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Introduction

Consider convex hybrid composite optimization (HCO) problem

ϕ∗ := min {ϕ(x) := f(x) + h(x) : x ∈ Rn} ,

where f, h : Rn → R ∪ {+∞} are proper lower semi-continuous convex functions
and h has a simple proximal mapping.
empty line
Complexities of first-order methods for obtaining an ε-solution to HCO:

f is L-smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, for every x, y ∈ domh,
by the Nesterov’s accelerated gradient method, O(

√
Ld0/

√
ε)

f is M-Lipschitz continuous, i.e., ∥f ′(x)∥ ≤M , for every x ∈ domh, by the
subgradient method, O(M2d20/ε

2)

empty line
What if for some α ∈ (0, 1), f has α-Hölder continuous gradient, namely, for
every x, y ∈ domh, ∥∇f(x)−∇f(y)∥ ≤ Lα∥x− y∥α?
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Universal methods

Universal fast gradient in (Nesterov, 2015)
Accelerated bundle-level and accelerated prox-level in (Lan, 2015)
Without knowing/using any of the parameters α and Lα, the above methods
have complexity

Õ

((
d1+α
0 Lα

ε̄

) 2
1+3α

)
Universal primal gradient (UPG) in (Nesterov, 2015), which is an adaptive
subgradient method, has complexity

Õ

((
d1+α
0 Lα

ε̄

) 2
1+α

)

empty line
What if ϕ = f + h is µ-strongly convex? What is the complexity of UPG?

3 / 27



µ-universal methods

We are interested in parameter-free methods whose complexities for solving HCO
are expressed in terms of µ and term them as µ-universal method.
empty line
(Liang and Monteiro, 2024) shows that UPG is µh-universal, but it is not known if
it is µ-universal.
empty line
µ can be substantially larger than µf + µh (e.g., for α≫ 0, f(x) = α exp(x), and
h(x) = α exp(−x), we have µ = 2α≫ 0 = µf + µh)
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By a slight generalization of UPG, we can show it is µ-universal.
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Comparison with µ-universal methods

Smooth
Papers concerned with function values

restart based on estimate of µ: (Nesterov, 2013) and (Fercoq and Qu, 2019)
assuming ϕ∗ is known: (Renegar and Grimmer, 2022)

Papers concerned with stationary points
restart based on estimate of µ: (Alamo, Krupa, and Limon, 2019), (Aujol,
Dossal, Labarrière, and Rondepierre, 2022), and (Lan, Ouyang, and Zhang,
2023)
assuming ϕ∗ is known: (Aujol, Dossal, and Rondepierre, 2023)

empty line
Non-smooth
Assuming ϕ∗ is known: (Renegar and Grimmer, 2022) and (Grimmer, 2023)
empty line
In contrast, our generalization of UPG is µ-universal. Both functional and
stationary complexity bounds. No restart scheme, no prior knowledge of ϕ∗.
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Overview

We present two µ-universal methods: universal composite subgradient
(U-CS) and univesal proximal bundle (U-PB)
empty line
We establish both functional and stationary complexity bounds for U-CS and
U-PB
empty line
Both methods are analyzed in a unified manner using a general framework for
strongly convex optimization, denoted by FSCO
empty line
No line-search/restart based on estimate of µ
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Outline

1 Framework for strongly convex optimization

2 Universal composite subgradient

3 Universal proximal bundle
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FSCO

FSCO is presented in the context of strongly convex optimization problem

ϕ∗ := min {ϕ(x) : x ∈ Rn}

where ϕ ∈ Convµ (Rn), i.e., ϕ is µ-strongly convex.

