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1 Wasserstein space

Recall from Lecture 8 that the Fokker-Planck equation is

∂ρt
∂t

= ∇ ·
(
ρt∇ log

ρt
ν

)
= ∇ · (ρt∇f) + ∆ρt. (1)

We also claimed that a variational perspective on (1) is that it is the gradient flow for minimizing

the relative entropy KL(·∥ν) in the space of probability distributions with the Wasserstein-2 metric.

The objective of this lecture is to develop necessary calculus to substantiate this claim, understand

the Wasserstein space, and analyze convergence along the Wasserstein gradient flow.

Background on Riemannian geometry A manifold M is a space that is locally homeo-

morphic to a Euclidean space. The tangent space TpM at p ∈ M is an associated vector space

containing all possible velocities (tangent bundle) of curves γ(t) passing through p. A Riemannian

metric is a choice of inner products p 7→ ⟨·, ·⟩p on the tangent spaces, denpending smoothly on p.

The Riemannian metric induces a distance function (in the sense of metric spaces) via

d(p, q) := inf

{∫ 1

0
∥γ̇(t)∥γ(t)dt | γ : [0, 1] → M, γ(0) = p, γ(1) = q

}
, (2)

where γ̇(t) ∈ Tγ(t)M denotes the tangent vector and ∥ · ∥γ(t) is induced by ⟨·, ·⟩γ(t). If the infimum

is achieved by a curve γ, then γ is referred to as a geodesic (a shortest path); if t 7→ ∥γ̇(t)∥γ(t) is
constant, then it is called a constant-speed geodesic. We say (M, d) is a Riemannian manifold.

Given a functional F : M → R, the gradient of F at p is defined to be the unique element

∇F(p) ∈ TpM such that for all curves (ρ(t))t∈R passing through p at time 0 with velocity v ∈ TpM
(i.e., ρ(0) = p and ρ′(0) = v), it holds that d

dtF (ρ(t)) |t=0 = ⟨∇F(p), v⟩p.
In the rest of the lecture, we consider a specific Riemannian manifold, namely the Wasserstein

space (P2(Rd),W2), and develop the differential calculus in the Wasserstein space.

To develop the analogy of W2 and metric, we would like to define a metric structure ⟨·, ·⟩ρ on

each tangent space TρP2, depending smoothly on ρ. This metric should define a norm ∥ ·∥ρ on each

TρP2 such that

W2(ρ0, ρ1)
2 = inf

{∫ 1

0

∥∥∥∥∂ρ∂t
∥∥∥∥2
ρ(t)

dt | ρ : [0, 1] → P2(Rd), ρ(0) = ρ0, ρ(1) = ρ1

}
,
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where the infimum is taken over all paths connecting ρ0 and ρ1.

A tangent vector v ∈ TρP2 is dρ
dt |t=0 where ρ(t) satisfies ρ(0) = ρ. From a fluid dynamics

perspective, we want to see the path ρ(t) as the time-evolving density of a set of particles moving

continuously from ρ0 to ρ1 with a velocity field ct(x), that is the velocity of a particle is uniquely

determined by its position. Now, we have the dynamics of the paticles

ẋt = ct(xt). (3)

We want to study the evolution of their law ρt(x) = ρ(t, x).

Lemma 1. The continuity equation of (3) is

∂ρt(x)

∂t
+∇ · (ρt(x)∇λ(x)) = 0

for some smooth function λ. The length of the tangent vector is given by∥∥∥∥∂tρ∂t
∥∥∥∥2
ρ(t)

= EX∼ρt [∥∇λ(X)∥2].

Proof. It follows from Theorem 1 of Lecture 8 that the continuity equaiton is

∂ρt
∂t

+∇ · (ρtct) = 0.

