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1 Differential privacy

Definition 1 ((g,0)-DP). A randomized mechanism M is (e,d)-differentially private if for any
neighboring databases D, D’ and any subset S C O (output space), one has

PM(D) € S] < P [M (D') € S] +6.
We say D and D' are neighboring databases if they agree on all the user inputs except for a single
user’s input.

For § = 0, the e-DP condition can be written as
LE[M(D) € 5] <PM(D) € 5] < P [M (D) € 5]

A DP algorithm M usually satisfies a collection of (g, d)-DP guarantees for each ¢, i.e., for each
g > 0, there exists a smallest 0 for which M is (g, )-DP. By collecting all of them together, we can
form the privacy curve or privacy profile that fully characterizes the privacy of a DP algorithm.

Definition 2 (Privacy Curve). Given two random variables X and Y supported on some set ),
define the privacy curve 6(X||Y) : R>g — [0, 1] as follows,

I(X|Y)(e) = ElégPr[Y € S]—e"Pr[X € 5].

We say a differentially private mechanism M has privacy curve ¢ : R>g — [0, 1] if for every
e > 0, M is (e,d(e))-differentially private, i.e., 6 (M(D)||M (D'))(e) < d(e) for all neighbouring
databases D and D'.

We will also need the notion of tradeoff function, which is an equivalent way to describe the
privacy curve §(P||Q).

Definition 3 (Tradeoff function). Given two (continuous) distributions P and Q, we define the
tradeoff function T'(P||Q) : [0,1] — [0,1] as

T(PIQ)(z) = _ inf  Q(S).

S:P(S)=1-z

The tradeoff function T'(P||@Q) and the privacy curve §(P||Q) are related via convex duality.
Therefore to compare privacy curves, it is enough to compare tradeoff curves.

Lemma 1. We have

§(PIQ) <6 (P'Q) WT(PIQ) =T (P'Q).
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2 Private convex optimization

Recall stochastic optimization is

min{f(z) = Ee[F(z; I},

and its sample average approximation is

1 n
z;D) = — F(x;&),
fla;D) =~ ; (2:6:)
where D = {&1,...,&,} is a database.

Here f(x;D) can be understood as the negative utility function —u(D;s), where z = s is the
output of a certain mechanism. We assume F(+;¢) is convex and M-Lipschitz continuous, and @
has a diameter D > 0.

We want to output a solution zP™V using a differentially private mechanism M such that we

minimize the excess empirical risk
En [f (2P D)] — f (x4 D),

where z, € @ is the minimizer of f(z;D).
MDd
ne

e-DP. On the other hand, it has also been shown that noisy gradient descent achieves an excess

In the literature, it is shown that EM achieves the optimal excess empirical risk O ( ) under

empirical risk of

MD dlog%
of—v ~°

ne

under (e, d)-DP, which is also shown to be optimal.

Note that the second bound only loses a bit in privacy (J) but reduces the dependence of d in
the excess empirical risk from d to v/d. It is natural to ask the question whether we can obtain
the optimal empirical risk under (g,6)-DP using EM. The answer is affirmative, but we need to
introduce a modified version of EM, that is the regularized exponential mechanism,

2~ exp (k[ £(@:D) + SllallF] ).

With a suitable choice of p and k, we recover the optimal excess risk under (g, §)-DP.

EM is the task of sampling and the regularized EM is an instance of the restricted Gaussian
oracle that we have studied in proximal sampling. Since we have studied the non-asymptotic
convergence of sampling algorithms, we are ready to establish the excess empirical risk using the
regularized EM.
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3 Analysis

Theorem 1. Given convex set K C R and p-strongly convex functions F and F over K. Let P
and Q be distributions over K such that P(z) o< exp(—F(z)) and Q(x)  exp(—F(z)). If F — F is
G-Lipschitz over IC, then for all € > 0, we have

S(PIQ)E) <5 (N0 (\fﬂ ) e

T(PIQ):) = T (WO (jﬁ ) e

This proves that the privacy curve for distinguishing between P and @ is upper bounded by
the privacy curve of a Gaussian mechanism with sensitivity G//ix and noise scale 1 .

Theorem 2 (Kalai and Vempala). Let f(x) = ¢z, where c is a unit vector, and let K C R be a
convex body. Then, for any t > 0, we have
E [f(X)] — min f(z) < nt.

XNPlf zell
[

Extension to an arbitrary convex function f.

Lemma 2 (Utility Guarantee). Suppose k > 0 and F is a convex function over a convex body
K C RY. For the distribution v(z) o exp(—kf(x)), we have

) d

E[f(x)] < min f(x) + 7.

Proof. Define
o fIC e_f(x)/td;p

It is clear that

Define the set
K= {(x,xn+1) cR"xc K, f(z) <mpir < EIC} :

Then K is a convex body, and we have

min f(z) = min _ xp4q.
zek (z,xn4+1)EK

Accordingly, define the parameter

f,@ xnﬂe_x"“/tdxnﬂdzz:
Ep = m——yz
fl@ e Tnt1/tdx, 1dx
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Nextf, we show that
Ee = Ex +t. (1)

To this end, set Ex = Nx/Dg and Eg = Ny /Dy, where we define

Ni = [ic f(x)e T@/tdz, Dy = [ e 1@/,
Ny = f,c mnﬂe_’”"“/tdwnﬂdac, Dy = f,c e‘x"“/tdmnﬂdx.

We work out the parameters Ny and Dy (taking integrations by part):
Ex
Dy = / /( | e+ /tdp, | do = / (teif(x)/t — te*E’C/t) dz = tDx — te~ e/t yol(K),
K f(z K

Ex 2
Nie = / / Tppre Pt e, | de = / —tEe BRIt Lt f(z)e /@t 4 t/ e day | do
K \Jf(@) K f(@)

= —tEe P&/t 50l(K) + tNk + tDp.

Then, using the fact that Ex = N /Dy, we obtain

Ne - Nx — Exe Be/tvol(K) . Nk
Dg Dy —e~Bx/tvol(K) ~ Dx’

which proves relation (1). Now we are ready to prove the lemma. Indeed, using Theorem 2 applied
to K and the linear function Tpy1, We get

XNH% [f(X)]—min f(x) = E;C—géi]g f(z) = (E,& —  min atn+1> +(Ex — Eg) < t(n+1)—t = tn.

1y ek (z,2n41)€ER
O

Theorem 3 (Main). Lete > 0,K C R? be a convez set of diameter D and {F(-,€)}¢ep be a family
of G-Lipschitz functions over K. For any data-set D and k > 0, sampling =P with probability
proportional to exp (—k (f(x; D) + pl|x(3/2)) is (e, 6(¢))-differentially private, where

5(e) < 6 </\/(0, I (%% 1)) (&),

The excess empirical risk is bounded by % + “TDQ.
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