Algorithm FSCO
1. Let χ ∈ [0, 1), ε > 0, and x̂0 ∈ domϕ be given, and set k = 1;
2. Compute λk > 0, Γ̂k ∈ Conv (Rn), Γ̂k ≤ ϕ, and ŷk ∈ domϕ satisfying

ϕ(ŷk) +
χ

2λk
∥ŷk − x̂k−1∥2 − min

u∈Rn

{
Γ̂k(u) +

1

2λk
∥u− x̂k−1∥2

}
≤ ε,

and set x̂k := argmin
u∈Rn

{
Γ̂k(u) +

1

2λk
∥u− x̂k−1∥2

}
;

3. Check whether a termination criterion holds and if so stop; else go to step 4;
4. Set k ← k + 1 and go to step 2.
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Complexity analysis – function value

Assumptions
(F1) there exists ν ∈ [0, µ] such that Γ̂k ∈ Convν (Rn);
(F2) there exists λ > 0 such that λk ≥ λ for every iteration k of the FSCO.

Theorem
For a given tolerance ε̄ > 0, consider FSCO with ε = (1−χ)ε̄/2, where χ ∈ [0, 1).
Then, the number of iterations of FSCO to generate a ε̄-solution is at most

Cfunc(ε̄) := min

{
min

[
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

]
log

(
1 +

λ0µd
2
0

λε̄

)
,
d20
λε̄

}
.
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Complexity analysis – stationary point

Theorem
For a given tolerance pair (ε̂, ρ̂) ∈ R2

++, FSCO with

χ ∈ (0, 1), ε =
χ(1− χ)ε̂

10
,

generates a triple (ȳk, s̄k, ε̄k) satisfying

s̄k ∈ ∂ϕε̄k(ȳk), ∥s̄k∥ ≤ ρ̂, ε̄k ≤ ε̂

in at most

min

{
min

[
1

χ

(
1 +

1

λµ

)
, 1 +

1

λν

]
log [1 + λ0µβ(ε̂, ρ̂)] , β(ε̂, ρ̂)

}
iterations where

β(ε̂, ρ̂) =
1

λ

(
4χε̂

5ρ̂2
+

5d20
χε̂

)
.
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Outline

1 Framework for strongly convex optimization

2 Universal composite subgradient

3 Universal proximal bundle
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U-CS
Assumptions

(A1) h ∈ Convν (Rn) for some 0 ≤ ν ≤ µ;
(A2) f ∈ Conv (Rn) is such that domh ⊂ dom f , and has a subgradient oracle;
(A3) there exists (Mf , Lf ) ∈ R2

+ such that for every x, y ∈ domh,
∥f ′(x)− f ′(y)∥ ≤ 2Mf + Lf∥x− y∥.

α-Hölder continuous gradient implies (A3) (Liang and Monteiro, 2024)

Algorithm U-CS

1. Let x̂0 ∈ domh, χ ∈ [0, 1), λ0 > 0, and ε > 0 be given, and set λ = λ0 and
j = 1;
2. Compute

x = argmin
u∈Rn

{
ℓf (u; x̂j−1) + h(u) +

1

2λ
∥u− x̂j−1∥2

}
;

3. If f(x)− ℓf (x; x̂j−1)− (1−χ)∥x− x̂j−1∥2/(2λ) ≤ ε does not hold, then set
λ = λ/2 and go to step 2; else, go to step 4;
4. Set λj = λ, x̂j = x, j ← j + 1, and go to step 2.
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U-CS as an instance of FSCO

Proposition

The following statements hold for U-CS:
a) {λk} is a non-increasing sequence;
b) for every k ≥ 1, we have

x̂k = argmin
u∈Rn

{
ℓf (u; x̂k−1) + h(u) +

1

2λk
∥u− x̂k−1∥2

}
,

f(x̂k)− ℓf (x̂k; x̂k−1) +
χ− 1

2λk
∥x̂k − x̂k−1∥2 ≤ ε,

λk ≥ λ(ε) := min

 (1− χ)ε

4
(
M

2

f + εLf

) , λ0

 .

