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1 Mirror descent

We are interested in the convex nonsmooth optimization problem

min
x∈Q

f(x)

where Q is a closed convex set. Recall that the convergence rate by the projected subgradient

method is

min
0≤i≤k−1

f(xi)− f∗ ≤
MD√

k
.

One of the basic assumptions made in Lecture 2 is that the underlying space is Euclidean,

meaning that ∥ · ∥ =
√
⟨·, ·⟩. In order to establish the above dimension-free convergence rate, we

need to make another assumption that the objective function f and the constraint set Q are well-

behaved in the Euclidean norm: that means for all points x ∈ Q and all subgradients f ′(x) ∈ ∂f(x),

we have ∥x∥ and ∥f ′(x)∥ are independent of the ambient dimension n. If this assumption is

not met, then we lose the dimension-free convergence rate. For instance, Q is the unit simplex

∆n =
{
x ∈ Rn

+ :
∑n

i=1 x(i) = 1
}
and f has subgradients bounded in ℓ∞-norm, e.g., ∥f ′(x)∥∞ ≤ 1.

Then, ∥f ′(x)∥∞ ≤
√
n and D ≤

√
2, so the convergence rate becomes

min
0≤i≤k−1

f(xi)− f∗ ≤
√
2n√
k
.

But if we use mirror descent in this lecture, the convergence rate will be improved to O(
√
log(n)/k).

This improvement relies on changing the space to be non-Euclidean.

In non-Euclidean spaces, x ∈ E and f ′(x) ∈ E∗, hence the subgradient method

xk+1 = projQ
(
xk − hkf

′(xk)
)

does not make sense. This issue motivates us to generalize the projected subgradient method to

better suite the non-Euclidean setting.

Let us take another look at the projected subgradient method. It can be equivalently written

as

xk+1 = argmin x∈Q

{
f(xk) + ⟨f ′(xk), x− xk⟩+

1

2hk
∥x− xk∥22

}
. (1)

The idea in the non-Euclidean case is to replace the Euclidean distance function 1
2∥x − xk∥22 by a

different “distance”. This non-Euclidean distance is the Bregman divergence.
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Definition 1. For an arbitrary norm ∥ · ∥ in E, the dual norm equipped in E∗ is defined as

∥s∥∗ = max
x∈E

{⟨s, x⟩ : ∥x∥ ≤ 1} , s ∈ E∗.

By the Cauchy-Schwarz inequality, for x ∈ E and s ∈ E∗, we have

⟨s, x⟩ ≤ ∥s∥∗∥x∥.

E.g., let ∥ · ∥ be the ℓp-norm and ∥ · ∥∗ be the ℓq norm where 1 ≤ p, q ≤ ∞ and 1
p +

1
q = 1, then by

Hölder’s inequality

⟨s, x⟩ ≤ ∥sx∥1 ≤ ∥x∥p∥s∥q, ∀x ∈ E, s ∈ E∗,

i.e.,
n∑

k=1

xksk ≤
n∑

k=1

|xksk| ≤

(
n∑

k=1

|xk|p
)1/p( n∑

k=1

|sk|q
)1/q

.

Let w : Rn → (−∞,∞] be a proper closed convex function satisfying

• w is differentiable on int(domw) = W o;

• Q ⊂ dom (w);

• w is ρ-strongly convex on Q w.r.t. ∥ · ∥ (here ∥ · ∥ is an arbitrary norm in E).

Definition 2. For a function w satisfying the above assumptions, the Bregman divergence associ-

ated with w is the fucntion Dw : domw ×W o → R given by

Dw(x, y) := w(x)− w(y)− ⟨∇w(y), x− y⟩.

The function w is called the distance generating fucntion.

A few properties of Dw: let x ∈ Q and y ∈ Q ∩W o, then

• Dw(x, y) ≥ ρ
2∥x− y∥2 for every x ∈ Q and y ∈ Q ∩W o;

• Dw(x, y) ≥ 0;

• Dw(x, y) = 0 if and only if x = y;

• Dw(x, y) = Dw∗(x∗, y∗) where w∗ is the Fenchel conjugate and x∗ = ∇w(x) and y∗ = ∇w(y).

Bregman divergence does not satisfy symmetry nor triangle inequality, and hence it is not a

metric.

