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1 Proximal operator

Definition 1. Given a function f , the proximal mapping of f is given by

proxf (x) = argmin u∈Rn

{
f(u) +

1

2
∥u− x∥2

}
, ∀x ∈ Rn.

Note that if f is closed and convex then proxf (x) is a singleton for any x ∈ Rn.

Example: soft-thresholding.

For some α > 0, the proximal mapping for the one-dimensional function α| · | is

proxα|·|(y) = Tα(y) = [|y| − α]+ sgn(y) =


y − α, y ≥ α,

0, |y| < α,

y + α, y ≤ −α.

Hence, the proximal mapping for α∥x∥1 is

proxα∥·∥1(x) = Tα(x) ≡ (Tα (xj))nj=1 = [|x| − α1]+ ⊙ sgn(x), (1)

where ⊙ denotes componentwise multiplication. Now, consider a symmetric matrix X ∈ Sn with

eigenvalue decomposition

X = U diag(λ(X))U⊤,

where λ(X) denotes the eigenvalues of X in a vector form. Recall the nuclear norm ∥ · ∥∗ for

symmetric matrices is defined as

∥X∥∗ =
n∑

i=1

|λi(X)| = ∥λ(X)∥1.

Then, the proximal mapping for α∥X∥∗ is

proxα∥·∥∗(X) = U diag(Tα(λ(X)))U⊤,

where Tα(·) is as in (1).

Theorem 1. Let Q ⊆ Rn be nonempty. Then, proxIQ(x) = projQ(x) for any x ∈ Rn. Let Q ⊆ Rn

be a nonempty closed convex set. Then, proxIQ(x) = projQ(x) is a singleton for any x ∈ Rn.
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Theorem 2. Let f be a closed and convex function. Then for any x, y ∈ Rn, we have

(i) ∥proxf (x)− proxf (y)∥2 ≤ ⟨proxf (x)− proxf (y), x− y⟩;

(ii) ∥proxf (x)− proxf (y)∥ ≤ ∥x− y∥.

Proof. (a) Let u = proxf (x) and v = proxf (y). It follows from the defintion of proximal mapping

that

u = argminw∈Rn

{
f(w) +

1

2
∥w − x∥2

}
and

x− u ∈ ∂f(u).

The inclusion is equivalent to

f(w) ≥ f(u) + ⟨x− u,w − u⟩ ∀w ∈ Rn.

Taking w = v, we have

f(v) ≥ f(u) + ⟨x− u, v − u⟩.

Following the same argument for v = proxf (y), we have

f(u) ≥ f(v) + ⟨y − v, u− v⟩

Adding the above two inequalities, we obtain

0 ≥ ⟨y − x+ u− v, u− v⟩,

i.e.,

⟨x− y, u− v⟩ ≥ ∥u− v∥2.

Plugging u = proxf (x) and v = proxf (y) into the above inequality, we prove (a).

(b) This statement simply follows from (a) using the Cauchy-Schwarz inequality.

2 Proximal gradient method

2.1 Composite optimization

min{ϕ(x) := f(x) + h(x)}

• h is closed and convex;

• f is closed and convex, dom f is convex, domh ⊆ int(dom f), and f is L-smooth over

int(dom f);

• the optimal set X∗ is nonempty.
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2.2 Proximal gradient

Algorithm 1 Proximal gradient method

Input: Initial point x0 ∈ domh, stepsize λ > 0

for k ≥ 0 do

Compute xk+1 = proxλh (xk − λ∇f(xk)).

end for

Theorem 3. Functions f and h are as assumed in Subsection 2.1. Choose λ ∈ (0, 1/L]. Then, the

proximal gradient method generates a sequence of points {xk} satisfying

ϕ(xk)− ϕ∗ ≤
∥x0 − x∗∥2

2λk
, ∀k ≥ 1.

Proof. It is easy to verify that one iteration of the proximal gradient method can be written as

xk+1 = min
x∈Rn

{
ℓf (x;xk) + h(x) +

1

2λ
∥x− xk∥2

}
.

Using Theorem 2 of Lecture 2 and the fact that the above objective function is (1/λ)-strongly

convex, we have for every x ∈ domh,

ℓf (x;xk) + h(x) +
1

2λ
∥x− xk∥2 ≥ ℓf (xk+1;xk) + h(xk+1) +

1

2λ
∥xk+1 − xk∥2 +

1

2λ
∥x− xk+1∥2

≥ ℓf (xk+1;xk) + h(xk+1) +
L

2
∥xk+1 − xk∥2 +

1

2λ
∥x− xk+1∥2

≥ f(xk+1) + h(xk+1) +
1

2λ
∥x− xk+1∥2,

where the second inequality is due to λ ≤ 1/L and the last inequality is due to smoothness of f . It

then follows from the convexity of f that

f(x) + h(x) +
1

2λ
∥x− xk∥2 ≥ f(xk+1) + h(xk+1) +

1

2λ
∥x− xk+1∥2.

