CSC/DSCC 574 Continuous Algorithms for Optimization and Sampling Lecture 2

Subgradient Methods

Lecturer: Jiaming Liang January 23, 2024

1 Convexity

1.1 Convex set

Definition 1. A set $S \subseteq \mathbb{R}^{n}$ is called convex if for any $x, y \in S$ and $\lambda \in[0,1]$ it holds that $\lambda x+(1-\lambda) y \in S$.

1.2 Convex function

Definition 2. A proper extended real-valued function f is convex if and only if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \quad \text { for all } \quad x, y \in \mathbb{R}^{n}, \lambda \in[0,1] .
$$

Definition 3. A continuously differentiable function f is convex on \mathbb{R}^{n} if for any $x, y \in \mathbb{R}^{n}$ we have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle .
$$

Definition 4. A twice continuously differentiable function f is convex on \mathbb{R}^{n} if and only if for any $x \in \mathbb{R}^{n}$ we have

$$
\nabla^{2} f(x) \succeq 0 .
$$

1.3 Strongly convex function

Definition 5. A proper extended real-valued function f is μ-strongly convex if and only if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\lambda(1-\lambda) \frac{\mu}{2}\|x-y\|^{2} \quad \text { for all } \quad x, y \in \mathbb{R}^{n}, \lambda \in[0,1] .
$$

Definition 6. A continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n} if for any $x, y \in$ \mathbb{R}^{n} we have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|x-y\|^{2} .
$$

Definition 7. A twice continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n} if and only if for any $x \in \mathbb{R}^{n}$ we have

$$
\nabla^{2} f(x) \succeq \mu I
$$

Lemma 1. If a continuously differentiable function f is μ-strongly convex on \mathbb{R}^{n}, then we have
(i) for all $x, y \in \mathbb{R}^{n}$,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 \mu}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

(ii) for all $x, y \in \mathbb{R}^{n}$,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \leq \frac{1}{\mu}\|\nabla f(x)-\nabla f(y)\|^{2} ;
$$

(iii) for all $x, y \in \mathbb{R}^{n}$,

$$
\mu\|x-y\| \leq\|\nabla f(x)-\nabla f(y)\| .
$$

2 Big-O notation

Definition 8. We say $f(x)=\mathcal{O}(g(x))$ if there exists scalars $M>0$ and $x_{0} \in \mathbb{R}$ such that

$$
|f(x)| \leq M g(x) \quad \text { for all } \quad x \geq x_{0} .
$$

We say $f(x)=\Omega(g(x))$ if there exists scalars $M>0$ and $x_{0} \in \mathbb{R}$ such that

$$
f(x) \geq M g(x) \quad \text { for all } \quad x \geq x_{0} .
$$

We say $f(x)=\Theta(g(x))$ if $f(x)=\mathcal{O}(g(x))$ and $f(x)=\Omega(g(x))$.

3 Subgradient

Definition 9. Let $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a proper function and let $x \in \operatorname{dom}(f)$. A vector $g \in \mathbb{R}^{n}$ is called a subgradient of f at x if

$$
f(y) \geq f(x)+\langle g, y-x\rangle \quad \forall y \in \mathbb{R}^{n} .
$$

We denote a subgradient of f at x by $f^{\prime}(x)$.
Definition 10. The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by $\partial f(x)$:

$$
\partial f(x) \equiv\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \quad \forall y \in \mathbb{R}^{n}\right\}
$$

If f is convex, then $\partial f(x) \neq \emptyset$. If f is convex and smooth, then $\partial f(x)=\{\nabla f(x)\}$.

4 Optimization with set constraint

Let us consider now a convex smooth optimization problem with the set constraint:

$$
\begin{equation*}
\min _{x \in Q} f(x) \tag{1}
\end{equation*}
$$

where Q is a closed convex set.
In the unconstrained case, the optimality condition is

$$
\nabla f(x)=0 .
$$

But this condition does not work with the set constraint. Consider the following univariate minimization problem:

$$
\min _{x \geq 0} x
$$

Here $Q=\{x \in \mathbb{R}: x \geq 0\}$ and $f(x)=x$. Note that $x_{*}=0$ but $f^{\prime}\left(x_{*}\right)=1>0$.
Theorem 1. Let f be convex and differentiable and Q be closed and convex. A point x_{*} is as solution to (1) if and only if

$$
\begin{equation*}
\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle \geq 0 \tag{2}
\end{equation*}
$$

for all $x \in Q$.
Proof. Indeed, if (2) is true, then

$$
f(x) \geq f\left(x_{*}\right)+\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle \geq f\left(x_{*}\right)
$$

for all $x \in Q$. On the other hand, let x_{*} be a solution to (1). Assume that there exists some $x \in Q$ such that

$$
\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle<0 .
$$

Consider the function

$$
\phi(\alpha)=f\left(x_{*}+\alpha\left(x-x_{*}\right)\right), \quad \alpha \in[0,1] .
$$

Note that

$$
\phi(0)=f\left(x_{*}\right), \quad \phi^{\prime}(0)=\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle<0 .
$$

Therefore, for α small enough we have

$$
f\left(x_{*}+\alpha\left(x-x_{*}\right)\right)=\phi(\alpha)<\phi(0)=f\left(x_{*}\right) .
$$

This is a contradiction.
The next statement is often addressed as the growth property of strongly convex functions.