Now we replace the Euclidean distance in (1) by the Bregman divergence, then we obtain an

iteration of the mirror descent

xk+1 = argmin x∈Q

{
f(xk) + ⟨f ′(xk), x− xk⟩+

1

hk
Dw(x, xk)

}
. (2)
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(Note that Lemma 9.7 and Theorem 9.8 of Amir Beck’s book guarantees that xk+1 ∈ Q ∩ W o,

hence ∇w(xk+1) exists in the next iteration and mirror descent is well-defined.) Hence, xk+1 =

projQ(yk+1) and yk+1 satisfies

0 = f ′(xk) +
1

hk
(∇w(yk+1)−∇w(xk)) ,

where we use the fact that ∇xDw(x, y) = ∇w(x)−∇w(y). Thus,

yk+1 = (∇w)−1
(
∇w(xk)− hkf

′(xk)
)
= ∇w∗ (∇w(xk)− hkf

′(xk)
)

where the second equality is due to (3). Below is another way to derive the formula for yk+1

yk+1 = argmin x∈Rn

{
f(xk) + ⟨f ′(xk), x− xk⟩+

1

hk
Dw(x, xk)

}
= argmin x∈Rn

{
⟨hkf ′(xk)−∇w(xk), x⟩+ w(x)

}
= argmax x∈Rn

{
⟨−hkf

′(xk) +∇w(xk), x⟩ − w(x)
}

= ∇w∗ (∇w(xk)− hkf
′(xk)

)
.

Figure 1: Mirror descent

The search point xk is mapped from the primal space into the dual space using ∇w, the gradient

step is then performed in the dual space ∇w(xk)− hkf
′(xk), and the point thus obtained is finally

mapped back into the primal space using ∇w∗. The distance generating function w is also called

the mirror map. See Figure 1 for an illustration.
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Algorithm 1 Mirror descent

Input: Initial point x0 ∈ Q ∩W o

for k ≥ 0 do

Step 1. Choose hk > 0.

Step 2. Comput yk+1 = ∇w∗ (∇w(xk)− hkf
′(xk)).

Step 3. Compute xk+1 = projQ(yk+1).

end for

Lemma 1. (Three points lemma) Let w be a function satisfying the conditions above Definition

2. For every z0, z ∈ W o and x ∈ domw, we have

Dw(x, z0)−Dw(z, z0)− ⟨∇zDw(z, z0), x− z⟩ = Dw(x, z).

Lemma 2. Assume that ∥f ′(x)∥∗ ≤ M for every x ∈ Q ∩ domw. For every k ≥ 0 and x ∈ domw,

we have

hk[f(xk)− f(x)] ≤ Dw(x, xk)−Dw(x, xk+1) +
h2kM

2

2ρ
.

Proof. Lemma 1 tells an important fact: for a fixed z0, view F (x) = Dw(x, z0) as a function in x,

now the lemma is equivalent to

F (x)− F (z)− ⟨∇F (z), x− z⟩ = Dw(x, z).

This means F (x) = Dw(x, z0) for any given z0 is 1-strongly convex in a new “metric” Dw(x, z). It

thus follows from (2) that

ℓf (x;xk) +
1

hk
Dw(x, xk) ≥ ℓf (xk+1;xk) +

1

hk
Dw(xk+1, xk) +

1

hk
Dw(x, xk+1).

Using convexity of f and ρ-strong convexity of w, we have

f(x) +
1

hk
Dw(x, xk) ≥ ℓf (xk+1;xk) +

ρ

2hk
∥xk+1 − xk∥2 +

1

hk
Dw(x, xk+1).

Rearranging the terms and using the Cauchy-Schwarz inequality and the fact that ∥f ′(x)∥∗ ≤ M ,

we obtain

f(xk)− f(x) ≤ 1

hk
Dw(x, xk)−

1

hk
Dw(x, xk+1) + ∥f ′(xk)∥∗∥xk+1 − xk∥ −

ρ

2hk
∥xk+1 − xk∥2

≤ 1

hk
Dw(x, xk)−

1

hk
Dw(x, xk+1) +

hkM
2

2ρ
.
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Theorem 1.

f(x̄k)− f∗ ≤
Dw(x∗, x0) +

M2

2ρ

∑k−1
i=0 h2i∑k−1

i=0 hi

where x̄k is any point satisfying

f(x̄k) ≤
∑k−1

i=0 hif(xi)∑k−1
i=0 hi

.