The velocity field ct is not unique: e.g., let w be a vector field with zero divergence (i.e., ∇·w = 0),

then c′t = ct + εw/ρt for ε ̸= 0 is also admissible since

∂ρt(x)

∂t
+∇ ·

[
ρt

(
ct + ε

w

ρt

)]
= 0. (4)

Among all possible vector fields, we want to select the one with lowest kinectic energy, if possible.

That is

inf
ct

1

2

∫
ρt(x)∥ct(x)∥2dx

s.t. −∇ · (ρt(x)ct(x)) =
∂ρt(x)

∂t

Approach 1: Consider the Lagrange function with multiplier λ(x)

inf
ct

1

2

∫
ρt(x)∥ct(x)∥2dx+

∫
λ(x)∇ · (ρt(x)ct(x))dx

= inf
ct

1

2

∫
ρt(x)∥ct(x)∥2dx−

∫
⟨∇λ(x), ct(x)⟩ρt(x)dx.

Wasserstein Space-2



The problem boils down to a pointwise minimization and gives

ct(x) = ∇λ(x). (5)

Approach 2: As in (4), ct + εw/ρt is a feasible solution. Assume that ct is a minimizing vector

field, then we have ∫
ρt∥ct∥2 ≤

∫
ρt

∥∥∥∥ct + ε
w

ρt

∥∥∥∥2
Using an limiting argument (i.e., ε → 0), we can show

0 =

∫
⟨ct, w⟩,

that is ct is orthoganal to the set of divergence-free vector fields. This means ct should be a gradient

∇λ, so that ∫
⟨ct, w⟩ =

∫
⟨∇λ,w⟩ =

∫
λ∇ · w = 0.

In both approaches, we prove that (5) holds for some smooth function λ. Moreover, the norm ∥ · ∥ρ
is given by the minimum kinetic engergy∥∥∥∥∂ρt∂t

∥∥∥∥2
ρ(t)

=

∫
ρt(x)∥ct(x)∥2dx = EX∼ρt [∥∇λ(X)∥2].

A sufficient condition for uniqueness is that ρt satisfies the Poincaré inequality. Standard results

on elliptic PDE assert the existence and uniqueness.

To sum up, one can write
W2

2 (ρ0, ρ1) = inf

{∫ 1
0

∥∥∥∂ρ
∂t

∥∥∥2
ρ(t)

dt | ρ : ρ(0) = ρ0, ρ(1) = ρ1

}
∥∥∥∂ρ
∂t

∥∥∥2
ρ
=
∫
ρ∥∇λ∥2, −∇ · (ρ∇λ) = ∂ρ

∂t .
(6)

This definition formally endows P2(Rd) a Riemannian metric structure. It comes from a differ-

ential formulation of optimal trasport.

2 Otto calculus

By polarization and the norm ∥ · ∥ρ, we can define the inner product of two tangent vectors ∂ρ
∂t1

∈
TpP2 and ∂ρ

∂t2
∈ TpP2: first, we know there exist smooth functions λ1 and λ2 satisfying

∂ρ

∂t1
= −∇ · (ρ∇λ1),

∂ρ

∂t2
= −∇ · (ρ∇λ2).
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Thus, we define ⟨·, ·⟩p as follows〈
∂ρ

∂t1
,
∂ρ

∂t2

〉
ρ

=
1

4

(∥∥∥∥ ∂ρ∂t1 +
∂ρ

∂t2

∥∥∥∥2
ρ

−
∥∥∥∥ ∂ρ∂t1 − ∂ρ

∂t2

∥∥∥∥2
ρ

)

=
1

4

(∫
ρ∥∇λ1 +∇λ2∥2dx−

∫
ρ∥∇λ1 −∇λ2∥2dx

)
=

∫
ρ⟨∇λ1,∇λ2⟩dx.

