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1 Frank-Wolfe method

Consider the problem min{f(x) : x ∈ Q} where f is convex and Q ⊆ dom f is convex and compact.

We also assume f is differentiable over dom f . One method can be employed is the projected

gradient method

xk+1 = projQ(xk − tk∇f(xk)),

which is equivalent to

xk+1 = argmin

{
ℓf (x;xk) +

1

2tk
∥x− xk∥2 : x ∈ Q

}
.

In this lecture, we will present an alternative approach that does not require the projection operator

projQ. The idea is to minimize the linearization of f (without the quadratic term) over Q

yk = argmin {ℓf (x;xk) : x ∈ Q} = argmin {⟨∇f(xk), x⟩ : x ∈ Q} ,

and then take a convex combination

xk+1 = xk + tk(yk − xk), tk ∈ [0, 1].

This algorithm is called Frank-Wolfe method, a.k.a., conditional gradient method.

Algorithm 1 Frank-Wolfe method

Input: Initial point x0 ∈ Q

for k ≥ 0 do

Step 1. Compute yk = argmin y∈Q⟨y,∇f(xk)⟩.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = xk + tk(yk − xk).

end for

This is a projection-free method since we minimize a linear function over Q. In many case,

linear optimization over Q is simpler than projection onto Q.

Frank-Wolfe method satisfies an even more important property: it produces sparse iterates.

More precisely, consider the situation where Q ⊂ Rn is a polytope, that is the convex hull of a

finite set of points (vertices). Then Carathéodory’s theorem states that any point x ∈ Q ⊂ Rn can
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be written as a convex combination of at most n+1 vertices of Q. On the other hand, by step 2 of

Frank-Wolfe, one knows that the k-th iterate xk can be written as a convex combination of k + 1

vertices (assuming that x0 is a vertex). Thanks to the dimension-free rate of convergence, we are

interested in the regime where k ≪ n, and thus we see that the iterates of Frank-Wolfe are very

sparse in their vertex representation.

Let us consider the general composite opimization problem.

min{ϕ(x) := f(x) + h(x)}. (1)

• h is closed and convex and domh is compact;

• f is closed and convex, domh ⊆ dom f , and f is L-smooth over some set domh, i.e.,

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥, ∀x, y ∈ domh;

• the optimal set X∗ is nonempty.

It is not difficult to deduce that the last condition is implied by the first two conditions.

The three properties of Frank-Wolfe method are projection-free (prox-free), norm-free, and

sparse iterates.

In the rest of the lecture, we will consider the following generalized Frank-Wolfe method.

Algorithm 2 Generalized Frank-Wolfe method

Input: Initial point x0 ∈ domh

for k ≥ 0 do

Step 1. Compute yk = argmin y∈Rn{⟨y,∇f(xk)⟩+ h(y)}.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = (1− tk)xk + tkyk.

end for

2 Convergence analysis

Definition 1. The Wolfe gap is the function S(x) : dom f → R given by

S(x) = max
y∈Rn

{⟨∇f(x), x− y⟩+ h(x)− h(y)}.

Lemma 1. The following statements hold:

(a) S(x) ≥ 0 for any x ∈ dom f ;

(b) S(x∗) = 0 if and only if −∇f(x∗) ∈ ∂h(x∗), that is, if and only if x∗ is a stationary point of

(1).
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The above lemma gives the importance of the Wolfe gap S(x), which can be used to analyze

the convergence of Frank-Wolfe for nonconvex optimization.

Lemma 2. Let x ∈ domh and t ∈ [0, 1]. Then, we have

ϕ((1− t)x+ ty) ≤ ϕ(x)− tS(x) +
t2L

2
∥y − x∥2, (2)

where y = argmin u∈Rn{⟨u,∇f(x)⟩+ h(u)}.

Proof. Let x+ = (1− t)x+ ty. Then, using the smoothness of f and the convexity of h, we easily

show

ϕ(x+) = f(x+) + h(x+)

≤ f(x)− t⟨∇f(x), x− y⟩+ t2L

2
∥y − x∥2 + h(x+)

≤ f(x)− t⟨∇f(x), x− y⟩+ t2L

2
∥y − x∥2 + (1− t)h(x) + th(y)

= ϕ(x)− t [⟨∇f(x), x− y⟩+ h(x)− h(y)] +
t2L

2
∥y − x∥2

= ϕ(x)− tS(x) +
t2L

2
∥y − x∥2.

Note that so far, we do not use the convexity of f yet.

Three stepsize rules

1) predefined diminishing stepsize:

αk =
2

k + 2
;

2) adaptive stepsize:

βk = min

{
1,

S (xk)

L ∥yk − xk∥2

}
;

3) exact minimization/line search:

ηk ∈ argmin t∈[0,1]ϕ ((1− t)xk + tyk) .

