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1 Mirror descent

We are interested in the convex nonsmooth optimization problem

min f (x)

where @ is a closed convex set. Recall that the convergence rate by the projected subgradient

thod i
method is D

Ogrglglg_lf(xi) — fu < T
One of the basic assumptions made in Lecture 2 is that the underlying space is Euclidean,
meaning that || - || = \/(-,-). In order to establish the above dimension-free convergence rate, we
need to make another assumption that the objective function f and the constraint set ) are well-
behaved in the Euclidean norm: that means for all points = € @ and all subgradients f'(x) € df(x),
we have ||z|| and ||f'(z)| are independent of the ambient dimension n. If this assumption is
not met, then we lose the dimension-free convergence rate. For instance, ) is the unit simplex
A, ={zeR}:3> 7" x(i)=1} and f has subgradients bounded in {o-norm, e.g., || f'(z)|lsc < 1.
Then, ||f/(2)]|oc < v/ and D < /2, so the convergence rate becomes
: V2n
Ogrl%l’?_lf(xi) — [« < N/
But if we use mirror descent in this lecture, the convergence rate will be improved to O(y/log(n)/k).
This improvement relies on changing the space to be non-Euclidean.
In non-Euclidean spaces, = € E and f’(x) € E*, hence the subgradient method

Tpi1 = projg (xx — hif' (1))

does not make sense. This issue motivates us to generalize the projected subgradient method to
better suite the non-Euclidean setting.

Let us take another look at the projected subgradient method. It can be equivalently written
as

Tp41 = Argminzeq {f(fﬂk) + (f(zr), x — ax) + 2,1%\96 - wkll%} : (1)

The idea in the non-Euclidean case is to replace the Euclidean distance function 3|lz — z||3 by a
different “distance”. This non-Euclidean distance is the Bregman divergence.
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Definition 1. For an arbitrary norm || - || in E, the dual norm equipped in E* is defined as
s« = max {(s,z) : [|z|]| < 1}, seRE*.
z€E
By the Cauchy-Schwarz inequality, for z € E and s € E*, we have
(s,2) < |Isll«ll=l-

E.g., let || - || be the £,-norm and || - ||« be the ¢, norm where 1 < p,q < co and % + % =1, then by
Hoélder’s inequality
(s, ) < |lszlly < l|zllpllsllg, Vz €E,s€E,

ie.,
n n n 1/p n 1/q

Yot = (Nt ) (Sohr]
k=1 k=1 k=1 k=1

Let w : R™ — (—o00, 0] be a proper closed convex function satisfying

e w is differentiable on int(domw) = W¢;

e () C dom (w);

e w is p-strongly convex on @ w.r.t. |- || (here || - || is an arbitrary norm in E).

Definition 2. For a function w satisfying the above assumptions, the Bregman divergence associ-
ated with w is the fucntion Dy, : domw x W° — R given by

Dy (2,y) := w(z) —w(y) — (Vw(y), z —y).
The function w s called the distance generating fucntion.
A few properties of D,,: let x € Q and y € Q N W?, then
e Dy(z,y) > 5|z — y||? for every 2 € Q and y € Q N W?;
e Dy(z,y) >0;
e Dy(z,y) =0 if and only if x = y;
o Dy(x,y) = Dy~ (z*,y*) where w* is the Fenchel conjugate and z* = Vw(z) and y* = Vw(y).

Bregman divergence does not satisfy symmetry nor triangle inequality, and hence it is not a
metric.
Now we replace the Euclidean distance in (1) by the Bregman divergence, then we obtain an

iteration of the mirror descent

T4l = argmin g {f(xk) +{f'(z1),® — x1) + };Dw(x,xk)} . (2)
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(Note that Lemma 9.7 and Theorem 9.8 of Amir Beck’s book guarantees that xxy1 € Q N W?,
hence Vw(z11) exists in the next iteration and mirror descent is well-defined.) Hence, zj411 =

projg(yk+1) and yg41 satisfies
0= £/@) + 5 (Vi) ~ Vao).
where we use the fact that VD, (z,y) = Vw(z) — Vw(y). Thus,
vt = (V)™ (Vw(ag) = hif'(ar)) = Vo (Vo(oe) = hif'(24)

where the second equality is due to (3). Below is another way to derive the formula for yi 4
. , 1
Yr+1 = argmin gern § f (k) + (f (21), 2 — 25) + h*ka(%l‘k)
= argmin gepn { (i f'(@r) — Vw(zy), z) + w(z)}
= argmas e {(—hif(zx) + Veo(zr), 2) — w(z)}
= Vw* (Vw(a:k) — hkf/(.ka)) .
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Figure 1: Mirror descent

The search point xj, is mapped from the primal space into the dual space using Vw, the gradient
step is then performed in the dual space Vw(xy) — hif/ (), and the point thus obtained is finally
mapped back into the primal space using Vw*. The distance generating function w is also called

the mirror map. See Figure 1 for an illustration.
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Algorithm 1 Mirror descent
Input: Initial point g € Q N W?°
for £ > 0 do
Step 1. Choose h; > 0.
Step 2. Comput yi11 = Vw* (Vw(zg) — hif'(zx))-
Step 3. Compute 71 = projo(Ye+1)-
end for

Lemma 1. (Three points lemma) Let w be a function satisfying the conditions above Definition
2. For every zp,z € W° and © € domw, we have

Dy (x, z0) — Dy (2,20) — (V2Dyw(z, 20),x — 2) = Dy (x, 2).