Given a functional F : P2(Rd) → R, the Wasserstein gradient of F at p is defined to be the

unique element gradWF(p) ∈ TpP2 such that for all curves (ρ(t))t∈R passing through p at time 0

with velocity v ∈ TpP2 (i.e., ρ(0) = p and ρ′(0) = v), it holds that

d

dt
F (ρ(t)) |t=0 = ⟨gradWF(p), v⟩p. (7)

Definition 1. The first variation of F : P2(Rd) → R evaluated at ρ ∈ P2(Rd) is a function
δF
δρ : Rd → R that satisfies the following for all ν ∈ P2(Rd) ,

lim
ε→0

F(ρ+ ε(ν − ρ))−F(ρ)

ϵ
=

〈
δF
δρ

, ν − ρ

〉
L2(Rd)

=

∫
Rd

δF
δρ

(x) (ν(x)− ρ(x))dx .

Lemma 2. The Wasserstein gradient of F is

gradWF(p) = −∇ ·
(
p∇δF

δp

)
. (8)

Proof. Let p ∈ P2(Rd) be given and consider a smooth curve ρ(t) satisfying ρ(0) = p and ρ′(0) = v

for some v ∈ TpP2. Since gradWF(p) ∈ TpP2, we know there exist smooth functions f and λ solving

the following continuity equaitons

gradWF(p) = −∇ · (p∇f), v = −∇ · (p∇λ). (9)

On the one hand, by the definition of inner production ⟨·, ·⟩p, we have

⟨gradWF(p), v⟩p =
∫
⟨∇f,∇λ⟩pdx.

On the other hand, by definitions and integration by parts, we have

d

dt
F(ρ(t))|t=0 = lim

t→0

F(p+ tv)−F(p)

t
=

〈
δF
δp

, v

〉
L2

=

∫
δF(p)

δp
(x)v(x)dx =

∫
δF
δp

[−∇ · (p∇λ)]dx

=

∫ 〈
∇δF

δp
,∇λ

〉
pdx.
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In view of the definition of Wasserstein gradient (7), comparing the above two equations and noting

v (and ∇λ) is arbitrary, we must have

∇f = ∇δF
δp

.

Plugging the above identity into (9), we prove (8).

Examples of Wasserstein gradients

1) Negative entropy F(ρ) = −H(ρ) =
∫
ρ log ρ,

δF
δρ

= 1 + log ρ, gradWF(ρ) = −∇ ·
(
ρ∇δF

δρ

)
= −∇ · (ρ∇ log ρ) = −∆ρ,

then the Wasserstein gradient flow of entropy is the heat equation

∂ρt
∂t

= −gradWF(ρt) = ∆ρt.

2) KL divergence (relative entropy) F(ρ) = KL(ρ ∥ ν) = Hν(ρ) =
∫
ρ log ρ

ν ,

δF
δρ

= 1+log ρ−log ν, gradWF(ρ) = −∇·
(
ρ∇δF

δρ

)
= −∇·(ρ∇ log ρ− ρ∇ log ν) = −∆ρ−∇·(ρ∇f),

then the Wasserstein gradient flow of KL divergence is the Fokker-Planck equation

∂ρt
∂t

= −gradWF(ρt) = ∆ρt +∇ · (ρt∇f).

3) In general, consider three basic kinds of energies, F = U + V +W, where

– internal energy U(ρ) =
∫
U(ρ(x))dx;

– potential energy V(ρ) =
∫
V (x)ρ(x)dx;

– interaction energy W(ρ) = 1
2

∫
W (x− y)ρ(x)ρ(y)dxdy.

δW
δρ

=

∫
W (· − y)ρ(y)dy = W ∗ ρ, −gradWW(ρ) = ∇W ∗ ρ.

Then the Wasserstein gradient flow is

∂ρt
∂t

= −gradWF(ρt) = ∇ ·
[
ρt∇U ′(ρt) + ρt∇V + ρt(ρt ∗ ∇W )

]
.
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3 Geodesic convexity

From our construction, W2 is the geodesic length associated to the Riemannian structure (6). The

geodesic is the McCann’s displacement interpolation: given ρ0 and ρ1, the geodesic joining them is

ρt = [(1− t)Id + t∇φ]#ρ0

where φ is a convex function and ∇φ is the optimal map in the Monge-Kantorovich problem from

ρ0 to ρ1, i.e., ∇φ#ρ0 = ρ1. The corresponding particles evolve as follows

Xt = (1− t)X0 + tX1.

