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1 Differential privacy

Definition 1 ((ε, δ)-DP). A randomized mechanism M is (ε, δ)-differentially private if for any

neighboring databases D,D′ and any subset S ⊆ O (output space), one has

P[M(D) ∈ S] ≤ eεP
[
M
(
D′) ∈ S

]
+ δ.

We say D and D′ are neighboring databases if they agree on all the user inputs except for a single

user’s input.

For δ = 0, the ε-DP condition can be written as

1

eε
P
[
M
(
D′) ∈ S

]
≤ P[M(D) ∈ S] ≤ eεP

[
M
(
D′) ∈ S

]
.

A DP algorithm M usually satisfies a collection of (ε, δ)-DP guarantees for each ε, i.e., for each

ε ≥ 0, there exists a smallest δ for which M is (ε, δ)-DP. By collecting all of them together, we can

form the privacy curve or privacy profile that fully characterizes the privacy of a DP algorithm.

Definition 2 (Privacy Curve). Given two random variables X and Y supported on some set Ω,

define the privacy curve δ(X∥Y ) : R≥0 → [0, 1] as follows,

δ(X∥Y )(ε) = sup
S⊂Ω

Pr[Y ∈ S]− eε Pr[X ∈ S].

We say a differentially private mechanism M has privacy curve δ : R≥0 → [0, 1] if for every

ε ≥ 0,M is (ε, δ(ε))-differentially private, i.e., δ (M(D)∥M (D′)) (ε) ≤ δ(ε) for all neighbouring

databases D and D′.

We will also need the notion of tradeoff function, which is an equivalent way to describe the

privacy curve δ(P∥Q).

Definition 3 (Tradeoff function). Given two (continuous) distributions P and Q, we define the

tradeoff function T (P∥Q) : [0, 1] → [0, 1] as

T (P∥Q)(z) = inf
S:P (S)=1−z

Q(S).

The tradeoff function T (P∥Q) and the privacy curve δ(P∥Q) are related via convex duality.

Therefore to compare privacy curves, it is enough to compare tradeoff curves.

Lemma 1. We have

δ(P∥Q) ≤ δ
(
P ′∥Q′) iff T (P∥Q) ≥ T

(
P ′∥Q′) .
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2 Private convex optimization

Recall stochastic optimization is

min
x∈Q

{f(x) = Eξ[F (x; ξ)]},

and its sample average approximation is

f(x;D) =
1

n

n∑
i=1

F (x; ξi),

where D = {ξ1, . . . , ξn} is a database.

Here f(x;D) can be understood as the negative utility function −u(D; s), where x = s is the

output of a certain mechanism. We assume F (·; ξ) is convex and M -Lipschitz continuous, and Q

has a diameter D > 0.

We want to output a solution xpriv using a differentially private mechanism M such that we

minimize the excess empirical risk

EM
[
f
(
xpriv ;D

)]
− f (x∗;D) ,

where x∗ ∈ Q is the minimizer of f(x;D).

In the literature, it is shown that EM achieves the optimal excess empirical risk O
(
MDd
nε

)
under

ε-DP. On the other hand, it has also been shown that noisy gradient descent achieves an excess

empirical risk of

O

MD
√
d log 1

δ

nε


under (ε, δ)-DP, which is also shown to be optimal.

Note that the second bound only loses a bit in privacy (δ) but reduces the dependence of d in

the excess empirical risk from d to
√
d. It is natural to ask the question whether we can obtain

the optimal empirical risk under (ε, δ)-DP using EM. The answer is affirmative, but we need to

introduce a modified version of EM, that is the regularized exponential mechanism,

xpriv ∼ exp
(
−k
[
f(x;D) +

µ

2
∥x∥22

])
.

With a suitable choice of µ and k, we recover the optimal excess risk under (ε, δ)-DP.

EM is the task of sampling and the regularized EM is an instance of the restricted Gaussian

oracle that we have studied in proximal sampling. Since we have studied the non-asymptotic

convergence of sampling algorithms, we are ready to establish the excess empirical risk using the

regularized EM.
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3 Analysis

Theorem 1. Given convex set K ⊆ Rd and µ-strongly convex functions F and F̃ over K. Let P

and Q be distributions over K such that P (x) ∝ exp(−F (x)) and Q(x) ∝ exp(−F̃ (x)). If F̃ − F is

G-Lipschitz over K, then for all ε > 0, we have

δ(P∥Q)(ε) ≤ δ

(
N (0, 1)∥N

(
G
√
µ
, 1

))
(ε)

T (P∥Q)(z) ≥ T

(
N (0, 1)∥N

(
G
√
µ
, 1

))
(z).