c) U-CS is a special case of FSCO where:
i) ŷk = x̂k and Γ̂k(·) = ℓf (·; x̂k−1) + h(·) for every k ≥ 1;
ii) assumptions (F1) and (F2) are satisfied with λ = λ(ε) and ν from assumption

(A3).
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Complexity analysis – function value

Theorem
Let ε̄ > 0 be given and consider U-CS with ε = (1− χ)ε̄/2, where χ ∈ [0, 1) is as
in step 0 of U-CS. Then, the number of iterations of U-CS to generate an iterate
x̂k satisfying ϕ(x̂k)− ϕ∗ ≤ ε̄ is at most

min

{
min

[
1

χ

(
1 +

Qf (ε̄)

µε̄

)
, 1 +

Qf (ε̄)

νε̄

]
log

(
1 +

λ0µQf (ε̄)d
2
0

ε̄2

)
,
d20Qf (ε̄)

ε̄2

}
+

⌈
2 log

λ0Qf (ε̄)

ε̄

⌉
where

Qf (ε̄) =
8M

2

f

(1− χ)2
+ ε̄

(
λ−1
0 +

8Lf

(1− χ)2

)
U-CS: Õ(d20(M

2

f + ε̄Lf )/ε̄
2) UPG: Õ

(
d20(Lα/ε̄)

2
α+1

)
By (Liang and Monteiro, 2024), we know M

2

f + ε̄Lf ≤ 2ε̄
2α

α+1L
2

α+1
α , so U-CS has

a better complexity.
15 / 27



Complexity analysis – stationary point

Recall a (ρ̂, ε̂)-stationary solution is a triple (ȳk, s̄k, ε̄k) such that

s̄k ∈ ∂ϕε̄k(ȳk), ∥s̄k∥ ≤ ρ̂, ε̄k ≤ ε̂.

For U-CS, we define

ȳk = argmin{ϕ(y) : y ∈ {x̂1, . . . , x̂k}},

s̄k =
x̂0 − x̂k

Sk
, ε̄k =

∥x̂0 − ȳk∥2 − ∥x̂k − ȳk∥2

2Sk
+

ε

1− χ
.
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Complexity analysis – stationary point

Theorem
For a given tolerance pair (ρ̂, ε̂) ∈ R2

++, consider U-CS with χ ∈ [0, 1) and
ε = (1− χ)ε̂/6. Then for every k ≥ 1, U-CS generates a (ρ̂, ε̂)-stationary solution
(ȳk, s̄k, ε̄k) within a number of iterations bounded by

min

{
min

[
1

χ

(
1 +

Qs(ε̂)

µε̂

)
, 1 +

Qs(ε̂)

νε̂

]
logC(ε̂, ρ̂) ,

4Qs(ε̂)

ε̂

(
ε̂

3ρ̂2
+

d20
ε̂

)}
+

⌈
2 log

λ0Qs(ε̂)

ε̂

⌉
where

C(ε̂, ρ̂) = 1+
4λ0µQs(ε̂)

ε̂

(
ε̂

3ρ̂2
+

d20
ε̂

)
, Qs(ε̂) =

24M
2

f

(1− χ)2
+ε̂

(
1

λ0
+

24Lf

(1− χ)2

)
.

17 / 27



Outline

1 Framework for strongly convex optimization

2 Universal composite subgradient

3 Universal proximal bundle
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Review of the proximal bundle method
Approximately solve the proximal problem

x̂ := argmin

{
f(x) + h(x) +

1

2λ
∥x− xc∥2

}
by an iterative process

xj ← min

{
fj(x) + h(x) +

1

2λ
∥x− xc∥2

}
.

empty line
Recursively build up a cutting-plane model

fj(x) = max
0≤i≤j−1

{ℓf (x;xi) := f(xi) + ⟨f ′(xi), x− xi⟩}
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U-PB