Thus, ∥∥∥∥∂ρt∂t

∥∥∥∥2
ρ(t)

= E[∥∇λ(X)∥2] = E[∥ct(X)∥2] = E[∥Ẋt∥2] = E[∥X1 −X0∥2] = W2
2 (ρ0, ρ1)

does not depend on time. So t 7→ ρt is a constant speed geodesic and W2(ρ0, ρt) = tW2(ρ0, ρ1).

Moreover, we have

c0(x) = ∇φ(x)− x, ct = c0 ◦ T−1
t ,

where Tt = (1 − t)Id + t∇φ. This can be understood from both the Eulerian and Lagrangian

perspectices: ct(x) is Eulerian, can be visualized by sitting on the bank of a river and watching the

water pass the fixed location; [c0 ◦T−1
t ](x) is Lagrangian, can be visualized as sitting in a boat and

drifting down a river. The velocity at x at t is the same as that of the particle starting from some

x(0) = X0 passing x(t) = x.

Over a Riemannian manifold M, the correct way to define convexity is as follows. Let M be

a Riemannian manifold and let F be a smooth functional over M. For α ∈ R, we say that F is

α-geodesically convex if one of the following equivalent conditions hold:

1. For all geodesics (pt)t∈[0,1] and t ∈ [0, 1],

F (pt) ≤ (1− t)F (p0) + tF (p1)−
αt(1− t)

2
d (p0, p1)

2 ,

where d(·, ·) is the induced Riemannian distance (2).

2. For all p, q ∈ M,

F(q) ≥ F(p) +
〈
gradF(p), logp(q)

〉
p
+

α

2
d(p, q)2. (10)

Here, grad denotes the Riemannian gradient and logp(q) denotes the logarithmic map logp :

M : TpM taking q to the tanget vector v ∈ TpM along which the endpoint at time 1 of the

constant-speed gedesic starting from p is q. In particular, we have

logρ0(ρ1) = −∇ · (ρ0(∇φ− Id)).
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3. For all constant-speed geodesics (pt)t∈[0,1] with tangent vector v0 ∈ Tp0M at time 0, it holds

that

∂2
tF (pt)

∣∣
t=0

= ⟨HessF(p0)v0 , v0⟩p0 ≥ α ∥v0∥2p0 . (11)

4 Transport inequalities

Theorem 1. ν ∝ exp(−f) and f is α-strongly convex, then KL(·|ν) is α-geodesically convex along

Wasserstein geodesics.

Proof. This is a well-known result. See for example page 48 of Sinho’s book for the proof.

Theorem 2. ν ∝ exp(−f) and f is α-strongly convex, then for all ρ0, ρ1 ∈ P2(Rd),

KL(ρ1 ∥ ν) ≥ KL(ρ0 ∥ ν) + Eρ0

[〈
∇ log

ρ0(x)

ν(x)
, ∇φ(x)− x

〉]
+

α

2
W2

2 (ρ0, ρ1) (12)

where ∇φ#ρ0 = ρ1.

Proof. It follows from Theorem 1 the definition of geodesic convexity (10) that

KL(ρ1 ∥ ν) ≥ KL(ρ0 ∥ ν) +
〈
gradWKL(ρ0 ∥ ν), logρ0(ρ1)

〉
ρ0

+
α

2
W2

2 (ρ0, ρ1),

which can be reformulated to (12).

Taking ρ0 = ρ and ρ1 = ν in (12), we have the HWI inequality

KL(ρ ∥ ν) ≤ W2(ρ, ν)
√

FI(ρ ∥ ν))− α

2
W2

2 (ρ, ν).