The intuition of the adaptive stepsize is βk minimizes the right-hand side of (2) w.r.t. t ∈ [0, 1]

when x = xk. It is clear the exact minimization rule chooses tk = ηk to minimize the left-hand side

of (2). The underlying intuition for the first rule αk is related to the accelerated gradient method.

This is not elaborated here due to its complexity.

The following lemma shows that Wolfe gap S(x) is in fact a primal-dual gap, and henc it upper

bounds both primal and dual gaps.
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Lemma 3. For any x ∈ dom f , we have

S(x) = ϕ(x)− ψ(∇f(x)),

where ψ(y) := −f∗(y) − h∗(−y) denotes the Lagrange dual function of ϕ(x). Moreover, using

convexity of ϕ, we have

S(x) ≥ ϕ(x)− ϕ∗, S(x) ≥ ψ∗ − ψ(∇f(x)),

where ϕ∗ = minx∈Rn ϕ(x) and ψ∗ = maxy∈Rn ψ(y).

Proof. Let y = argmin u∈Rn{⟨u,∇f(x)⟩+ h(u)}. Then, we have

S(x) = max
y∈Rn

{⟨∇f(x), x− y⟩+ h(x)− h(y)}

= ⟨∇f(x), x⟩+ h(x) + max
y∈Rn

{⟨−∇f(x), y⟩ − h(y)}

= ⟨∇f(x), x⟩+ h(x) + h∗(−∇f(x))}
= f(x) + f∗(∇f(x)) + h(x) + h∗(−∇f(x))},

where we use the fact that ⟨∇f(x), x⟩ = f(x)+ f∗(∇f(x)) in the last identity (see Theorem 3(i) of

Lecture 3). Using the definitions of ϕ and ψ, and weak duality, we obtain

S(x) = ϕ(x)− ψ(∇f(x)) ≥ ϕ(x)− ψ∗ ≥ ϕ(x)− ϕ∗,

and

S(x) = ϕ(x)− ψ(∇f(x)) ≥ ϕ∗ − ψ(∇f(x)) ≥ ψ∗ − ψ(∇f(x)).

Theorem 1. The generalized Frank-Wolfe method with any of the three stepsize rules satisfies

ϕ(xk)− ϕ∗ ≤
2LD2

k + 1
, ∀k ≥ 1, (3)

where D is the diameter of domh.

Proof. Using Lemma 2 with t = tk and x = xk, we have

ϕ((1− tk)xk + tkyk) ≤ ϕ(xk)− tkS(xk) +
t2kL

2
∥yk − xk∥2.

1) If the predefined stepsize is used, i.e., tk = αk, then

ϕ((1− αk)xk + αkyk) ≤ ϕ(xk)− αkS(xk) +
α2
kL

2
∥yk − xk∥2.
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2) If the adaptive stepsize is used, i.e., tk = βk, then

βk = argmin t∈[0,1]

{
−tS (xk) +

t2L

2
∥yk − xk∥2

}
,

and hence

ϕ((1− βk)xk + βkyk) ≤ ϕ(xk)− βkS(xk) +
β2kL

2
∥yk − xk∥2

≤ ϕ(xk)− αkS(xk) +
α2
kL

2
∥yk − xk∥2.

3) If the exact minimization/line search is used, i.e., tk = ηk, then

ϕ((1− ηk)xk + ηkyk) ≤ ϕ((1− αk)xk + αkyk)

≤ ϕ(xk)− αkS(xk) +
α2
kL

2
∥yk − xk∥2.

In any case, we have

ϕ(xk+1) ≤ ϕ(xk)− αkS(xk) +
α2
kL

2
∥yk − xk∥2.

Consider a sequence of averages of ∇f(xk) defined as u0 = ∇f(x0) and

uk+1 = (1− αk)uk + αk∇f(xk), ∀k ≥ 0.

Since the dual function ψ is concave,

ψ(uk+1) ≥ (1− αk)ψ(uk) + αkψ(∇f(xk)), ∀k ≥ 0. (4)

Using Lemma 3 and the above inequality, we have

ϕ(xk+1) ≤ ϕ(xk)− αk[ϕ(xk)− ψ(∇f(xk))] +
α2
kL

2
∥yk − xk∥2

(4)

≤ (1− αk)ϕ(xk) + ψ(uk+1)− (1− αk)ψ(uk) +
α2
kL

2
∥yk − xk∥2.

Rearranging the terms, we have

ϕ(xk+1)− ψ(uk+1) ≤ (1− αk)[ϕ(xk)− ψ(uk)] +
α2
kLD

2

2
. (5)

Clearly, to prove (3), it suffices to show

ϕ(xk)− ψ(uk) ≤
2LD2

k + 1
. (6)
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It follows from (5) and the definition of αk that

ϕ(xk+1)− ψ(uk+1) ≤ (1− αk)[ϕ(xk)− ψ(uk)] +
α2
kLD

2

2

=
k

k + 2
[ϕ(xk)− ψ(uk)] +

2LD2

(k + 2)2
.