Theorem 2. If f is μ-strongly convex, then for any $x \in Q$, we have

$$
f(x) \geq f\left(x_{*}\right)+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2}
$$

Proof. Indeed, by strong convexity and Theorem 1, we have

$$
\begin{aligned}
f(x) & \geq f\left(x_{*}\right)+\left\langle\nabla f\left(x_{*}\right), x-x_{*}\right\rangle+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2} \\
& \geq f\left(x_{*}\right)+\frac{\mu}{2}\left\|x-x_{*}\right\|^{2} .
\end{aligned}
$$

Theorem 3. Let f be μ-strongly convex with $\mu>0$ and the set Q is closed and convex. Then there exists a unique solution x_{*} to (1).

Definition 11. Let Q be a closed set and $x_{0} \in \mathbb{R}^{n}$. Define

$$
\operatorname{proj}_{Q}\left(x_{0}\right)=\arg \min _{x \in Q}\left\|x-x_{0}\right\|
$$

We call $\operatorname{proj}_{Q}\left(x_{0}\right)$ the Euclidean projection of the point x_{0} onto the set Q.

5 Subgradient methods

Consider the following optimization problem

$$
\min _{x \in Q} f(x)
$$

where f is convex and Q is a closed convex set. We also assume f is M-Lipschitz continuous over Q, i.e.,

$$
|f(x)-f(y)| \leq M\|x-y\| \quad \forall x, y \in Q
$$

5.1 Convex function

```
Algorithm 1 Subradient method
    Input: Initial point \(x_{0} \in Q\)
    for \(k \geq 0\) do
        Step 1. Choose \(\lambda_{k}>0\).
        Step 2. Compute \(x_{k+1}=\operatorname{proj}_{Q}\left(x_{k}-\lambda_{k} f^{\prime}\left(x_{k}\right)\right)\).
    end for
```

Theorem 4. Assume f is convex and M-Lipschitz continuous over a compact and convex set Q with diameter $D>0$. (This means for evrey $x, y \in Q,\|x-y\| \leq D$.) Consider $\min _{x \in Q} f(x)$ using the subgradient method with constant stepsize $\lambda_{k} \equiv \lambda>0$. Then, we have

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{D^{2}}{2 \lambda k}+\frac{\lambda M^{2}}{2} .
$$

Moreover, choosing $\lambda=\varepsilon / M^{2}$, we have

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{M^{2} D^{2}}{2 \varepsilon k}+\frac{\varepsilon}{2} .
$$

Therefore, the complexity for an ε-solution (i.e., a point $x \in Q$ s.t. $f(x)-f_{*} \leq \varepsilon$) is

$$
\mathcal{O}\left(\frac{M^{2} D^{2}}{\varepsilon^{2}}\right) .
$$

Proof. It is easy to see

$$
x_{k+1}=\arg \min \left\{\ell_{f}\left(x ; x_{k}\right)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2}: x \in Q\right\}
$$

where $\ell_{f}(x ; y)=f(y)+\left\langle f^{\prime}(y), x-y\right\rangle$. Using Theorem 2 and the fact that the above objective function is λ^{-1}-strongly convex, we have for every $x \in Q$,

$$
\ell_{f}\left(x ; x_{k}\right)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2} \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2} .
$$

It follows from the convexity of f that

$$
f(x)+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2} \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda}\left\|x-x_{k+1}\right\|^{2} .
$$