Clearly, the above inequality and the Cauchy-Schwarz inequality imply that

KL(ρ ∥ ν) ≤ W2(ρ, ν)
√
FI(ρ ∥ ν))− α

2
W2

2 (ρ, ν) ≤
1

2α
FI(ρ|ν).

Hence, the HWI inequality implies LSI, so we prove that if ν is α-SLC then ν satisfies α-LSI.

Actually, we have a more general inequality than HWI, i.e.,

KL(ρ0 ∥ ν) ≤ KL(ρ1 ∥ ν) +W2(ρ0, ρ1)
√
FI(ρ0|ν))−

α

2
W2

2 (ρ0, ρ1).

Taking ρ1 = ν, we recover HWI. Taking ρ0 = ν, we recover the Talagrand inequality (α-TI)

W2
2 (ρ, ν) ≤

2

α
KL(ρ ∥ ν).

If ν is log-concave and satisfies λ-TI, then ν also satisfies (λ/4)-LSI. Indeed, it follows from

HWI with α = 0

KL(ρ ∥ ν) ≤ W2(ρ, ν)
√

FI(ρ ∥ ν)) ≤
√

2

λ
KL(ρ ∥ ν)

√
FI(ρ ∥ ν)),
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so

KL(ρ ∥ ν) ≤ 2

λ
FI(ρ ∥ ν).

Optimization inequalities correspondence

Consider optimization in a smooth Riemannian manifold with an objective function f : M → R,
we have the following conditions guaranteeing exponential convergence:

(1) f is α-strongly convex: ∀x ∈ M, Hessx f ⪰ αI, i.e., (Hessx f) (v, v) ≥ α∥v∥2x for all v ∈ TxM;

(2) f is α-gradient dominant: ∀x ∈ M, ∥gradx f∥
2
x ≥ 2α(f(x)−min f);

(3) f is α-sufficient growth: ∀x ∈ M, f(x)−min f ≥ α
2d(x, x∗)

2.

The relationship among the three inequalities is (1) =⇒ (2) =⇒ (3).

In the setting of Wasserstein space (M, d) = (P2(Rd),W2) and the objective functional being

the KL divergence KL(· ∥ ν), we have corresponding functional/transport inequalities

(a) ν is α-strongly logconcave, i.e., (11);

(b) ν satisfies α-LSI: ∀ρ ∈ P2(Rd), FI(ρ ∥ ν) ≥ 2αKL(ρ ∥ ν);

(c) ν satisfies α-TI: ∀ρ ∈ P2(Rd), KL(ρ ∥ ν) ≥ α
2W

2
2 (ρ, ν).

The same relationship also holds for the three transport inequalities: (a) =⇒ (b) =⇒ (c).

5 New convergence analysis

Now we have develop enough mathematics for Wasserstein space. We would like to study the con-

vergence along Langevin dynamics from the Wasserstein gradient flow perspective. The following

result is the same as Lemma 3 and Theorem 3 of Lecture 8, while we present a simpler derivation

of the de Bruijn’s identity.

Theorem 3. Along the Langevin dynamics, we have the de Bruijn’s identity

d

dt
KL (ρt ∥ ν) = −FI(ρt ∥ ν).

If ν satisfies α-LSI, we have

KL (ρt ∥ ν) ≤ e−2αtKL (ρ0 ∥ ν) .

Proof. We know that the Fokker-Planck equation is the continuity equation of the Langevin dy-

namic. Moreover, we have shown that the Fokker-Planck equation is also the Wasserstein gradient

flow of KL divergence
∂ρt
∂t

= ∆ρt +∇ · (ρt∇f) = −gradWKL(ρt).
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Hence, we have

d

dt
KL (ρt ∥ ν) =

〈
gradWKL(ρt ∥ ν),

∂ρt
∂t

〉
ρt

= −∥gradWKL(ρt ∥ ν)∥2ρt

= −Eρt

[∥∥∥∇ log
ρt
ν

∥∥∥2] = −FI(ρt ∥ ν).

