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1 Convexity

1.1 Convex set

Definition 1. A set S ⊆ Rn is called convex if for any x, y ∈ S and λ ∈ [0, 1] it holds that

λx+ (1− λ)y ∈ S.

1.2 Convex function

Definition 2. A proper extended real-valued function f is convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ Rn, λ ∈ [0, 1].

Definition 3. A continuously differentiable function f is convex on Rn if for any x, y ∈ Rn we

have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Definition 4. A twice continuously differentiable function f is convex on Rn if and only if for any

x ∈ Rn we have

∇2f(x) ⪰ 0.

1.3 Strongly convex function

Definition 5. A proper extended real-valued function f is µ-strongly convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)
µ

2
∥x− y∥2 for all x, y ∈ Rn, λ ∈ [0, 1].

Definition 6. A continuously differentiable function f is µ-strongly convex on Rn if for any x, y ∈
Rn we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2.

Definition 7. A twice continuously differentiable function f is µ-strongly convex on Rn if and only

if for any x ∈ Rn we have

∇2f(x) ⪰ µI.

Lemma 1. If a continuously differentiable function f is µ-strongly convex on Rn, then we have
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(i) for all x, y ∈ Rn,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

2µ
∥∇f(x)−∇f(y)∥2;

(ii) for all x, y ∈ Rn,

⟨∇f(x)−∇f(y), x− y⟩ ≤ 1

µ
∥∇f(x)−∇f(y)∥2;

(iii) for all x, y ∈ Rn,

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥.

2 Big-O notation

Definition 8. We say f(x) = O(g(x)) if there exists scalars M > 0 and x0 ∈ R such that

|f(x)| ≤ Mg(x) for all x ≥ x0.

We say f(x) = Ω(g(x)) if there exists scalars M > 0 and x0 ∈ R such that

f(x) ≥ Mg(x) for all x ≥ x0.

We say f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

3 Subgradient

Definition 9. Let f : Rn → (−∞,∞] be a proper function and let x ∈ dom(f). A vector g ∈ Rn

is called a subgradient of f at x if

f(y) ≥ f(x) + ⟨g, y − x⟩ ∀y ∈ Rn.

We denote a subgradient of f at x by f ′(x).

Definition 10. The set of all subgradients of f at x is called the subdifferential of f at x and is

denoted by ∂f(x):

∂f(x) ≡ {g ∈ Rn : f(y) ≥ f(x) + ⟨g, y − x⟩ ∀y ∈ Rn} .

If f is convex, then ∂f(x) ̸= ∅. If f is convex and smooth, then ∂f(x) = {∇f(x)}.
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4 Optimization with set constraint

Let us consider now a convex smooth optimization problem with the set constraint :

min
x∈Q

f(x) (1)

where Q is a closed convex set.

In the unconstrained case, the optimality condition is

∇f(x) = 0.

But this condition does not work with the set constraint. Consider the following univariate mini-

mization problem:

min
x≥0

x.

Here Q = {x ∈ R : x ≥ 0} and f(x) = x. Note that x∗ = 0 but f ′(x∗) = 1 > 0.

Theorem 1. Let f be convex and differentiable and Q be closed and convex. A point x∗ is as

solution to (1) if and only if

⟨∇f(x∗), x− x∗⟩ ≥ 0 (2)

for all x ∈ Q.

Proof. Indeed, if (2) is true, then

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩ ≥ f(x∗)

for all x ∈ Q. On the other hand, let x∗ be a solution to (1). Assume that there exists some x ∈ Q

such that

⟨∇f(x∗), x− x∗⟩ < 0.

Consider the function

ϕ(α) = f(x∗ + α(x− x∗)), α ∈ [0, 1].

Note that

ϕ(0) = f(x∗), ϕ′(0) = ⟨∇f(x∗), x− x∗⟩ < 0.

Therefore, for α small enough we have

f(x∗ + α(x− x∗)) = ϕ(α) < ϕ(0) = f(x∗).

This is a contradiction.

The next statement is often addressed as the growth property of strongly convex functions.
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Theorem 2. If f is µ-strongly convex, then for any x ∈ Q, we have

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥2.

Proof. Indeed, by strong convexity and Theorem 1, we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+
µ

2
∥x− x∗∥2

≥ f(x∗) +
µ

2
∥x− x∗∥2.

Theorem 3. Let f be µ-strongly convex with µ > 0 and the set Q is closed and convex. Then there

exists a unique solution x∗ to (1).

Definition 11. Let Q be a closed set and x0 ∈ Rn. Define

projQ(x0) = argmin
x∈Q

∥x− x0∥.

We call projQ(x0) the Euclidean projection of the point x0 onto the set Q.

5 Subgradient methods

Consider the following optimization problem

min
x∈Q

f(x)

where f is convex and Q is a closed convex set. We also assume f is M -Lipschitz continuous over

Q, i.e.,

|f(x)− f(y)| ≤ M∥x− y∥ ∀x, y ∈ Q.

5.1 Convex function

Algorithm 1 Subradient method

Input: Initial point x0 ∈ Q

for k ≥ 0 do

Step 1. Choose λk > 0.

