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1 Convexity

1.1 Convex set

Definition 1. A set S C R" is called convex if for any x,y € S and X\ € [0,1] it holds that
A+ (1—-Nyes.

1.2 Convex function

Definition 2. A proper extended real-valued function f is convex if and only if
JO@+ (1= Ny) S Af(@) + (1= Nf(y) forall z,yeR" A€ 0,1,

Definition 3. A continuously differentiable function f is convex on R™ if for any x,y € R™ we
have

fy) =z f(z) +(Vf(z),y —x).
Definition 4. A twice continuously differentiable function f is convex on R™ if and only if for any
x € R™ we have
V2f(x) = 0.
1.3 Strongly convex function

Definition 5. A proper extended real-valued function f is p-strongly convex if and only if
FO -+ (1= Ny) €M)+ (1= Nf() = A1 = V5o =yl forall 2,y BN e [0,1]

Definition 6. A continuously differentiable function f is u-strongly convex on R™ if for any x,y €
R™ we have

) = f(@) + (Vf(2),y =) + Sl =yl

Definition 7. A twice continuously differentiable function f is u-strongly convex on R™ if and only

if for any x € R™ we have
V2 f(x) = pul.

Lemma 1. If a continuously differentiable function f is p-strongly convex on R™, then we have
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(i) for all z,y € R,
fly) < flo) +(Vi(z),y — =) + ;ﬂHVf(ﬂU) - Vi
(i1) for all x,y € R™,
1
(Vi@ = ViW).o —y) < IVI@) - Vi
(iii) for all x,y € R,
pllz =yl < IVF(z) = Vi)l
2 Big-O notation
Definition 8. We say f(z) = O(g(x)) if there exists scalars M > 0 and xo € R such that
|f(x)] < Mg(x) forall x> x.
We say f(x) = Q(g(x)) if there exists scalars M > 0 and xo € R such that
flx) > Mg(x) forall x> x.

We say f(x) = O(g(x)) if f(z) = Olg(x)) and f(x) = Qg(z)).

3 Subgradient

Definition 9. Let f : R" — (—o0, 0] be a proper function and let x € dom(f). A vector g € R™
1s called a subgradient of f at x if

fy) = f(@)+ {9y —x) VyeR"
We denote a subgradient of f at x by f’(z).

Definition 10. The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by Of(x):

of(x) ={g e R": f(y) > f(x) + {9,y —x) VyeR"}.

If f is convex, then df(z) # 0. If f is convex and smooth, then df(z) = {Vf(z)}.
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4 Optimization with set constraint

Let us consider now a convex smooth optimization problem with the set constraint:

1;1615 f(z) (1)

where @ is a closed convex set.
In the unconstrained case, the optimality condition is

Vf(x)=0.

But this condition does not work with the set constraint. Consider the following univariate mini-
mization problem:

minzx.
x>0

Here Q = {z € R: 2z >0} and f(z) = x. Note that ., = 0 but f'(z.) =1> 0.

Theorem 1. Let f be convex and differentiable and @ be closed and conver. A point x, is as
solution to (1) if and only if
(Vf(z)a— ) = 0 (2)

for all x € Q.

Proof. Indeed, if (2) is true, then

f(@) > f(ze) +(Vf(2s), 0 — ) > f(4)

for all x € Q. On the other hand, let =, be a solution to (1). Assume that there exists some x € @
such that
(Vf(zye),x —x4) <O.

Consider the function
d(a) = f(ze +a(r —z4)), acl01].

Note that
$(0) = fzs), ¢'(0) = (Vf(zs),2 —as) <O0.

Therefore, for o small enough we have

f(@e + a(r —z4)) = d(a) < ¢(0) = f(24).
This is a contradiction. O

The next statement is often addressed as the growth property of strongly convex functions.
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Theorem 2. If f is u-strongly convex, then for any x € @@, we have
J(@) 2 ) + Gllo - .
Proof. Indeed, by strong convexity and Theorem 1, we have
f() 2 f(@) + (V) @ = 2.) + Sz — o
> fa) + Slle — .
O

Theorem 3. Let f be p-strongly convex with p > 0 and the set Q is closed and convex. Then there
exists a unique solution x, to (1).

Definition 11. Let Q be a closed set and xg € R"™. Define
rojo(ro) = argmin ||z — x|
projq(zo) = arg mig [lo — a0

We call pron(wo) the Fuclidean projection of the point xy onto the set Q.

