relations. O

Lemma 7. Assume v = exp(—f) and f is L-smooth. Then, the following statements hold:
(a) B[V SI?] < dL;

(b) if v also satisfies a-TI, then for any p,
E[IV£]?] < 7K|-(P | v) + 2dL.

Proof. (a) Using integration by parts, we have

E(IVfI* = /(Vﬂ Vf)exp(—[f)dx = —/(Vexp(—f),vﬁdﬂ? = [ exp(—f)V-(Vf)dz = E,[Af].
Since f is L-smooth, V2f < LI, and hence Af < dL.Therefore, (a) holds.
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(b) Let (x,z*) be generated from an optimal coupling of (p,v), then E[||z — z*?] = W3(p,v).
Since f is L-smooth,

V@) < IVF(z) = V@) [+ V@) < Lz =27 + [V f()]-
Taking expectation gives
E,[IIVf(x)*] < 2L%E[||lz — 27||*] + 2B, ||V f (2")[1%] = 2L* W3 (p, v) + 2B, [V f(2")]]?].
Now, statement (b) immediately follows from a-TT and (a). O

Lemma 8. Assume v satisfies a-LSI and f is L-smooth. Then, for 0 <t <mn, we have

4’ LA

Epo: [IVF (@) = VF (@0)|*] < 22-KL(po || ) + 2L + 20dL2
Proof. Since the solution to (12) is
X 2 Xo — tV(Xo) + V22,

where Zy ~ N (0, 1) is independent of Xy. Then,

e [th - xOHQ} = Boo [H_tvf(xo) + \/ﬂZOHQ]

= £, [|IV f(w0)|*] + 2td
44212

< KL(po || v) + 2t3dL + 2td,
where the inequality is due to Lemma 7(b) and the fact that o-LSI implies a-T1. The lemma finally
follows from the facts that f is L-smooth and ¢ < 7. O

Theorem 6. Suppose v satisfies a-LSI and f is L-smooth. Ifn < o/(4L?), then along the Langevin
Monte Carlo (11),
KL(psr || v) < e “IKL(py || ) + 672dL2. (14)

Furthermore,

8ndL?
KL(pr || v) < e *™KL(po || v) + ==

For 0 < n < 4d, LMC with n < 1575 reaches error KL(py || v) < € after k > %ﬂlogw

iterations.

Proof. 1t follows from Lemmas 6 and 8 that for ¢t <7,

4n?LA
a

d 3
KL [ v) < =R v) +

KL(po || v) + 2n*dL? + 2nd L>.
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Noting that n < 1/(2L) and using the fact that v satisfies a-LSI, we have

d 3a 4n?L*
Tl ) < = KL(pe || ) + =

KL(po || v) + 3ndL>.

(0%

Multiplying both sides by exp(3at/2), we rewrite the above inequality as

d 3a 3a 4 2L4
G (CFRU ) < (IR ) + 30a22).

Integrating from 0 to n gives

3 2 3a 4 2L4
5 KL(py [[) ~ KLl | 1) < - (5" —1) ( L KL (oo | v) + 3ndL2>

(%

An?L*
<2 ( LK L(po || v) + 3ndL2) ,

where in the last step we have used the inequality e < 1+ 2c for 0 < ¢ = %om < 1, which holds
because 0 < 1 < % Rearranging the inequality above gives

—3a 8 3L4 30
KL(p, || ) <e 2" <1 + 2 > KL(po || v) + e~ 6n2dL2.
«

Since 1 + @ <1+ % < €20 for n < 47z, and using e~ 3o < 1, we conclude that (14) holds
after renaming
PO = Pks  Pn = Pk+1-

Applying (14), we obtain

_ 6n2dL> _ 8ndL?

ank ank

KL(pr || v) <e KL(po || v) + T—o=am <e KL(po || v) + o

where in the last step we have used the inequality 1 —e™¢ > %c for0<c=an< %, which holds

sincengﬁgﬁ. O
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