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1 Langevin dynamics

The Langevin dynamics for sampling from ν ∝ e−f is a stochastic process {Xt}t≥0 where Xt ∈ Rd

evolves following the stochastic differential equation:

dXt = −∇f(Xt)dt+
√
2dBt (1)

where {Bt}t≥0 is the standard Brownian motion in Rd starting from B0 = 0. If Xt ∈ Rd evolves

following the Langevin dynamics (1), then its probability density function ρt ∈ P2(Rd) evolves

following the Fokker-Planck equation:

∂ρt
∂t

= ∇ ·
(
ρt∇ log

ρt
ν

)
= ∇ · (ρt∇f) + ∆ρt. (2)

It is known that the Fokker-Planck equation has an optimization interpretation as the gradient

flow for minimizing the relative entropy KL(· ∥ ν) in the space of probability distributions with

the Wasserstein W2 metric. Conditions on ν such as log-concavity or log-Sobolev inequality (LSI)

can be interpreted as convexity-type conditions on the objective function (relative entropy) that

guarantee fast convergence of the gradient flow (Fokker-Planck equation). Since the Fokker-Planck

equation (2) is the continuity equation of Langevin dynamics (1), the latter is well suited for

sampling.

It is easy to check that ∂ρt
∂t = 0 in (2) with ρt = ν, so ν is the stationary/invariant distribution

of Fokker-Planck equation (2).

1.1 Continuity equation

There are two complementary perspectives on fluid flows: the Lagrangian perspective which em-

phasizes particle trajectories, and the Eulerian perspective which tracks the evolution of the fluid

density. Since (1) describes the evolution of the particle trajectory, it is the Lagrangian description

of the dynamics. The corresponding Eulerian description is the continuity equation (2).

Suppose v(x, t) is a vector field and ρ(x, t) is the density of some material q. Then, we define

the flux J = ρv to be the amount of q flowing per unit time through a unit volume. Te continuity

equation is
∂ρ

∂t
+∇ · J =

∂ρ

∂t
+∇ · (ρv) = σ(x, t).
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If σ > 0, then it is a source that generates q. If σ < 0, then it is a sink that removes q. If σ = 0,

then the continuity equation is indeed the conservation law. It appears in fluid mechanics (Navier-

Stokes equations), electromagnetism (Maxwell’s equations), statistical mechanics (Fokker-Planck

equation), and thermodynamics (heat equation). It states the conservation of mass, electric charge,

probability mass, and energy.

In fluid dynamics, we define material derivative

Dρ

Dt
≡ ∂ρ

∂t
+∇ρ · v,

which can be understood using the chain rule.

dρ(x, t)

dt
=

∂ρ

∂t
+∇ρ · v =

Dρ

Dt

If the flow is incompressible flow (e.g., water but not air), i.e., ρ(x, t) ≡ ρ is a constant over space

and time, then the continuity equation becomes

∇ · v = 0.

This means divergence is zero. It applies to hydrodynamics but not aerodynamics.

Theorem 1. Let vt be a vector field and consider the evolution of particle Xt following dXt =

vt(Xt)dt. Then, the law ρt of Xt evolves according to the continuity equation

∂ρt
∂t

+∇ · (ρtvt) = 0.

Proof. For any given test function ϕ, we have

EX∼ρt [ϕ(X)] = E[ϕ(Xt)].

Then, we have∫
ϕ
∂ρt
∂t

dx =
∂

∂t

∫
ϕρtdx =

∂

∂t
EX∼ρt [ϕ(X)] =

∂

∂t
E[ϕ(Xt)]

= E[⟨∇ϕ(Xt), Ẋt⟩] =
∫
⟨∇ϕ, vt⟩ρtdx = −

∫
ϕ∇ · (ρtvt)dx,

where we use the integration by parts in the last equality. Since the above identity holds for an

arbitrary ϕ, the continuity equation holds.