5 Subgradient methods

Consider the following optimization problem

min f(z)

where f is convex and (@) is a closed convex set. We also assume f is M-Lipschitz continuous over
Q, ie.,
[f(z) = F(y)l < Mllz —yl| Vz,y € Q.

5.1 Convex function

Algorithm 1 Subradient method
Input: Initial point g € Q
for £ > 0 do
Step 1. Choose Ar > 0.
Step 2. Compute xg11 = projg (vx — Aef' (1))

end for
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Theorem 4. Assume f is convexr and M -Lipschitz continuous over a compact and convex set Q
with diameter D > 0. (This means for evrey x,y € Q, ||z —y|| < D.) Consider mingeq f(x) using
the subgradient method with constant stepsize A\, = X > 0. Then, we have
D?  AM?
ogl?giilgl_1f(xi) — [« < Nk + 5
Moreover, choosing A = €/M?, we have
M?D?* ¢

) N €
05%1?—1‘]0(%) o< 2k +2

Therefore, the complexity for an e-solution (i.e., a point © € Q s.t. f(x) — f. <€) is
M?D?
0 ( / ) .
5

1
Thy1 = arg min {Ef(:c;xk) + ﬁHx —xl?iz e Q} ,

Proof. 1t is easy to see

where (f(z;y) = f(y) + (f'(y),x — y). Using Theorem 2 and the fact that the above objective
function is A\~ !-strongly convex, we have for every = € Q,
1 2 1 2 1 2
- |z — > : — - — ||z — .
(s o) + oylle = aull® 2 €p(@peas on) + gy llewe — 2ell” + oy lle — zrll
It follows from the convexity of f that
1 1 1
f(z) + ﬁ”ﬂﬁ — agl|* > Ly (g o) + 5||$k:+1 — | + ﬁ”x — zp|*-

Rearraging the terms and using the Cauchy-Schwarz inequality, we have
1 1
Flan) = fo = gylloe = 2al® + ok — 2.
1
<(f(zr), o) — Th41) — ﬁ”iﬁk — x|

1
< (@p)lllze — e || — ﬁ”évk — T )?

A AM?
<Z|If 2 <
<SIf @l < 25—,

where the last inequality is due to xp € @) and the assumption that f is M-Lipschitz continuous

over (). Summing the above inequality, we have

k—1
. lzo — z«||>  AM2k _ D?* A\MZ?k
i) — fo| < i) — J« < < oy
k| min f(o) f} _;[f(w) S s d
Thus,

D? \M?

3 N — f < — P

ogrglgll?—lf(xz) Je < 2)\k+ 2
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5.2 Strongly convex function

Theorem 5. Assume f is p-strongly convex and M -Lipschitz continuous over a closed and convex
set Q. Consider mingeq f(x) using the subgradient method with variable stepsize
2
Apg=——— k>0.
a1 T

Then, we have

H 2 20
* 5 — Lx < —.
1%12kf(mz) Jot QHmkH " < p(k +1)

Therefore, the complexity for an e-solution is
MZ
0 <) .
e

1 1 1
Cp(wsay) + 7“9«“ — ap|® > Cp(zhyns on) + =—llwre — zil® + =l — T |I*
2\ 2

Proof. Note that it still holds

It follows from the p-strong convexity of f that for every x € @,
1
F(a) > (o) + Bl — ]

Combining the above two relations, we have

1 — App
1@)+ 5w = aull* 2 ¢ (awsnion) + g-llon = ol + 3o =zl
Proceeding similarly to the proof of Theorem 4, we have
1—dpp 1 )\kM
Flow) = o € 51 o = 2l = gk — w4 25
Using the stepsize A\ = 2/[u(k + 1)], we have
p(k—1) o pmk+1) 2, M
— < — — Lx - i - Lx 2R
F) = £ < B = P = B e =l +
Multiplying by k, we get
wk — 1)k pnk(k+1 M2
flf(a) — ) < Py g IR D e 2
I
Summing the above inequality, we have
k
k(k+1) (k: +1) 5  kM?
T [1r<n,1£kf xz *:| < ZIZ xz f* kaJrl - w*” + 0
1=
Thus, rearranging the terms and dividing the resulting inequality by k(k + 1)/2, we obtain
H 2 20
* = — Lk < — .
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