Taking x = xk, we have

f(xk) + h(xk) ≥ f(xk+1) + h(xk+1) +
1

2λ
∥xk+1 − x∗∥2 ≥ f(xk+1) + h(xk+1),

which shows that the function value of the iterates is a nonincreasing sequence. Taking x = x∗, we

have

f(x∗) + h(x∗) +
1

2λ
∥xk − x∗∥2 ≥ f(xk+1) + h(xk+1) +

1

2λ
∥xk+1 − x∗∥2,

i.e.,

(f + h)(xk+1)− (f + h)(x∗) ≤
1

2λ
∥xk − x∗∥2 −

1

2λ
∥xk+1 − x∗∥2.
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Summing the above inequality and using the monotinicity of {(f + h)(xk)}, we obtain

k [(f + h)(xk)− (f + h)(x∗)] ≤
k−1∑
i=0

(f + h)(xi+1)− (f + h)(x∗) ≤
1

2λ
∥x0 − x∗∥2 −

1

2λ
∥xk − x∗∥2.

Thus, the claim of the theorem follows.

3 Dual proximal method

Consider the problem

min{f(x) + h(Ax) : x ∈ Rn}

where A ∈ Rm×n and

• h is closed and convex;

• f is closed and µ-strongly convex;

• there exist x̂ ∈ ri (dom f) and ẑ ∈ ri (domh) such that Ax̂ = ẑ.

Strong duality holds in this case.

3.1 Dual problem

Consider an equivalent problem

min
x,z∈Rn

f(x) + h(z)

s.t. Ax− z = 0.

We define the Lagrangian as

L(x, z; y) = f(x) + h(z)− y⊤(Ax− z), (2)

and the dual function is

d(y) = inf
x,z

L(x, z; y)

= inf
x

{
f(x)− y⊤Ax

}
+ inf

z

{
h(z) + y⊤z

}
= − sup

x

{
(A⊤y)⊤x− f(x)

}
− sup

z

{
(−y)⊤z − h(z)

}
= −f∗(A⊤y)− h∗(−y),
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where f∗ and h∗ denote the conjugates of f and h, respectively. Thus, the dual problem is

max
y∈Rn

d(y).

We consider the dual problem in its minimization form

min
y∈Rm

F (y) +H(y) (3)

where

F (y) = f∗(A⊤y), H(y) = h∗(−y).

Lemma 1. We have F is convex and LF -smooth where LF = ∥A∥2/µ and H is closed and convex.

Proof. Since f is µ-strongly convex, by conjugacy, we know f∗ is (1/µ)-smooth. Thus, for any

y1, y2 ∈ Rm, we have

∥∇F (y1)−∇F (y2)∥ = ∥A∇f∗(A⊤y1)−A∇f∗(A⊤y2)∥
≤ ∥A∥∥∇f∗(A⊤y1)−∇f∗(A⊤y2)∥

≤ ∥A∥
µ

∥A⊤(y1 − y2)∥

≤ ∥A∥2

µ
∥y1 − y2∥.

By conjugacy and the fact that convexity preserves under composition of a convex function and a

linear mapping, we know both F and H are convex.

3.2 Dual proximal method

Since the dual problem (3) is the sum of a convex smooth function F (y) and a convex composite

function H(y), which is exactly the setting for proximal gradient method, we apply Algorithm 1 to

(3).

Algorithm 2 Dual proximal method

Input: Initial point y0 ∈ Rm

for k ≥ 0 do

Compute yk+1 = proxλH (yk − λ∇F (yk)).

end for

Since F is convex and LF -smooth and H is closed and convex, invoking Theorem 3, we obtain

the convergence rate of the dual sequence.
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Theorem 4. Choose λ ∈ (0, 1/LF ]. Then, Algorithm 2 generates a sequence of points {yk} satis-

fying

d∗ − d(yk) ≤
∥y0 − y∗∥2

2λk
, ∀k ≥ 1.

Lemma 2. The dual iteration yk+1 = proxλH (yk − λ∇F (yk)) can be equivalently rewritten as

xk+1 = argmax x∈Rn{⟨x,A⊤yk⟩ − f(x)}, (4)

yk+1 = yk − λAxk+1 + λ prox 1
λ
h

(
Axk+1 −

1

λ
yk

)
. (5)

Proof. Note that the dual proximal update can be written as

yk+1 = min
y∈Rm

{
ℓF (y; yk) +H(y) +

1

2λ
∥y − yk∥2

}
.