Fact 1 (Integration by parts). Given differentiable functions f, g : Rd → R and a smooth vector

field v : Rd → Rd that approaches 0 at infinity, we have the following integration by parts formulas:∫
⟨v(x),∇f(x)⟩dx = −

∫
f(x)(∇ · v)(x)dx,

and ∫
f(x)∆g(x)dx = −

∫
⟨∇f(x),∇g(x)⟩dx =

∫
g(x)∆f(x)dx.
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Lemma 1 (Itô’s lemma). For any process xt ∈ Rd satisfying dxt = b(xt)dt + σ(xt)dBt where

b(xt) ∈ Rd is the drift term and σ(xt) ∈ Rd×m is the diffusion term, we have

dϕ (xt) = ∇ϕ (xt)
⊤ b (xt) dt+∇ϕ (xt)

⊤ σ (xt) dBt +
1

2
tr
(
σ (xt)

⊤∇2ϕ (xt)σ (xt)
)
dt.

With the Itô’s lemma above, we are able to extend Theorem (1) to the continuity equation of

a general Itô’s diffusion process (SDE).

Theorem 2. Consider an Itô’s diffusion process, i.e., Xt follows dXt = b(Xt)dt+ σ(Xt)dBt then

the law ρt of Xt evolves according to

∂ρt
∂t

= −∇ · (ρtb) +
1

2

〈
∇2 , ρtσσ

⊤〉 (3)

where 〈
∇2 , A(x)

〉
=

∑
i

∑
j

∂2

∂xi∂xj
(A(x))ij

Proof. For any given test function ϕ, we have

EX∼ρt [ϕ(X)] = E[ϕ(Xt)].

Taking differential on both sides and using Lemma 1, we have∫
ϕdρt(x)dx = EX∼ρt [dϕ(X)] = E[dϕ(Xt)]

= E
[
∇ϕ (xt)

⊤ f (xt) dt+∇ϕ (xt)
⊤ σ (xt) dBt +

1

2
tr
(
σ (xt)

⊤∇2ϕ (xt)σ (xt)
)
dt

]
= E

[
∇ϕ (xt)

⊤ f (xt) dt+
1

2
tr
(
∇2ϕ (xt)D (xt)

)
dt

]
where we use E[dBt] = 0 and tr(ABC) = tr(BCA) in the last identity. Using Xt ∼ ρt, we have∫

ϕ
∂ρt
∂t

dx =

∫
∇ϕ (x)⊤ f (x) ρt(x)dx+

1

2

∫ 〈
∇2ϕ(x) , ρt(x)σ(x)σ(x)

⊤〉dx. (4)

Using integrating by parts on the first integral in (4), we have∫
∇ϕ (x)⊤ f (x) ρt(x)dx = −

∫
ϕ(x)∇ · (ρtb)dx.

Using integrating by parts twice on the second integral in (4) gives∫ 〈
∇2ϕ(x) , ρt(x)σ(x)σ(x)

⊤〉dx =

∫
ϕ(x)

〈
∇2 , ρtσ(x)σ

⊤(x)
〉
dx.

Plugging the above identities into (4), we have∫
ϕ
∂ρt
∂t

dx = −
∫

ϕ(x)∇ · (ρtb)dx+
1

2

∫
ϕ(x)

〈
∇2 , ρtσ(x)σ

⊤(x)
〉
dx.

Since the above identity holds for an arbitrary ϕ, the continuity equation (3) holds.
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Now, we are ready to prove that (2) is the continuity equation of (1).

Corollary 1. If Xt follows (1), then the law ρt of Xt evolves according to (2).

Proof. This claim immediately follows from Theotem 2 with b(x) = −∇f(x) and σ =
√
2I.

1.2 Divergences

Throughout the notes, we abuse notation by identifying a probability measure with its density

w.r.t. Lebesgue measure. For a probability measure ρ ≪ ν (i.e., ρ is absolutely continuous w.r.t.

ν), we define the total variation (TV) distance, the Kullback–Leibler (KL) divergence, and the

chi-squared (χ2) divergence, respectively, as

∥ρ− ν∥TV = sup
A∈F

|ρ(A)− µ(A)|, KL(ρ ∥ ν) =
∫

ρ log
ρ

ν
dx, χ2(ρ ∥ ν) =

∫ (ρ
ν
− 1

)2
νdx. (5)

In general, for a convex function ϕ, we can define the ϕ-divergence

D(ρ ∥ ν) = Eν

[
ϕ
(ρ
ν

)]
.

The three divergences in (5) are all instances of the ϕ-divergence.

1. TV distance, ϕ(x) = 1
2 |x− 1|

∥ρ− ν∥TV =
1

2

∫
|ρ− ν|dx =

1

2

∫ ∣∣∣ρ
ν
− 1

∣∣∣ νdx.
Note that Eν [ρ/ν] = 1. The TV distance is half of the L1 distance between the probability

measures.

2. KL divergence, ϕ(x) = x log x

KL(ρ ∥ ν) =
∫

ρ log
ρ

ν
dx =

∫
ρ

ν
log

ρ

ν
νdx.

Pinker’s inequality

2∥ρ− ν∥2TV =
1

2
∥ρ− ν∥21 ≤ KL(ρ ∥ ν).

3. χ2 divergence, ϕ(x) = (x− 1)2

χ2(ρ ∥ ν) =
∫ (ρ

ν
− 1

)2
νdx =

∫ (ρ
ν
− E

[ρ
ν

])2
νdx = Varν

(ρ
ν

)
=

∫
ρ2

ν
dx− 1.

Lemma 2. If ϕ is convex and ϕ(1) = 0, then the ϕ-divergence is always nonnegative, i.e.,

D(ρ ∥ ν) ≥ 0, ∀ρ, ν ∈ P(Rd).
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Proof. It follows from the convexity of ϕ and the Jensen’s inequality that

Eν

[
ϕ
(ρ
ν

)]
≥ ϕ

(
Eν

[ρ
ν

])
= ϕ(1) = 0.

Note that ϕ(1) = 0 holds for each corresponding ϕ used in TV distance, KL divergence, and χ2

divergence. Hence, the three divergences are all nonnegative.

Definition 1. The Fisher information functional FI : P2(Rd) → R is defined by:

FI(ρ) := Eρ

[
∥∇ log ρ∥2

]
=

∫
Rd

ρ(x)∥∇ log ρ(x)∥2 dx =

∫
Rd

∥∇ρ(x)∥2

ρ(x)
dx .

The relative Fisher information with respect to ν ∈ P2(Rd) is a functional FI(· ∥ ν) : P2(Rd) → R
defined by:

FI(ρ ∥ ν) := Eρ

[∥∥∥∇ log
ρ

ν

∥∥∥2] =

∫
Rd

ρ(x)

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2 dx .

If ρ ̸≪ ν , then FI(ρ ∥ ν) := +∞ .

1.3 Transport inequalities

Definition 2. A probability distribution ν is said to be α-strongly log-concave (α-SLC) with con-

stant α > 0 if αI ⪯ −∇2 log ν. When α = 0, we say that the ν is log-concave.

It is easy to see that ν ∝ exp(−f) is α-SLC if and only if f is α-strongly convex.

Definition 3. A probability distribution ν satisfies α-log-Sobolev inequality (α-LSI) with constant

α > 0 if for any ρ,

2αKL(ρ ∥ ν) ≤ FI(ρ ∥ ν).

Definition 4. A probability distribution ν satisfies α-Poincareé inequality (α-PI) with constant

α > 0 if for any smooth g : Rd 7→ R,

Varν(g) ≤
1

α
Eν [∥∇g∥2],

where Varν(g) = Eν [g
2]− Eν [g]

2 is the variance of g under ν.

It is known α-SLC implies α-LSI and α-LSI implies α-PI. Indeed, PI is the linearization of LSI

(taking ρ = (1 + εg)ν for ε > 0).

Definition 5. For any two distributions µ and ν, the Wasserstein-2 distance between them is

defiened as

W2
2 (µ, ν) := inf

γ∈Γ(µ,ν)

∫
∥x− y∥2dγ(x, y),

where Γ is the set of couplings γ of µ and ν, i.e., the marginal distributions of γ are µ and ν.
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Definition 6. A probability distribution ν satisfies α-Talagrand’s inequality (α-TI) with constant

α > 0 if for any ρ,
α

2
W2

2 (ρ, ν) ≤ KL(ρ ∥ ν).

Note that α-LSI implies α-TI and PI is also the linearization of TI with the same constant.

1.4 Convergence

The following result presents the rate of change of KL divergence along Langevin dynamics (1),

which is a variant of de Bruijn’s identity.

Lemma 3. Let Xt evolves following Langevin dynamics (1). Then, the law ρt of Xt satisfies

d

dt
KL(ρt ∥ ν) = −FI(ρt ∥ ν).

Proof. The time derivative of KL divergence along any flow is given by

d

dt
KL(ρt ∥ ν) =

d

dt

∫
ρt log

ρt
ν
dx =

∫
∂ρt
∂t

log
ρt
ν
dx (6)

since the second part of the chain rule is zero:∫
ρt

∂

∂t
log

ρt
ν
dx =

∫
∂ρt
∂t

dx =
d

dt

∫
ρtdx = 0.

It follows from Corollary 1 that ρt satisfies the Fokker-Planck equation (2). Therefore, we have

d

dt
KL(ρt ∥ ν) =

∫
∇ ·

(
ρt∇ log

ρt
ν

)
log

ρt
νt
dx

= −
∫

ρt

∥∥∥∇ log
ρt
ν

∥∥∥2 dx
= −FI(ρt ∥ ν).

where the second identity follows from integration by parts.

Theorem 3. Suppose ν satisfies α-LSI. Along the Langevin dynamics (1), we have

KL(ρt ∥ ν) ≤ e−2αtKL(ρ0 ∥ ν). (7)

Moreover, we have

W2(ρt, ν) ≤ e−αt

√
2

α
KL(ρ0 ∥ ν).
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Proof. It follows from Lemma 3 and α-LSI that

d

dt
KL(ρt ∥ ν) = −FI(ρt ∥ ν) ≤ −2αKL(ρt ∥ ν).

Integrating gives the desired bound (7). Moreover, since α-LSI implies α-TI, we have

α

2
W2

2 (ρt, ν) ≤ KL(ρt ∥ ν) ≤ e−2αtKL(ρ0 ∥ ν).

Similar to Lemma 3, we have the rate of change of χ2 divergence along Langevin dynamics (1).

Lemma 4. Let Xt evolves following Langevin dynamics (1). Then, the law ρt of Xt satisfies

d

dt
χ2(ρt ∥ ν) = −2Eν

[∥∥∥∇ρt
ν

∥∥∥2] .
Proof. The time derivative of χ2 divergence along any flow is given by

d

dt
χ2(ρt ∥ ν) =

d

dt

(∫
ρ2t
ν
dx− 1

)
= 2

∫
ρt
ν

∂ρt
∂t

dx.

Therefore, along the Fokker-Planck equation (2), we have

d

dt
χ2(ρt ∥ ν) = 2

∫
ρt
νt
∇ ·

(
ρt∇ log

ρt
ν

)
dx

= −2

∫ 〈
∇ρt

ν
, ρt∇ log

ρt
ν

〉
dx

= −2

∫ ∥∥∥∇ρt
ν

∥∥∥2 νdx
= −2Eν

[∥∥∥∇ρt
ν

∥∥∥2]
where the second identity follows from integration by parts.

Theorem 4. Suppose ν satisfies α-PI. Along the Langevin dynamics (1), we have

χ2(ρt ∥ ν) ≤ e−2αtχ2(ρ0 ∥ ν). (8)

Proof. It follows from Lemma 4 and α-PI that

d

dt
χ2(ρt ∥ ν) = −2Eν

[∥∥∥∇ρt
ν

∥∥∥2] ≤ −2αVarν
(ρt
ν

)
= −2αχ2(ρt ∥ ν).

Integrating gives (8).
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We conclude this section by giving another proof of convergence in terms of W2 distance based

on the technique of coupling.

Theorem 5. Suppose ν is α-SLC. Assume (X0, Y0) ∼ γ(x, y) is sampled from the optimal coupling

of ρ0 and π0. Let Xt and Yt evolve along the same Langevin dynamics (1), then the laws ρt and πt
of Xt and Yt, respectively, satisfy

W2
2 (ρt, πt) ≤ e−2αtW2

2 (ρ0, π0) . (9)

In particular, we have

W2
2 (ρt, ν) ≤ e−2αtW2

2 (ρ0, ν) . (10)

Proof. Along the Langevin dynamics (1), using the same Brownian motion dBt for both processes,

we have
d

dt
(xt − yt) = ∇f (yt)−∇f (xt) .

Hence,
1

2

d

dt
∥xt − yt∥2 = 2 ⟨∇f (yt)−∇f (xt) , xt − yt⟩ .

Next, since f is α-strongly convex, we have

f (yt)− f (xt) ≥ ∇f (xt)
⊤ (yt − xt) +

α

2
∥xt − yt∥2 ,

f (xt)− f (yt) ≥ ∇f (yt)
⊤ (xt − yt) +

α

2
∥xt − yt∥2 .

Adding two equations together, we have

(∇f (xt)−∇f (yt))
⊤ (xt − yt) ≥ α ∥xt − yt∥2 .

Therefore,
1

2

d

dt
∥xt − yt∥2 ≤ −α ∥xt − yt∥2 .

Integrating from 0 to t, we have

E ∥xt − yt∥2 ≤ e−2µt ∥x0 − y0∥2 .

Since (X0, Y0) is generated from the optimal coupling of ρ0 and π0, we have

E ∥xt − yt∥2 ≤ e−2µt ∥x0 − y0∥2 = e−2µtW2
2 (ρ0, π0).

The proof of (9) is concluded upon noting that W2
2 (ρt, πt) ≤ E ∥xt − yt∥2. Finally, (10) follows

from (9) and the fact that ν is the invariant distribution.
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2 Langevin Monte Carlo

In discrete time, a simple discretization of the Langevin dynamics (1) is the Langevin Monte Carlo

(LMC) which updates the current iterate Xk ∈ Rd to

Xk+1 = Xk − η∇f(Xk) +
√
2ηZk, (11)

where η > 0 is step size and Zk ∼ N (0, I) is an independent Gaussian random variable. It is

known that LMC is biased, which means that for any fixed η > 0 and as k → ∞, the law ρk of

Xk converges to a limiting distribution νη which is different from the true target ν. We study the

convergence rate of LMC to νη in this section.

We first observe that one step of LMC (11) can be interpreted as the output at time t = η of

the SDE

dXt = −∇f(X0)dt+
√
2dBt. (12)

Lemma 5. Let ρt be the law of the process (12). Then, its Fokker-Planck equation is

∂ρt
∂t

= ∇ · (ρtEρt|0 [∇f(X0)|Xt]) + ∆ρt.

Proof. We first note that

ρ0t(x0, xt) = ρ0(x0)ρt|0(xt|x0) = ρt(xt)ρ0|t(x0|xt).

Conditioning on x0, the drift vector field −∇f(x0) is a constant. Following (2), the Fokker-Planck

equation for the conditional density ρt|0 (xt | x0) is

∂ρt|0(xt | x0)
∂t

= ∇ · (ρt|0(xt | x0)∇f(x0)) + ∆ρt|0(xt | x0).

To derive the evolution of ρt, we take expectation over x0 ∼ ρ0. Multiplying both sides of the above

Fokker-Planck equation by ρ0 (x0) and integrating over x0, we obtain

∂ρt(x)

∂t
=

∫
∂ρt|0(x | x0)

∂t
ρ0(x0)dx0

=

∫ (
∇ ·

(
ρt|0(x | x0)∇f(x0)

)
+∆ρt|0(x | x0)

)
ρ0(x0)dx0

=

∫
(∇ · (ρt,0(x, x0)∇f(x0)) + ∆ρt,0(x, x0)) dx0

= ∇ ·
(
ρt(x)

∫
ρ0|t(x0 | x)∇f(x0)dx0

)
+∆ρt(x)

= ∇ ·
(
ρt(x)Eρ0|t [∇f(x0) | xt]

)
+∆ρt(x).
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Lemma 6. Let ρt be the law of the process (12). Then, it satisfies

d

dt
KL(ρt ∥ ν) ≤ −3

4
FI(ρt ∥ ν) + Eρ0t

[
∥∇f (xt)−∇f (x0)∥2

]
. (13)

Proof. It follows from (6) and Lemma 5 that

d

dt
KL(ρt ∥ ν) =

∫ [
∇ ·

(
ρtEρ0|t [∇f (x0) | xt]

)
+∆ρt

]
log

ρt
ν
dx.

Hence, using integration by parts, we have

d

dt
KL(ρt ∥ ν) =

∫ [
∇ ·

(
ρt

(
∇ log

ρt
ν

+ Eρ0|t [∇f (x0) | xt]−∇f(x)
))]

log
ρt
ν
dx

= −
∫

ρt

〈
∇ log

ρt
ν

+ Eρ0|t [∇f (x0) | xt]−∇f(x),∇ log
ρt
ν

〉
dx

= −
∫

ρt

∥∥∥∇ log
ρt
ν

∥∥∥2 dx+

∫
ρt

〈
∇f(x)− Eρ0|t [∇f (x0) | xt] ,∇ log

ρt
ν

〉
dx

= −FI(ρt ∥ ν) +
∫

ρ0t (x0, x)
〈
∇f(x)−∇f (x0) ,∇ log

ρt
ν

〉
dx0dx

= −FI(ρt ∥ ν) + Eρ0t

[〈
∇f (xt)−∇f (x0) ,∇ log

ρt (xt)

ν (xt)

〉]
.

Using the fact that ⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2/4 for any a, b ∈ Rd, we have

Eρ0t

[〈
∇f (xt)−∇f (x0) ,∇ log

ρt (xt)

ν (xt)

〉]
≤ Eρ0t

[
∥∇f (xt)−∇f (x0)∥2

]
+

1

4
Eρ0t

[∥∥∥∥∇ log
ρt (xt)

ν (xt)

∥∥∥∥2
]

= Eρ0t

[
∥∇f (xt)−∇f (x0)∥2

]
+

1

4
FI(ρt ∥ ν).

Finally, (13) follows from combining the above two relations.

Lemma 7. Assume ν = exp(−f) and f is L-smooth. Then, the following statements hold:

(a) Eν [∥∇f∥2] ≤ dL;

(b) if ν also satisfies α-TI, then for any ρ,

Eρ[∥∇f∥2] ≤ 4L2

α
KL(ρ ∥ ν) + 2dL.

Proof. (a) Using integration by parts, we have

Eν [∥∇f∥2] =
∫
⟨∇f,∇f⟩ exp(−f)dx = −

∫
⟨∇ exp(−f),∇f⟩dx =

∫
exp(−f)∇·(∇f)dx = Eν [∆f ].

Since f is L-smooth, ∇2f ⪯ LI, and hence ∆f ≤ dL.Therefore, (a) holds.
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(b) Let (x, x∗) be generated from an optimal coupling of (ρ, ν), then E[∥x− x∗∥2] = W2
2 (ρ, ν).

Since f is L-smooth,

∥∇f(x)∥ ≤ ∥∇f(x)−∇f(x∗)∥+ ∥∇f(x∗)∥ ≤ L∥x− x∗∥+ ∥∇f(x∗)∥.

Taking expectation gives

Eρ[∥∇f(x)∥2] ≤ 2L2E[∥x− x∗∥2] + 2Eν [∥∇f(x∗)∥2] = 2L2W2
2 (ρ, ν) + 2Eν [∥∇f(x∗)∥2].

Now, statement (b) immediately follows from α-TI and (a).