Hence,

(k + 1)(k + 2)[ϕ(xk+1)− ψ(uk+1)] ≤ k(k + 1)[ϕ(xk)− ψ(uk)] +
2(k + 1)LD2

k + 2

≤ k(k + 1)[ϕ(xk)− ψ(uk)] + 2LD2.

Summing over the iterations, we have

k(k + 1)[ϕ(xk)− ψ(uk)] ≤ 2kLD2,

and thus (6) holds.

The above proof also suggests the following primal-dual Frank-Wolfe method.

Algorithm 3 Primal-dual Frank-Wolfe method

Input: Initial point x0 ∈ domh and u0 = ∇f(x0)
for k ≥ 0 do

Step 1. Compute yk = argmin y∈Rn{⟨y,∇f(xk)⟩+ h(y)}.
Step 2. Choose tk ∈ [0, 1] and set xk+1 = (1− tk)xk+ tkyk and uk+1 = (1−αk)uk+αk∇f(xk).

end for

The primal-dual convergence is given by (6), which also implies (3).

3 Duality between Frank-Wolfe and mirror descent

We present a fascinating connection between Frank-Wolfe and mirror descent, that is, Frank-Wolfe

applied to the dual problem is equivalent to mirror descent applied to the primal problem. We

consider the following primal and dual problems.

Primal

min
x∈Rn

{ϕ(x) := f(Ax) + h(x)}

and dual

max
y∈C

{ψ(y) := −h∗(−A⊤y)− f∗(y)}.
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Assuming h is µ-strongly convex, then h∗ is smooth. We also assume that A⊤dom f∗ is bounded

(i.e., f is Lipschitz continuous), that is

R = max
y1,y2∈dom f∗

∥A⊤(y1 − y2)∥∗ = diam(A⊤dom f∗). (7)

Applying Algorithm 2 to the dual problem, we have the following dual Frank-Wolfe method.

Algorithm 4 Frank-Wolfe method for dual problem

Input: Initial point y0 ∈ dom f∗

for k ≥ 0 do

Step 1. Compute xk = argmin x∈Rn{⟨x,A⊤yk⟩+ h(x)} = ∇(h∗)(−A⊤yk).

Step 2. Compute ȳk ∈ Argmax y∈C{⟨y,Axk⟩ − f∗(y)} = ∂f(Axk).

Step 3. Choose tk ∈ [0, 1] and set yk+1 = (1− tk)yk + tkȳk.

end for

Theorem 1 directly gives the following convergence result for the dual problem.

Theorem 2. For every k ≥ 1, we have

ψ∗ − ψ(yk) ≤
2R2

µ(k + 1)
.

If we add an auxiliary “primal average” of xk in Algorithm 4, then we can prove a similar

primal-dual convegence guarantee as in (6) for the dual problem.

3.1 Mirror descent

Consider the primal problem

min
x∈Rn

{ϕ(x) := f(Ax) + h(x)},

we present the following special mirror descent method for the primal problem.

Algorithm 5 Mirror descent for primal problem

Input: Given y0 ∈ dom f∗, set initial point x0 = ∇(h∗)(−A⊤y0) and h
′(x0) = −A⊤y0.

for k ≥ 0 do

Step 1. Choose tk ∈ [0, 1] and compute xk+1 = argmin x∈Rn

{
ℓϕ(x;xk) +

1
tk
Dh(x, xk)

}
.

Step 2. Set h′(xk+1) = (1− tk)h
′(xk)− tkA

⊤f ′(Axk).

end for

Note that we linearize the whole primal function ϕ and use the µ-strongly convex function h as

the distance generating function.

The following theorem show that the dual Frank-Wolfe method is equivalent to the above mirror

descent method.
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Theorem 3. If both Algorithms 4 and 5 use the same subgradient oracle of f , i.e., ȳk = f ′(Axk)

where f ′(Axk) is the one used in Step 1 of Algorithm 5, then given the same initial point y0 ∈
dom f∗, both algorithms generate same iterates {xk}.

Proof. It follows from Step 1 of Algorithm 5 that

0 ∈ tk

(
A⊤f ′(Axk) + h′(xk)

)
+ ∂h(xk+1)− h′(xk),

and hence that

0 ∈ −(1− tk)h
′(xk) + tkA

⊤f ′(Axk) + ∂h(xk+1).

This is equivalent to

∂h(xk+1) ∋ (1− tk)h
′(xk)− tkA

⊤f ′(Axk).