Algorithm U-PB
1. Let x̂0 ∈ domh, λ1 = λ > 0, χ ∈ [0, 1), ε > 0, and integer N ≥ 1 be given,
and set y0 = x̂0, N = 0, j = 1, and k = 1. Find f1 ∈ Conv(Rn) such that
ℓf (·; x̂0) ≤ f1 ≤ f ;
2. Compute

xj = argmin
u∈Rn

{
(fj + h)(u) +

1

2λ
∥u− x̂k−1∥2

}
;

3. Choose yj ∈ {xj , yj−1} such that

yj = argmin
{
ϕ(x) +

χ

2λ
∥x− x̂k−1∥2 : x ∈ {xj , yj−1}

}
,

and set N = N + 1 and

tj = ϕ(yj) +
χ

2λ
∥yj − x̂k−1∥2 −

(
(fj + h)(xj) +

1

2λ
∥xj − x̂k−1∥2

)
;
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U-PB (continued)

Algorithm U-PB (continued)

4. If tj > ε and N < N then
perform a null update, i.e.: set fj+1 = BU(x̂k−1, xj , fj , λ);

else
if tj > ε and N = N

perform a reset update, i.e., set λ← λ/2;
else (i.e., tj ≤ ε and N ≤ N)

perform a serious update, i.e., set x̂k = xj , Γ̂k = fj + h, ŷk = yj ,
λk = λ, and k ← k + 1;

end if
set N = 0 and find fj+1 ∈ Conv(Rn) such that ℓf (·; x̂k−1) ≤ fj+1 ≤ f ;

end if
5. Set j ← j + 1 and go to step 2.

Note: iteration limit N and adaptive scheme in λ.
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Complexity analysis – functional value

Similarly to U-CS, U-PB can be shown as another instance of FSCO.

Theorem
Given tolerance ε̄ > 0, consider U-PB and ε = (1− χ)ε̄/2, where χ ∈ [0, 1) is as
in step 0 of U-PB. Let {x̂k} and {ŷk} be the sequences generated by U-PB.
Then, the number of iterations of U-PB to generate an iterate ŷk satisfying
ϕ(ŷk)− ϕ∗ ≤ ε̄ is at most

min

{
min

[
1

χ

(
N +

Rf (ε̄)

µε̄

)
, N +

Rf (ε̄)

νε̄

]
log

(
1 +

λ0µRf (ε̄)d
2
0

ε̄2N

)
,
d20Rf (ε̄)

ε̄2N

}
+N

⌈
2 log

λ0Rf (ε̄)

ε̄N

⌉
where

Rf (ε̄) = ε̄N

[
1

λ0
+

40Lf

1− χ

]
+

64M
2

f

(1− χ)2
(
1 + log(N)

)
.
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Complexity analysis – stationary point

Theorem
For a given tolerance pair (ρ̂, ε̂) ∈ R2

++, U-PB with

χ ∈ (0, 1), ε =
χ(1− χ)ε̂

10
,

generates a (ρ̂, ε̂)-stationary solution (ȳk, s̄k, ε̄k) in at most

min

{
min

[
1

χ

(
N +

Rs(ε̂)

ε̂µ

)
, N +

Rs(ε̂)

ε̂ν

]
logC(ε̂, ρ̂),

Rs(ε̂)

ε̂N

(
4χε̂

5ρ̂2
+

5d20
χε̂

)}
+N

⌈
2 log

λ0Rs(ε̂)

ε̂N

⌉
iterations where

C(ε̂, ρ̂) = 1 +
λ0µRs(ε̂)

ε̂N

(
4χε̂

5ρ̂2
+

5d20
χε̂

)
Rs(ε̂) = ε̂N

[
1

λ0
+

40Lf

1− χ

]
+

320M
2

f

χ(1− χ)2
(
1 + log(N)

)
.
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Conclusion

Two µ-universal methods: U-CS and U-PB
empty line
Both functional and stationary complexities
empty line
Unified analysis through FSCO
empty line
No restart scheme based on estimates of µ

empty line
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Thank you!
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