Rearraging the terms and using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& f\left(x_{k}\right)-f_{*}-\frac{1}{2 \lambda}\left\|x_{k}-x_{*}\right\|^{2}+\frac{1}{2 \lambda}\left\|x_{k+1}-x_{*}\right\|^{2} \\
\leq & \left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{k+1}\right\rangle-\frac{1}{2 \lambda}\left\|x_{k}-x_{k+1}\right\|^{2} \\
\leq & \left\|f^{\prime}\left(x_{k}\right)\right\|\left\|x_{k}-x_{k+1}\right\|-\frac{1}{2 \lambda}\left\|x_{k}-x_{k+1}\right\|^{2} \\
\leq & \frac{\lambda}{2}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2} \leq \frac{\lambda M^{2}}{2},
\end{aligned}
$$

where the last inequality is due to $x_{k} \in Q$ and the assumption that f is M-Lipschitz continuous over Q. Summing the above inequality, we have

$$
k\left[\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*}\right] \leq \sum_{i=0}^{k-1}\left[f\left(x_{i}\right)-f_{*}\right] \leq \frac{\left\|x_{0}-x_{*}\right\|^{2}}{2 \lambda}+\frac{\lambda M^{2} k}{2} \leq \frac{D^{2}}{2 \lambda}+\frac{\lambda M^{2} k}{2} .
$$

Thus,

$$
\min _{0 \leq i \leq k-1} f\left(x_{i}\right)-f_{*} \leq \frac{D^{2}}{2 \lambda k}+\frac{\lambda M^{2}}{2}
$$

5.2 Strongly convex function

Theorem 5. Assume f is μ-strongly convex and M-Lipschitz continuous over a closed and convex set Q. Consider $\min _{x \in Q} f(x)$ using the subgradient method with variable stepsize

$$
\lambda_{k}=\frac{2}{\mu(k+1)} \quad k \geq 0
$$

Then, we have

$$
\min _{1 \leq i \leq k} f\left(x_{i}\right)-f_{*}+\frac{\mu}{2}\left\|x_{k+1}-x_{*}\right\|^{2} \leq \frac{2 M^{2}}{\mu(k+1)} .
$$

Therefore, the complexity for an ε-solution is

$$
\mathcal{O}\left(\frac{M^{2}}{\mu \varepsilon}\right)
$$

Proof. Note that it still holds

$$
\ell_{f}\left(x ; x_{k}\right)+\frac{1}{2 \lambda_{k}}\left\|x-x_{k}\right\|^{2} \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+\frac{1}{2 \lambda_{k}}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda_{k}}\left\|x-x_{k+1}\right\|^{2} .
$$

It follows from the μ-strong convexity of f that for every $x \in Q$,

$$
f(x) \geq \ell_{f}\left(x ; x_{k}\right)+\frac{\mu}{2}\left\|x-x_{k}\right\|^{2} .
$$

Combining the above two relations, we have

$$
f(x)+\frac{1-\lambda_{k} \mu}{2 \lambda_{k}}\left\|x-x_{k}\right\|^{2} \geq \ell_{f}\left(x_{k+1} ; x_{k}\right)+\frac{1}{2 \lambda_{k}}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \lambda_{k}}\left\|x-x_{k+1}\right\|^{2} .
$$

Proceeding similarly to the proof of Theorem 4, we have

$$
f\left(x_{k}\right)-f_{*} \leq \frac{1-\lambda_{k} \mu}{2 \lambda_{k}}\left\|x_{k}-x_{*}\right\|^{2}-\frac{1}{2 \lambda_{k}}\left\|x_{k+1}-x_{*}\right\|^{2}+\frac{\lambda_{k} M^{2}}{2} .
$$

Using the stepsize $\lambda_{k}=2 /[\mu(k+1)]$, we have

$$
f\left(x_{k}\right)-f_{*} \leq \frac{\mu(k-1)}{4}\left\|x_{k}-x_{*}\right\|^{2}-\frac{\mu(k+1)}{4}\left\|x_{k+1}-x_{*}\right\|^{2}+\frac{M^{2}}{\mu(k+1)} .
$$

Multiplying by k, we get

$$
k\left[f\left(x_{k}\right)-f_{*}\right] \leq \frac{\mu(k-1) k}{4}\left\|x_{k}-x_{*}\right\|^{2}-\frac{\mu k(k+1)}{4}\left\|x_{k+1}-x_{*}\right\|^{2}+\frac{M^{2}}{\mu} .
$$

Summing the above inequality, we have

$$
\frac{k(k+1)}{2}\left[\min _{1 \leq i \leq k} f\left(x_{i}\right)-f_{*}\right] \leq \sum_{i=1}^{k} i\left[f\left(x_{i}\right)-f_{*}\right] \leq-\frac{\mu k(k+1)}{4}\left\|x_{k+1}-x_{*}\right\|^{2}+\frac{k M^{2}}{\mu}
$$

Thus, rearranging the terms and dividing the resulting inequality by $k(k+1) / 2$, we obtain

$$
\min _{1 \leq i \leq k} f\left(x_{i}\right)-f_{*}+\frac{\mu}{2}\left\|x_{k+1}-x_{*}\right\|^{2} \leq \frac{2 M^{2}}{\mu(k+1)}
$$