The rest of the proof follows that of Theorem 3 of Lecture 8.

Lemma 3. Given ν ∈ P2(Rd), the Wasserstein gradient of ρ 7→ W2
2 (ρ, ν) is −2 logρ(ν). In general,

on a Riemannian manifold, the gradient of d(·, q)2 at p is −2 logp(q).

Theorem 4. If ν is log-concave, then along the Langevin dynamics, we have

KL (ρt ∥ ν) ≤
W2

2 (ρ0, ν)

2t
. (13)

Proof. Recall from Theorem 2 that

KL(ρ1 ∥ ν) ≥ KL(ρ0 ∥ ν) +
〈
gradWKL(ρ0 ∥ ν), logρ0(ρ1)

〉
ρ0

+
α

2
W2

2 (ρ0, ρ1).

Taking ρ0 = ρt, ρ1 = ν, and α = 0, we have〈
gradWKL(ρt ∥ ν), logρt(ν)

〉
ρt

≤ −KL (ρt ∥ ν) . (14)

Consider a Lyapunov functional Lt := tKL (ρt|ν) + 1
2W

2
2 (ρt, ν). Taking time derivative gives

∂

∂t
Lt = KL (ρt ∥ ν)− tFI (ρt ∥ ν) +

〈
∂ρt
∂t

, − logρt(ν)

〉
ρt

= KL (ρt ∥ ν)− tFI (ρt ∥ ν) +
〈
gradWKL(ρt ∥ ν), logρt(ν)

〉
ρt

≤ −tFI (ρt ∥ ν) ≤ 0

where the first inequality is due to (14). Therefore, Lt ≤ L0 and (13) holds.

We provide a convergence guarantee of the proximal sampling algorithm in Lecture 9 for the

log-concave case, which closely resembles the convergence of proximal point method in optimization

for convex functions.

Theorem 5. If ν is log-concave, then ρXk of the proximal sampling algorithm satisfies

KL
(
ρXk ∥ ν

)
≤ W2

2 (ρ
X
0 , ν)2

kη
.
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Proof. Since νt is log-concave (log-concavity is preserved by convolution), we have HWI inequality

KL(ρt ∥ νt) ≤ W2(ρt, νt)
√

FI(ρt ∥ νt).

It follows from Lemma 3 of Lecture 9 and the above HWI inequality that

d

dt
KL(ρt ∥ νt) = −1

2
FI(ρt ∥ νt) ≤ −1

2

KL(ρt ∥ νt)2

W2
2 (ρt, νt)

≤ −1

2

KL(ρt ∥ νt)2

W2
2 (ρ0, ν0)

= −1

2

KL(ρt ∥ νt)2

W2
2 (ρ

X
k , πX)

,

where the last inequality is due to the fact that W2 contraction along heat flow (proof by coupling).

Solving this differential inequality yields

1

KL(ρYk ∥ πY )
=

1

KL(ρη ∥ νη)
≥ 1

KL(ρXk ∥ πX)
+

η

2W2
2 (ρ

X
k , πX)

. (15)

For the backward process, we similarly have

d

dt
KL(ρ−t ∥ ν−t ) = −1

2
FI(ρ−t ∥ ν−t ) ≤ −1

2

KL(ρ−t ∥ ν−t )2

W2
2 (ρ

−
t , ν

−
t )

.

Recall from Lecture 9 that the backward channel can be modeled by the following SDE

dYt = ∇ log νη−t(Yt)dt+ dWt. (16)

Since log νη−t is log-concave, by a coupling argument, we can show t 7→ W2
2 (ρ

−
t , ν

−
t ) is descreasing.

Thus,

W2
2 (ρ

−
t , ν

−
t ) ≤ W2

2 (ρ
−
0 , ν

−
0 ) = W2

2 (ρ
Y
k , π

Y ) ≤ W2
2 (ρ

X
k , πX).