This proves that the privacy curve for distinguishing between P and Q is upper bounded by

the privacy curve of a Gaussian mechanism with sensitivity G/
√
µ and noise scale 1 .

Theorem 2 (Kalai and Vempala). Let f(x) = cTx, where c is a unit vector, and let K ⊆ Rd be a

convex body. Then, for any t > 0, we have

E
X∼P 1

t f

[f(X)]−min
x∈K

f(x) ≤ nt.

Extension to an arbitrary convex function f .

Lemma 2 (Utility Guarantee). Suppose k > 0 and F is a convex function over a convex body

K ⊆ Rd. For the distribution ν(x) ∝ exp(−kf(x)), we have

E
ν
[f(x)] ≤ min

K
f(x) +

d

k
.

Proof. Define

EK := E
X∼P 1

t f

[f(X)] =

∫
K f(x)e−f(x)/tdx∫

K e−f(x)/tdx
.

It is clear that

min
x∈K

f(x) ≤ EK.

Define the set

K̂ :=
{
(x, xn+1) ∈ Rn+1 : x ∈ K, f(x) ≤ xn+1 ≤ EK

}
.

Then K̂ is a convex body, and we have

min
x∈K

f(x) = min
(x,xn+1)∈K̂

xn+1.

Accordingly, define the parameter

EK̂ :=

∫
K̂ xn+1e

−xn+1/tdxn+1dx∫
K̂ e−xn+1/tdxn+1dx

.
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Nextf, we show that

EK̂ = EK + t. (1)

To this end, set EK = NK/DK and EK̂ = NK̂/DK̂, where we define

NK :=
∫
K f(x)e−f(x)/tdx, DK :=

∫
K e−f(x)/tdx,

NK̂ :=
∫
K̂ xn+1e

−xn+1/tdxn+1dx, DK̂ :=
∫
K̂ e−xn+1/tdxn+1dx.

We work out the parameters NK̂ and DK̂ (taking integrations by part):

DK̂ =

∫
K

(∫ EK

f(x)
e−xn+1/tdxn+1

)
dx =

∫
K

(
te−f(x)/t − te−EK/t

)
dx = tDK − te−EK/t vol(K),

NK̂ =

∫
K

(∫ EK

f(x)
xn+1e

−xn+1/tdxn+1

)
dx =

∫
K

(
−tEKe

−EK/t + tf(x)e−f(x)/t + t

∫ EK

f(x)
e−xn+1/tdxn+1

)
dx

= −tEKe
−EK/t vol(K) + tNK + tDK̂.

Then, using the fact that EK = NK/DK, we obtain

NK̂
DK̂

= t+
NK − EKe

−EK/t vol(K)

DK − e−EK/t vol(K)
= t+

NK
DK

,

which proves relation (1). Now we are ready to prove the lemma. Indeed, using Theorem 2 applied

to K̂ and the linear function xn+1, we get

E
X∼P 1

t f

[f(X)]−min
x∈K

f(x) = EK−min
x∈K

f(x) =

(
EK̂ − min

(x,xn+1)∈K̂
xn+1

)
+
(
EK − EK̂

)
≤ t(n+1)−t = tn.

Theorem 3 (Main). Let ε > 0,K ⊆ Rd be a convex set of diameter D and {F (·, ξ)}ξ∈D be a family

of G-Lipschitz functions over K. For any data-set D and k > 0, sampling x(priv) with probability

proportional to exp
(
−k
(
f(x;D) + µ∥x∥22/2

))
is (ε, δ(ε))-differentially private, where

δ(ε) ≤ δ

(
N (0, 1)∥N

(
2G

√
k

n
√
µ

, 1

))
(ε).

The excess empirical risk is bounded by d
k + µD2

2 .

Revisiting Differential Privacy-4


	Differential privacy
	Private convex optimization
	Analysis

