▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Proximal Bundle Variant with Optimal Iteration-Complexity for a Large Range of Prox Stepsizes

OP21 – MS56 Recent Developments in First-Order Methods for Composite Optimization

Jiaming Liang

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Renato Monteiro

July 21, 2021

- - Assumptions
 - Literature review

The RPB method 2

- Review of the composite subgradient method
- Bundle method
- RPB
- CS as an instance of RPB

3 Main results

- Upper complexity bounds
- Complexity bounds for another proximal bundle variant

4 Optimal complexity

- Lower complexity bounds
- Optimal complexity bounds

Introduction	The RPB method	Main results	Optimal complexity	Conclusion

Introduction

Main problem:

$$\phi_* := \min \left\{ \phi(x) := f(x) + h(x) : x \in \mathbb{R}^n \right\}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main goal:

To show the iteration-complexity of the relaxed proximal bundle (RPB) method is optimal.

Main techniques:

- Inexact proximal point framework
- Bundle method

Introduction	The RPB method	Main results	Optimal complexity	Conclusio
Assumptions	oduction Assumptions iterature review			
 2 The • F • F • C 	e RPB method Review of the compos Bundle method RPB CS as an instance of F	ite subgradient RPB	method	
(3) Mai ● L ● C	in results Ipper complexity bou Complexity bounds for	nds r another proxir	nal bundle variant	
④ Opt ● L ● C	i <mark>mal complexity</mark> ower complexity bou Optimal complexity bo	nds ounds		
5 Cor	clusion			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Assumptions				

Convex nonsmooth problem

Consider (1), where

- (A1) functions $f, h \in \overline{\text{Conv}}(\mathbb{R}^n)$ are such that $\operatorname{dom} h \subset \operatorname{dom} f$ and function $f' : \operatorname{dom} h \to \mathbb{R}^n$ is such that $f'(x) \in \partial f(x)$ for all $x \in \operatorname{dom} h$;
- (A2) the set of optimal solutions X^* of problem (1) is nonempty;
- (A3) *h* is μ -convex and $||f'(x)|| \le M_f$ for all $x \in \text{dom } h$;
- (A4) h is M_h -Lipschitz continuous on dom h, i.e.,

$$|h(u) - h(v)| \le M_h ||u - v|| \quad \forall u, v \in \operatorname{dom} h.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction	The RPB method	Main results	Optimal complexity	Conclusio
Literature reviev	v			
1 In • •	troduction Assumptions Literature review			
(2) TH • • •	ne RPB method Review of the compose Bundle method RPB CS as an instance of 1	site subgradient RPB	: method	
3 M •	ain results Upper complexity bou Complexity bounds fo	inds r another proxi	mal bundle variant	
 4 0 • • 	ptimal complexity Lower complexity bou Optimal complexity b	nds ounds		
5 Co	onclusion			

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへぐ

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Literature review				

Lower complexity bound results

• Convex, unconstrained, $\min f(x)$

$$\Omega\left(\frac{M_f^2 d_0^2}{\bar{\varepsilon}^2}\right)$$

where $d_0 := \inf\{\|x_0 - x_*\| : x_* \in X_*\}$ and $\bar{\varepsilon}$ is the tolerance.

• Strongly convex, unconstrained, $\min f(x)$

$$\Omega\left(\frac{M_f^2}{\mu\bar{\varepsilon}}\right)$$

where μ is the strong convexity of f.

Drawback: bounds are inconsistent when $\mu \rightarrow 0$

Upper bound complexity results

- Subgradient, Mirror descent and Bundle-level method are optimal.
- Bundle method
 - convex, Kiwiel 2000

$$\mathcal{O}_1\left(rac{ ilde{M}^2 ilde{D}^4}{\lambdaar{arepsilon}^3}
ight)$$

where
$$\tilde{D} = \tilde{D}[\tilde{f}] := \sup\{d(x_j, X^*) : j \ge 0\},\$$

 $\tilde{M} = \tilde{M}[\tilde{f}] := \sup\{\|\tilde{f}'(x_j)\| : j \ge 0\}.$

• *µ*-strongly convex, Du and Ruszczyński 2017

$$\tilde{\mathcal{O}}_1\left(\frac{\tilde{M}^2\lambda}{\alpha^2\bar{\varepsilon}}\right)$$

where $\alpha := \min\{\lambda \mu, 1\}.$

Drawback: bounds are not optimal in general (i.e., for a large range of prox stepsizes λ)