Its optimality condition is

0 ∈ ∇F (yk) + ∂H(yk+1) +
yk+1 − yk

λ
. (6)

It follows from Proposition 1 of Lecture 3 and (4) that

∇F (yk) = A∇f∗(A⊤yk) = A argmax x{⟨A⊤yk, x⟩ − f(x)} (4)
= Axk+1.

Define

zk+1 =
yk+1 − yk

λ
+∇F (yk) =

yk+1 − yk
λ

+Axk+1. (7)

Then, it follows from the optimality condition (6) that

−zk+1 ∈ ∂H(yk+1) = −∂h∗(−yk+1).

Using Theorem 3 of Lecture 3, we have

∂h(zk+1) ∋ −yk+1.

Hence,

0 ∈ yk+1 + ∂h(zk+1).

Equivalently, by (7), we have

0 ∈ ∂h(zk+1) + yk + λzk+1 − λAxk+1.

It is interesting to see that the above inclusion is also the optimality condition of

zk+1 = argmin z∈Rm

{
h(z) + ⟨z, yk⟩+

λ

2
∥z −Axk+1∥2

}
.

Using Definition 1, we have

zk+1 = prox 1
λ
h

(
Axk+1 −

1

λ
yk

)
.

Finally, it follows from (7) and the above formula for zk+1 that (5) holds.
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Note: The proof of Lemma 2 can be simplified using Moreau decomposition formula, see Amir

Beck’s book Lemma 12.5.

Using Lemma 2, we can rewrite Algorithm 2 in its primal form.

Algorithm 3 Dual proximal method (primal form)

Input: Initial point y0 ∈ dom g

for k ≥ 0 do

Compute xk+1 = argmax x∈Rn{⟨x,A⊤yk⟩ − f(x)}.
Compute yk+1 = yk − λAxk+1 + λ prox 1

λ
h

(
Axk+1 − 1

λyk
)
.

end for

It is clear from the proof of Lemma 2 that the dual proximal method has another presentation

in the alternating minimization form using the z sequence.

Algorithm 4 Dual proximal method (alternating minimization form)

Input: Initial point y0 ∈ dom g

for k ≥ 0 do

Compute xk+1 = argmin x∈Rn{f(x)− ⟨x,A⊤yk⟩}.
Compute zk+1 = argmin z∈Rm

{
h(z) + ⟨z, yk⟩+ λ

2∥z −Axk+1∥2
}
.

Compute yk+1 = yk − λAxk+1 + λzk+1.

end for

In fact, Algorithm 4 can be understood from the augmented Lagrangian perspective. Recall

the Lagrange function L(x, z; y) is defined in (2). We define the augmented Lagrange function as

follows

Lλ(x, z; y) := L(x, z; y) +
λ

2
∥Ax− z∥2 = f(x) + h(z)− y⊤(Ax− z) +

λ

2
∥Ax− z∥2.

Then, we rewrite Algorithm 4 as

xk+1 = argmin x∈RnL(x, zk; yk),

zk+1 = argmin z∈RmLλ(xk+1, z; yk),

yk+1 = yk − λ(Axk+1 − zk+1) = yk + λ∇yL(xk+1, zk+1; y).

With the understanding that the dual proximal method is the proximal gradient method applied

to the dual problem in mind, we also note that the dual ascent method is the subgradient method

applied to the dual problem, and the augmented Lagrangian method is the proximal point method

applied to the dual problem.
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Theorem 5. Choose λ ∈ (0, 1/LF ]. Then, Algorithm 3 generates a sequence of pairs {(xk, yk)}
satisfying

∥xk − x∗∥2 ≤
2

µ
[d∗ − d(yk)]. (8)

Thus, we have

∥xk − x∗∥2 ≤
∥y0 − y∗∥2

λµk
, ∀k ≥ 1. (9)

Proof. Relation (8) holds in view of Lemma 12.7 of Amir Beck’s book. We omit the proof and

suggest the interested readers to read the book for the proof of Lemma 12.7. (We should be also

able to prove (8) by first verifying the dual proximal framewotk being an inexact proximal point

method and then using the generic convergence results of the framework.) It follows from (8) and

Theorem 4 that (9) holds.

Note that similar to (8), using the µ-strong convexity of ϕ from the primal perspective, we also

have

ϕ(xk)− ϕ∗ ≥
µ

2
∥xk − x∗∥2.
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