Therefore, we obtain

1

KL(ρXk+1 ∥ πX)
=

1

KL(ρ−η ∥ ν−η )
≥ 1

KL(ρYk ∥ πY )
+

η

2W2
2 (ρ

X
k , πX)

.

Combining the above inequality and (15), we have

1

KL(ρXk+1 ∥ πX)
≥ 1

KL(ρXk ∥ πX)
+

η

W2
2 (ρ

X
k , πX)

≥ 1

KL(ρXk ∥ πX)
+

η

W2
2 (ρ

X
0 , πX)

,

i.e.,
1

KL(ρXk+1 ∥ ν)
≥ 1

KL(ρXk ∥ ν)
+

η

W2
2 (ρ

X
0 , ν)

.

Summing the above inequality over iterations, we arrive at

1

KL(ρXk ∥ ν)
≥ 1

KL(ρX0 ∥ ν)
+

kη

W2
2 (ρ

X
0 , ν)

≥ kη

W2
2 (ρ

X
0 , ν)

.
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6 Revisiting proximal sampling

Recall that sampling from ν ∝ exp(−f) can be understood as minimizing KL(· ∥ ν) over R2(Rd).

Because the Fokker-Planck equation is the Wasserstein gradient flow of KL divergence, in the

language of numerical methods, the Langevin dynamics (and hence LMC) can be viewed as an

explicit scheme. As we know explicit schemes are less stable than implicit schemes, and an example

in optimization is gradient descent versus proximal point method. In sampling, the implicit scheme

is known as the JKO scheme, which repeatedly invokes the proximal operator over the Wasserstein

space

ρk+1 = proxηF (ρk) = argmin
ρ∈P2(Rd)

{
F(ρ) +

1

2η
W2

2 (ρk, ρ)

}
.

Hence, the JKO scheme is a Wasserstein analogue of the proximal point method.

We revisit the proximal sampling algorithm in Lecture 9 from this variational perspective. The

first result shows that RGO is a proximal operator on the Wasserstein space.

Lemma 4. Recall RGO is a sampling oracle for given y ∈ Rd that returns x ∼ πX|Y (x|y) where

πX|Y (x | y) ∝ exp

(
−f(x)− 1

2η
∥x− y∥2

)
.

Then, RGO is a proximal operator of KL divergence, i.e.,

πX|Y=y = proxηKL(·∥πX) (δy) .

Proof. Since πX(x) = ν(x) ∝ exp(−f(x)), we know

πX|Y (x | y) ∝ exp

(
− 1

2η
∥x− y∥2

)
πX(x).

Also, note that

KL(ρX ∥ πX|Y ) =

∫
ρX log

ρX

πX|Y =

∫
ρX
(
log

ρX

πX
+

1

2η
∥x− y∥2

)
+ C(y)

= KL(ρX ∥ πX) +

∫
ρX

1

2η
∥x− y∥2 + C(y),

where C(y) is a function of y. Then, RGO can be expressed as

πX|Y=y = argmin
ρX∈P2(Rd)

KL(ρX ∥ πX|Y ) = argmin
ρX∈P2(Rd)

{
KL(ρX ∥ πX) +

1

2η

∫
∥x− y∥2dρX(x)

}

= argmin
ρX∈P2(Rd)

{
KL(ρX ∥ πX) +

1

2η
W2

2

(
ρX , δy

)}
= proxηKL(·∥πX) (δy) .

Wasserstein Space-11



A variant of the JKO scheme introduces an extra entropic regularization term

ρk+1 = argmin
ρ∈P2(Rd)

{
F(ρ) +

1

2η
W2

2,ε (ρk, ρ)

}
where W2,ϵ is the entropy-regularized Wasserstein-2 distance defined as

W2
2,ϵ(µ, ν) := min

γ∈Γ(µ,ν)

{∫
∥x− y∥2γ(x, y)dxdy − εH(γ)

}
(17)

and H(γ) = −
∫
γ log γ denotes the entropy.