Step 2. Compute xk+1 = projQ (xk − λkf
′(xk)).

end for
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Theorem 4. Assume f is convex and M -Lipschitz continuous over a compact and convex set Q

with diameter D > 0. (This means for evrey x, y ∈ Q, ∥x− y∥ ≤ D.) Consider minx∈Q f(x) using

the subgradient method with constant stepsize λk ≡ λ > 0. Then, we have

min
0≤i≤k−1

f(xi)− f∗ ≤
D2

2λk
+

λM2

2
.

Moreover, choosing λ = ε/M2, we have

min
0≤i≤k−1

f(xi)− f∗ ≤
M2D2

2εk
+

ε

2
.

Therefore, the complexity for an ε-solution (i.e., a point x ∈ Q s.t. f(x)− f∗ ≤ ε) is

O
(
M2D2

ε2

)
.

Proof. It is easy to see

xk+1 = argmin

{
ℓf (x;xk) +

1

2λ
∥x− xk∥2 : x ∈ Q

}
,

where ℓf (x; y) = f(y) + ⟨f ′(y), x − y⟩. Using Theorem 2 and the fact that the above objective

function is λ−1-strongly convex, we have for every x ∈ Q,

ℓf (x;xk) +
1

2λ
∥x− xk∥2 ≥ ℓf (xk+1;xk) +

1

2λ
∥xk+1 − xk∥2 +

1

2λ
∥x− xk+1∥2.

It follows from the convexity of f that

f(x) +
1

2λ
∥x− xk∥2 ≥ ℓf (xk+1;xk) +

1

2λ
∥xk+1 − xk∥2 +

1

2λ
∥x− xk+1∥2.

Rearraging the terms and using the Cauchy-Schwarz inequality, we have

f(xk)− f∗ −
1

2λ
∥xk − x∗∥2 +

1

2λ
∥xk+1 − x∗∥2

≤⟨f ′(xk), xk − xk+1⟩ −
1

2λ
∥xk − xk+1∥2

≤∥f ′(xk)∥∥xk − xk+1∥ −
1

2λ
∥xk − xk+1∥2

≤λ

2
∥f ′(xk)∥2 ≤

λM2

2
,

where the last inequality is due to xk ∈ Q and the assumption that f is M -Lipschitz continuous

over Q. Summing the above inequality, we have

k

[
min

0≤i≤k−1
f(xi)− f∗

]
≤

k−1∑
i=0

[f(xi)− f∗] ≤
∥x0 − x∗∥2

2λ
+

λM2k

2
≤ D2

2λ
+

λM2k

2
.

Thus,

min
0≤i≤k−1

f(xi)− f∗ ≤
D2

2λk
+

λM2

2
.
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5.2 Strongly convex function

Theorem 5. Assume f is µ-strongly convex and M -Lipschitz continuous over a closed and convex

set Q. Consider minx∈Q f(x) using the subgradient method with variable stepsize

λk =
2

µ(k + 1)
k ≥ 0.

Then, we have

min
1≤i≤k

f(xi)− f∗ +
µ

2
∥xk+1 − x∗∥2 ≤

2M2

µ(k + 1)
.

Therefore, the complexity for an ε-solution is

O
(
M2

µε

)
.

Proof. Note that it still holds

ℓf (x;xk) +
1

2λk
∥x− xk∥2 ≥ ℓf (xk+1;xk) +

1

2λk
∥xk+1 − xk∥2 +

1

2λk
∥x− xk+1∥2.

It follows from the µ-strong convexity of f that for every x ∈ Q,

f(x) ≥ ℓf (x;xk) +
µ

2
∥x− xk∥2.

Combining the above two relations, we have

f(x) +
1− λkµ

2λk
∥x− xk∥2 ≥ ℓf (xk+1;xk) +

1

2λk
∥xk+1 − xk∥2 +

1

2λk
∥x− xk+1∥2.

Proceeding similarly to the proof of Theorem 4, we have

f(xk)− f∗ ≤
1− λkµ

2λk
∥xk − x∗∥2 −

1

2λk
∥xk+1 − x∗∥2 +

λkM
2

2
.

Using the stepsize λk = 2/[µ(k + 1)], we have

f(xk)− f∗ ≤
µ(k − 1)

4
∥xk − x∗∥2 −

µ(k + 1)

4
∥xk+1 − x∗∥2 +

M2

µ(k + 1)
.

Multiplying by k, we get

k[f(xk)− f∗] ≤
µ(k − 1)k

4
∥xk − x∗∥2 −

µk(k + 1)

4
∥xk+1 − x∗∥2 +

M2

µ
.

Summing the above inequality, we have

k(k + 1)

2

[
min
1≤i≤k

f(xi)− f∗

]
≤

k∑
i=1

i[f(xi)− f∗] ≤ −µk(k + 1)

4
∥xk+1 − x∗∥2 +

kM2

µ

Thus, rearranging the terms and dividing the resulting inequality by k(k + 1)/2, we obtain

min
1≤i≤k

f(xi)− f∗ +
µ

2
∥xk+1 − x∗∥2 ≤

2M2

µ(k + 1)
.
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