Moreover, for a given ε > 0, if hk = h, then

f(x̄k)− f∗ ≤
Dw(x∗, x0)

kh
+

M2h

2ρ
.

2 Standard setups for mirror descent

Ball: The distance generating function is

w(x) =
1

2
∥x∥22

is 1-strongly convex w.r.t. ∥ · ∥2 and the associated Bregman divergence is given by

Dw(x, y) =
1

2
∥x− y∥22.

In this case, mirror descent is equivalent to projected subgradient method.

Simplex: The distance generating function is given by the negative entropy

w(x) =

n∑
i=1

x(i) log x(i).

Note that W o = Rn
++ and w is 1-strongly convex w.r.t. ∥ · ∥1 on ∆n. The associated Bregman

divergence is given by

Dw(x, y) =
n∑

i=1

x(i) log
x(i)

y(i)
−

n∑
i=1

(x(i)− y(i)),

where the first summation is known as the relative entropy or Kullback-Leibler divergence

KL(x, y) =
n∑

i=1

x(i) log
x(i)

y(i)
.

The strong convexity property of w can be stated as for any x, y ∈ ∆n,

Dw(y, x) = KL(x, y) ≥ 1

2
|x− y|21,

which is also known as the Pinsker’s inequality. The projection onto simplex ∆n w.r.t. the Bregman

divergence is as simple as

proj∆n
(x0) =

x0
∥x0∥1

.
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Corollary 1. Assume ∥f ′(x)∥∞ ≤ M , ∀x ∈ ∆n. Let x0 = argmin x∈∆nw(x) (in the simplex setup,

x0 = (1/n, . . . , 1/n)⊤). Then, mirror descent with h = 1
M

√
2 logn

k satisfies

f(x̄k)− f∗ ≤ M

√
2 log n

k
.

Proof. We first note that since x0 = argmin x∈∆nw(x), it holds

⟨∇w(x0), x∗ − x0⟩ ≥ 0.

Then, we have

Dw(x∗, x0) = w(x∗)− w(x0)− ⟨∇w(x0), x∗ − x0⟩
≤ w(x∗)− w(x0)

≤ max
x∈∆n

w(x)− min
x∈∆n

w(x).

Using the fact that

− log n ≤ w(x) ≤ 0, ∀x ∈ ∆n,

we have

Dw(x∗, x0) ≤ log n.

It follows from Theorem 1 that

f(x̄k)− f∗ ≤
Dw(x∗, x0)

kh
+

M2h

2
≤ log n

kh
+

M2h

2
.

Taking h = 1
M

√
2 logn

k , we have

f(x̄k)− f∗ ≤ M

√
2 log n

k
.

3 Supplementary: conjugate function

Definition 3. Let f : Rn → [−∞,∞] be an extended real-valued function. The conjugate function

of f is defined as

f∗(x) = max
y

{⟨x, y⟩ − f(y)}.

Theorem 2. Let f be a closed and convex function. Then, the biconjugate function f∗∗ = f .

Theorem 3. Let f be a closed and convex function. Then, for any x, y ∈ Rn, the following

statements are equivalent:
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(i) ⟨x, y⟩ = f(x) + f∗(y);

(ii) y ∈ ∂f(x);

(iii) x ∈ ∂f∗(y).

Corollary 2. Let f be a closed and convex function. Then, for any x, y ∈ Rn,

∂f(x) = Argmax ỹ{⟨x, ỹ⟩ − f∗(ỹ)}

and

∂f∗(y) = Argmax x̃{⟨y, x̃⟩ − f(x̃)}.

Proposition 1. Let f be a closed and strictly convex function. Then, f∗ is differentiable, and for

any y ∈ Rn,

∇f∗(y) = argmax x{⟨y, x⟩ − f(x)}.

The concept of strong convexity extends and parametrizes the notion of strict convexity. A

strongly convex function is also strictly convex, but not vice versa.

An extremely useful connection between smoothness and strong convexity is given in the con-

jugate correspondence theorem.

Theorem 4. If f is closed and µ-strongly convex, then f∗ is (1/µ)-smooth. On the other hand, if

f is L-smooth, then f∗ is (1/L)-strongly convex.

It is worth noting that in this case, for every y ∈ Rn,

∇f∗(y) = (∇f)−1(y). (3)
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