Lemma 2. Assume that || f'(z)]|« < M for every x € Q Ndomw. For every k > 0 and x € domw,

we have 51
hy M ‘

hk[f(xk) - f(li)] < Dw(xvxk) - Dw(xa l'k—o—l) + %

Proof. Lemma 1 tells an important fact: for a fixed zp, view F'(z) = D, (z, 20) as a function in z,
now the lemma is equivalent to

F(x)— F(z) = (VF(2),x — z) = Dy(x, 2).

This means F'(x) = Dy, (z, 29) for any given zg is 1-strongly convex in a new “metric” D, (z, z). It
thus follows from (2) that

1 1 1
Cr(xsap) + h*ka(%ka) > Lp(@py1; o) + Fka($k+la k) + hkaw(IB,ka)-

Using convexity of f and p-strong convexity of w, we have

1 1
@)+ Dl 21) > €p(@pin; 2x) + sol|wnin — 2xl® + o Dul@, 2p4).

hy 2hy hy
Rearranging the terms and using the Cauchy-Schwarz inequality and the fact that || f/(z)]« < M,
we obtain

1
f(xx) = f(@) € —Dy(@,21) — — D@, @pr) + | (@) ellznn — 2al) = o llzagr — 2]
I I 2y
1 1 hy M?
< h—ka(x,xk) — h—ka(:c,ka) + k2p )
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Theorem 1. » et
Dw(x*a Q?O) + ]2\47 Zi:o h22

S b

f(i'k) — [ <
where Ty is any point satisfying
S o hif (1)

fam) = S0 b

Moreover, for a given € > 0, if hy, = h, then

Dy (s, M2h
(z x0)+

2 Standard setups for mirror descent
Ball: The distance generating function is
L2
w(z) = 32l
is 1-strongly convex w.r.t. || - ||2 and the associated Bregman divergence is given by

1
Du(@,y) = 5 |lo - yl3.

In this case, mirror descent is equivalent to projected subgradient method.
Simplex: The distance generating function is given by the negative entropy

n
w(x) = Zx(z) log z(3).
i=1
Note that W? = R’} | and w is 1-strongly convex w.r.t. | - |1 on A,. The associated Bregman
divergence is given by
D)~
Dufe,y) = 3 ali)log =5 = 3w (0) — y(@))
‘ i=1

where the first summation is known as the relative entropy or Kullback-Leibler divergence

KL(z,y) = Y _ (i) log "”;8
=1

n
=1

The strong convexity property of w can be stated as for any =,y € A,
1
which is also known as the Pinsker’s inequality. The projection onto simplex A,, w.r.t. the Bregman

divergence is as simple as
o

Profan (o0) = o
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Corollary 1. Assume ||f'(2)|lcc < M, Ya € A,,. Let xo = argmin zea, w(x) (in the simplex setup,

zo = (1/n,...,1/n)"). Then, mirror descent with h = 21(;5" satisfies

2logn

f(jk)_f*SM L

Proof. We first note that since zyp = argmin yea, w(z), it holds
(Vw(xo), s — x0) > 0.
Then, we have

Doy (4, x0) = w(xy) — w(zo) — (Vw(xp), T4 — x0)

< w(zs) — w(zo)
< — mi .
S I - e

Using the fact that
—logn <w(z) <0, Vrel,,

we have
Dw(l'*er) S logn

It follows from Theorem 1 that

Dy(x4, x0) M2h<logn M?h

F@w) = fo s =13 5 =Tn T2

Taking h = 171/ 21‘;5", we have

3 Supplementary: conjugate function

Definition 3. Let f : R" — [—00, 00| be an extended real-valued function. The conjugate function
of [ is defined as

() = max{(2,9) — fW)}.
Theorem 2. Let f be a closed and convex function. Then, the biconjugate function f** = f.

Theorem 3. Let f be a closed and convex function. Then, for any x,y € R", the following
statements are equivalent:
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(i) (@,y) = F@) + F*(9);
(ii) y € 0f (@);
(iii) x € Of*(y).
Corollary 2. Let f be a closed and convex function. Then, for any x,y € R™,
0f () = Argmax ;{{z,§) - /*(§)}

and

of*(y) = Argmax z{(y, Z) — f(Z)}.

Proposition 1. Let f be a closed and strictly convex function. Then, f* is differentiable, and for
any y € R,
V[ (y) = argmax . {(y, z) — f(x)}.

The concept of strong convexity extends and parametrizes the notion of strict convexity. A
strongly convex function is also strictly convex, but not vice versa.

An extremely useful connection between smoothness and strong convexity is given in the con-
jugate correspondence theorem.

Theorem 4. If f is closed and p-strongly convez, then f* is (1/u)-smooth. On the other hand, if
f is L-smooth, then f* is (1/L)-strongly convex.

It is worth noting that in this case, for every y € R",

Viy) = (V) () (3)
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