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Review of the c	omposite subgradient method			
1 In • •	troduction Assumptions Literature review			
2 T • • •	he RPB method Review of the composi Bundle method RPB CS as an instance of F	te subgradient PB	method	
3 M	ain results			

- Upper complexity bounds
- Complexity bounds for another proximal bundle variant

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Optimal complexity

- Lower complexity bounds
- Optimal complexity bounds
- 5 Conclusion

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Review of the composi	te subgradient method			

Composite subgradient (CS) method

$$x_{j} = \operatorname*{argmin}_{u \in \mathbb{R}^{n}} \left\{ f(x_{j-1}) + \langle f'(x_{j-1}), u - x_{j-1} \rangle + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}\|^{2} \right\}$$

Theorem

For any given universal constant C > 1, CS with any stepsize λ such that $\bar{\varepsilon}/(CM_f^2) \leq 4\lambda \leq \bar{\varepsilon}/M_f^2$ has $\bar{\varepsilon}$ -iteration complexity bound given by

$$\mathcal{O}_1\left(\min\left\{\frac{M_f^2 d_0^2}{\bar{\varepsilon}^2}, \left(\frac{M_f^2}{\mu \bar{\varepsilon}} + 1\right)\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}} + 1\right)\right\}\right)$$
(2)
where $d_0 = \inf\{\|x_0 - x^*\| : x^* \in X^*\} = \|x_0 - x_0^*\|.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	The RPB method	Main results	Optimal complexity	Conclusio
Bundle method				
IntrodAssLite	duction sumptions erature review			
 2 The F • Rev • Bu • RP • CS 	RPB method view of the composi ndle method 'B as an instance of R	te subgradient RPB	method	
3 Main• Up• Contract	results per complexity bour mplexity bounds for	nds another proxin	nal bundle variant	
④ Optin● Lov● Op	nal complexity wer complexity bour timal complexity bc	nds ounds		

5 Conclusion

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Bundle method				

Bundle method

Solving the proximal problem

$$x^{+} \leftarrow \min_{u \in \mathbb{R}^{n}} \left\{ \phi(u) + \frac{1}{2\lambda} \|u - x\|^{2} \right\}$$
(3)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

can be as difficult as solving $\min\{\phi(u) : u \in \mathbb{R}^n\}$.

Bundle method approximately solves (3) and recursively builds up a model by using a standard cutting-plane approach.

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Bundle method				

Bundle method

The bundle method solves a sequence of prox subproblems of the form

$$x_j = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_j^{\lambda}(u) := f_j(u) + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}^c\|^2 \right\}, \qquad (4)$$

where x_{j-1}^{c} is the **prox-center**, f_{j} is the **cutting-plane** model defined as

$$f_j(u) = \max\{f(x) + \langle f'(x), u - x \rangle : x \in C_j\} \quad \forall u \in \mathbb{R}^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Bundle method				

Bundle method

The **bundle method** solves a sequence of prox subproblems of the form

$$x_j = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_j^{\lambda}(u) := f_j(u) + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}^c\|^2 \right\},$$

where x_{i-1}^{c} is the **prox-center**, f_{j} is the **cutting-plane** model defined as

$$f_j(u) = \max\{f(x) + \langle f'(x), u - x \rangle : x \in C_j\} \quad \forall u \in \mathbb{R}^n,$$

and decides to perform a **serious** or **null** iteration based on the **descent** condition $\phi(x_j) \leq (1 - \gamma)\phi(x_{j-1}^c) + \gamma(f_j + h)(x_j)$ for some $\gamma \in (0, 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduo		The RPB method	Main results	Optimal complexity	Conclusio
RPB	Introduc • Assur • Litera	ction nptions ature review			
2	The RP • Revie • Bund • RPB • CS as	B method w of the compos le method s an instance of I	site subgradient RPB	method	
3	Main re • Uppe • Comp	<mark>sults</mark> r complexity bou plexity bounds fo	ınds r another proxin	nal bundle variant	
4	Optima • Lowe	l complexity r complexity bou	inds		

- Optimal complexity bounds
- **5** