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1 Differential privacy

Definition 1 ((ε, δ)-DP). A randomized mechanism M is (ε, δ)-differentially private if for any

neighboring databases D,D′ and any subset S ⊆ O (output space), one has

P[M(D) ∈ S] ≤ eεP
[
M

(
D′) ∈ S

]
+ δ.

We say D and D′ are neighboring databases if they agree on all the user inputs except for a single

user’s input.

For δ = 0, the ε-DP condition can be written as

1

eε
P
[
M

(
D′) ∈ S

]
≤ P[M(D) ∈ S] ≤ eεP

[
M

(
D′) ∈ S

]
.

1.1 Randomized response

Consider a survey at U of R where we want to know the percentage of students who cheated on an

exam. Here is an idea that protects students’ privacy while we still get useful information. First,

the surveyee flips a fair coin. If it is tail, then answer the question truthfully. If it is head, flip

again. Based on outcome of second coin flip, answer “YES” if it is head and “NO” if it is tail.

The appeal to tell the truth here is that if you answer “YES”, you have plausible deniability for

saying why this is true or not. The above process can be put into the DP setting. Input databases

DY = {Y } and DN = {N} and output subsets S = {Y } or S = {N}. It is easy to see that

P(Y |Y ) =
3

4
, ,P(N |Y ) =

1

4
, ,P(N |N) =

3

4
, ,P(Y |N) =

1

4
,

i.e.,

P[M(DY ) ∈ {Y }] = 3

4
, P[M(DY ) ∈ {N}] = 1

4
, P[M(DN ) ∈ {N}] = 3

4
, P[M(DN ) ∈ {Y }] = 1

4
.

Thus, for any neighboring D and D′, we have

1

3
≤ P[M(D) ∈ {Y }]

P[M(D′) ∈ {Y }]
≤ 3,

1

3
≤ P[M(D) ∈ {N}]

P[M(D′) ∈ {N}]
≤ 3.
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Therefore for any S and D,D′, we have

1

3
≤ P[M(D) ∈ S]

P[M(D′) ∈ S]
≤ 3.

The randomized response mechanism is ln 3-DP

If surveyee follows the randomized response mechanism, then the expected faction of “YES” is
3
4p+

1
4(1−p) where p is the true fraction. The empirical fraction p̂ of “YES” converges to p/2+1/2

as n → ∞, and we will get better estimate of p.

1.2 Laplace mechanism

Consider M(D) = A(D) +X where X ∼ Laplace(0, b), then M(D) ∼ Laplace(A(D), b), i.e.,

p(M(D) = s) =
1

2b
exp

(
−|s−A(D)|

b

)
.

Hence, we have

P[M(D) ∈ S]

P[M(D′) ∈ S]
=

∫
s∈S

1
2b exp

(
− |s−A(D)|

b

)
ds∫

s∈S
1
2b exp

(
− |s−A(D′)|

b

)
ds

≤ max
s∈S

exp
(
− |s−A(D)|

b

)
exp

(
− |s−A(D′)|

b

)
= max

s∈S
exp

(
|s−A(D′)| − |s−A(D)|

b

)
≤ exp

(
|A(D′)−A(D)|

b

)
.

Suppose D is a collection of human heights and A(D) is the average, then we have a bound on

∆ = |A(D′) − A(D)|. In general, we assume ∆ exists and choose b = ∆/ε, then the Laplace

mechanism is ε-DP, or (ε, 0)-DP.

1.3 Exponential mechnism

The exponential mechanism (EM) was designed for situations in which we wish to choose the “best”

response but adding noise directly to the computed quantity can completely destroy its value, such

as setting a price in an auction, where the goal is to maximize revenue, and adding a small amount

of positive noise to the optimal price (in order to protect the privacy of a bid) could dramatically

reduce the resulting revenue.

Another example is training a neural network given a database of training data. The neural

network returned is defined by a series of weights. If we were to apply the Laplace Mechanism to

this function, Laplace noise would be added to the weights before returning the network. However,

even small fluctuations in weights in a neural network may severely impact the performance of that

network. Therefore, the returned network (with added noise) will likely behave very differently

than the initial network found (before adding noise) that minimized error, and thus would have a

unpredictably higher error than the minimal error network we desired.
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Given input database D and output s ∈ O, consider a utility function u(D, s). This utility

function is the revenue in the auction and is the negative loss function in neural network training.

Then the exponential mechanism is Mu(D) ∼ π(·) ∝ exp (ku(D, ·)), i.e.,

p(Mu(D) = s) =
exp (ku(D, s))∫

s′∈O exp (ku(D, s′)) ds′
.

Thus, we have

P[Mu(D) ∈ S] =

∫
s∈S

exp (ku(D, s))∫
s′∈O exp (ku(D, s′)) ds′

ds.

It follows that

P[Mu(D) ∈ S]

P[Mu(D′) ∈ S]
=

∫
s∈S

exp(ku(D,s))∫
s′∈O exp(ku(D,s′))ds′

ds∫
s∈S

exp(ku(D′,s))∫
s′∈O exp(ku(D′,s′))ds′

ds

=

∫
s∈S exp (ku(D, s)) ds∫
s∈S exp (ku(D′, s)) ds

·
∫
s′∈O exp (ku(D′, s′)) ds′∫
s′∈O exp (ku(D, s′)) ds′

≤ max
s∈S

exp
(
k[u(D, s)− u(D′, s)]

)
·max
s′∈O

exp
(
k[u(D′, s′)− u(D, s′)]

)
≤ exp(2k∆u)

where

∆u := max
s∈O

max
D,D′

|u(D, s)− u(D′, s)|.

If we choose k = ε/(2∆u), then the exponential methanism is (ε, 0)-DP.

2 Private convex optimization

Recall stochastic optimization is

min
x∈Q

{f(x) = Eξ[F (x; ξ)]},

and its SAA is

f(x;D) =
1

n

n∑
i=1

F (x; ξi),

where D = {ξ1, . . . , ξn} is a database.

Here f(x;D) can be understood as the negative utility function −u(D; s), where x = s is the

output of a certain mechanism We assume F (·; ξ) is convex and M -Lipschitz continuous, Q has a

diameter D > 0.

Differential Privacy-3



We want to output a solution xpriv using a differentially private mechanism M such that we

minimize the excess empirical risk

EM
[
f
(
xpriv ;D

)]
− f (x∗;D) ,

where x∗ ∈ Q is the minimizer of f(x;D).

In the literature, it is shown that EM achieves the optimal excess empirical risk O
(
MDd
nε

)
under

(ε, 0)-DP. On the other hand, it has also been shown that noisy gradient descent achives and excess

empirical risk of

O

MD
√
d log 1

δ

nε


under (ε, δ)-DP, which is also shown to be optimal.

Note that the second bound only loses a lit in the privacy (δ) but reduces the dependence of d

in the xcess empirical risk from d to
√
d. It is natural to ask the question whether we can obtain

the optimal empirical risk under (ε, δ)-DP using EM. The answer is confirmative, but we need to

introduce a modified version of EM, that is the regularized exponential mechanism,

xpriv ∼ exp
(
−kf(x;D) +

µ

2
∥x∥22

)
.

With a suitable choice of µ and k, we recover the optimal excess risk under (ε, δ)-DP.

EM is the task of sampling and the regularized EM is the core of proximal sampling. Before we

are able to establish the aforementioned optimal excess risk under DP constraint, we first need to

develop the algorithmic toolbox for sampling.
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