Using Theorem 3 of Lecture 3, we have

xk+1 ∈ ∂h∗
(
(1− tk)h

′(xk)− tkA
⊤f ′(Axk)

)
.

Since h is strongly convex, we know h∗ is smooth and ∂h∗ = ∇h∗. This means xk+1 is unique

xk+1 = ∇h∗
(
(1− tk)h

′(xk)− tkA
⊤f ′(Axk)

)
. (8)

Next, we consider Algorithm 4 and prove that −A⊤yk from Algorithm 4 is equal to h′(xk) from

Algorithm 5, i.e.,

−A⊤yk = h′(xk). (9)

We prove this relation by induction. It clearly holds for k = 0 in view of the input of Algorithm 5.

Suppose (9) holds for some k ≥ 0. Then, it follows from Step 3 of Algorithm 4 and the assumption

that ȳk = f ′(Axk) that

−A⊤yk+1 = −(1− tk)A
⊤yk − tkA

⊤ȳk = (1− tk)h
′(xk)− tkA

⊤f ′(Axk) = h′(xk+1),

where the last identity is due to Step 2 of Algorithm 5. Hence, we prove (9).

Now, using Step 2 of Algorithm 5 and (9), we conclude that (8) is equivalent to

xk+1 = ∇h∗
(
−A⊤yk+1

)
,

which agrees with Step 1 of Algorithm 4. Therefore, we finally prove that dual Frank-Wolfe and

mirror descent are equivalent.

Recall that Algorithm 3 has a primal-dual pair (xk, uk) and we can show primal-dual convergence

(6), which also implies both primal convergence (Theorem 1) and dual convergence (Theorem 2).

We prove that Algorithm 5 is the dual to Algorithm 4, hence we also want to derive a “dual” to

Theorem 2, which will be a primal convergence result similar to Theorem 1. The following theorem

is such a result as we show convergence of an average point.
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Theorem 4. If we choose tk = αk in Algorithm 5, then

ϕ(x̄k)− ϕ∗ +Dh(x∗, xk) ≤
2R2

µ(k + 1)
, (10)

where

x̄k =
2

k(k + 1)

k∑
i=1

ixi−1.

Proof. Similar to the proof of mirror descent for Lemma 2 of Lecture 3, we have

ℓϕ(x;xk) +
1

αk
Dh(x, xk) ≥ ℓϕ(xk+1;xk) +

1

αk
Dh(xk+1, xk) +

1

tk
Dh(x, xk+1).

Using convexity of f and the definition of Bregman divergence Dh, we have

ϕ(x) ≥ ℓf (x;xk) + h(x) = ℓϕ(x;xk) +Dh(x, xk).

Combining the above two inequalities, we have

ϕ(x) +

(
1

αk
− 1

)
Dh(x, xk) ≥ ℓϕ(xk+1;xk) +

1

αk
Dh(xk+1, xk) +

1

tk
Dh(x, xk+1).

Since h is µ-strongly convex, we know

Dh(xk+1, xk) ≥
µ

2
∥xk+1 − xk∥2.

Thus, it follows that

ϕ(x) +

(
1

αk
− 1

)
Dh(x, xk) ≥ ℓϕ(xk+1;xk) +

µ

2αk
∥xk+1 − xk∥2 +

1

tk
Dw(x, xk+1).

Rearranging the terms and using the Cauchy-Schwarz inequality, we obtain

ϕ(xk)− ϕ(x) ≤
(

1

αk
− 1

)
Dh(x, xk)−

1

αk
Dh(x, xk+1) + ∥ϕ′(xk)∥∗∥xk+1 − xk∥ −

µ

2αk
∥xk+1 − xk∥2.

(11)

Recalling (9) from the proof of Theorem 3, we know

h′(xk) ∈ −A⊤dom f∗.

Hence,

∥ϕ′(xk)∥∗ = ∥A⊤f ′(Axk) + h′(xk)∥∗ ≤ max
y1,y2∈dom f∗

∥A⊤(y1 − y2)∥∗ = R.

Plugging the above bound into (11), we have

ϕ(xk)− ϕ(x) ≤
(

1

αk
− 1

)
Dh(x, xk)−

1

αk
Dh(x, xk+1) +

αkR
2

2µ
.
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Using the definition of αk, we have

(k + 1)[ϕ(xk)− ϕ∗] ≤
k(k + 1)

2
Dh(x∗, xk)−

(k + 1)(k + 2)

2
Dh(x∗, xk+1) +

(k + 1)R2

µ(k + 2)
.

Summing the above inequality, we obtain

k−1∑
i=0

(i+ 1)[ϕ(xi)− ϕ∗] ≤ −k(k + 1)

2
Dh(x∗, xk) +

kR2

µ
.

Finally, we conclude that (10) holds.
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