Lemma 8. Assume ν satisfies α-LSI and f is L-smooth. Then, for 0 ≤ t ≤ η, we have

Eρ0t

[
∥∇f (xt)−∇f (x0)∥2

]
≤ 4η2L4

α
KL(ρ0 ∥ ν) + 2η2dL3 + 2ηdL2.

Proof. Since the solution to (12) is

Xt
d
= X0 − t∇f(X0) +

√
2tZ0,

where Z0 ∼ N (0, I) is independent of X0. Then,

Eρ0t

[
∥xt − x0∥2

]
= Eρ0t

[∥∥∥−t∇f(x0) +
√
2tz0

∥∥∥2]
= t2Eρ0

[
∥∇f(x0)∥2

]
+ 2td

≤ 4t2L2

α
KL(ρ0 ∥ ν) + 2t2dL+ 2td,

where the inequality is due to Lemma 7(b) and the fact that α-LSI implies α-TI. The lemma finally

follows from the facts that f is L-smooth and t ≤ η.

Theorem 6. Suppose ν satisfies α-LSI and f is L-smooth. If η ≤ α/(4L2), then along the Langevin

Monte Carlo (11),

KL(ρk+1 ∥ ν) ≤ e−αηKL(ρk ∥ ν) + 6η2dL2. (14)

Furthermore,

KL(ρk ∥ ν) ≤ e−αηkKL(ρ0 ∥ ν) +
8ηdL2

α
.

For 0 < η < 4d, LMC with η ≤ αη
16L2d

reaches error KL(ρk ∥ ν) ≤ ε after k ≥ 1
αη log

2KL(ρ0∥ν)
ε

iterations.

Proof. It follows from Lemmas 6 and 8 that for t ≤ η,

d

dt
KL(ρt ∥ ν) ≤ −3

4
FI(ρt ∥ ν) +

4η2L4

α
KL(ρ0 ∥ ν) + 2η2dL3 + 2ηdL2.
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Noting that η ≤ 1/(2L) and using the fact that ν satisfies α-LSI, we have

d

dt
KL(ρt ∥ ν) ≤ −3α

2
KL(ρt ∥ ν) +

4η2L4

α
KL(ρ0 ∥ ν) + 3ηdL2.

Multiplying both sides by exp(3αt/2), we rewrite the above inequality as

d

dt

(
e

3αt
2 KL(ρt ∥ ν)

)
≤ e

3αt
2

(
4η2L4

α
KL(ρ0 ∥ ν) + 3ηdL2

)
.

Integrating from 0 to η gives

e
3αη
2 KL(ρη ∥ ν)− KL(ρ0 ∥ ν) ≤

2

3α

(
e

3αη
2 − 1

)(
4η2L4

α
KL(ρ0 ∥ ν) + 3ηdL2

)
≤ 2η

(
4η2L4

α
KL(ρ0 ∥ ν) + 3ηdL2

)
,

where in the last step we have used the inequality ec ≤ 1 + 2c for 0 < c = 3
2αη ≤ 1, which holds

because 0 < η < 2
3α . Rearranging the inequality above gives

KL(ρη ∥ ν) ≤ e
−3αη

2

(
1 +

8η3L4

α

)
KL(ρ0 ∥ ν) + e

−3αη
2 6η2dL2.

Since 1 + 8η3L4

α ≤ 1 + αη
2 ≤ e

1
2
αη for η ≤ α

4L2 , and using e−
3
2
αη ≤ 1, we conclude that (14) holds

after renaming

ρ0 ≡ ρk, ρη ≡ ρk+1.

Applying (14), we obtain

KL(ρk ∥ ν) ≤ e−αηkKL(ρ0 ∥ ν) +
6η2dL2

1− e−αη
≤ e−αηkKL(ρ0 ∥ ν) +

8ηdL2

α
,

where in the last step we have used the inequality 1 − e−c ≥ 3
4c for 0 < c = αη ≤ 1

4 , which holds

since η ≤ α
4L2 ≤ 1

4α .
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