The next result shows that the proximal sampling algorithm can be viewed as the entropy-

regularized JKO scheme.

Theorem 6. Let ρXk , ρYk , ρ
X
k+1 be the distributions of xk, yk, xk+1, respectively, in one iteration of

the proximal sampling algorithm. Then, they follow the entropy-regularized JKO scheme

ρYk = argmin
ρ∈P2(Rd)

1

2η
W2

2,2η

(
ρXk , ρ

)
, (18)

ρXk+1 = argmin
ρ∈P2(Rd)

{∫
fρ+

1

2η
W2

2,2η

(
ρYk , ρ

)}
. (19)

Proof. Plugging (17) into the right-hand side of (18) gives a solution γY with γ being the solution

to

min
γ∈P2(Rd×Rd)

γX=ρXk

{∫
1

2η
∥x− y∥2γ(x, y)dxdy − H(γ)

}
.

Consider the Lagrangian function∫
1

2η
∥x− y∥2γ(x, y)dxdy − H(γ) +

∫
λ(x)[γX(x)− ρXk (x)]dx

=

∫
1

2η
∥x− y∥2γ(x, y)dxdy − H(γ) +

∫
λ(x)[γ(x, y)− ρXk (x)]dxdy

Taking the first variation yields

1

2η
∥x− y∥2 + 1 + log γ + λ(x) = 0.

So

γ(x, y) ∝ exp

(
− 1

2η
∥x− y∥2 − λ(x)

)
,

and the X-marginal is γX ∝ exp(−λ(x)). On the other hand, from the constraint, we know

γX = ρXk . So

γ(x, y) ∝ exp

(
− 1

2η
∥x− y∥2

)
ρXk (x)
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and γY = ρXk ∗ N (0, ηI) = ρYk . Thus, we verify (18).

Similarly, plugging (17) into the right-hand side of (19) gives a solution γX with γ being the

solution to

argmin
γ∈P2(Rd×Rd)

γY =ρYk

{∫ [
f(x) +

1

2η
∥x− y∥2

]
γ(x, y)dxdy − H(γ)

}
.

Clearly, γ(x, y) ∝ ρYk (y) exp
(
−f(x)− 1

2η∥x− y∥2
)
. Hence, the X-marginal γX has the same dis-

tribution as ρXk+1. We thus complete the proof.

The above interpretation of the proximal sampling algorithm provides some insights on its

connections to optimization. Define a more general proximal sampling algorithm with a different

level of entropy regularization

ρYk = argmin
ρ∈P2(Rd)

1

2η
W2

2,2ηε

(
ρXk , ρ

)
, (20)

ρXk+1 = argmin
ρ∈P2(Rd)

{∫
fρ+

1

2η
W2

2,2ηε

(
ρYk , ρ

)}
. (21)

The next result reveals the well-known fact that optimization is the limit of sampling on the

particular example of proximal sampling and optimization.

Theorem 7. As ε → 0, (20) and (21) reduce to the proximal point method in optimization.

Proof. Following a similar argument as in the proof of Theorem 6, we can show that (20)-(21)

correspond to the following proximal sampling

yk ∼ πY |X=xk
ε = N (xk, εηI) ,

xk+1 ∼ πX|Y=yk
ε ∝ exp

[
−1

ε

(
f(x) +

1

2η
∥x− yk∥2

)]
.

As ε → 0, the above steps becomes to

yk = xk,

xk+1 = argmin
x∈Rd

{
f(x) +

1

2η
∥x− yk∥2

}
.

Putting them together, we have xk+1 = proxηf (xk), i.e., the proximal point method.

We finally note that the stationary distribution of the new proximal sampling algorithm (20)-

(21) is πX
ε ∝ exp(−f/ε), which converges (as ε → 0) to a Dirac distribution concentrating on the

minimizer of f (or a uniform distribution over the minimizer set of f).
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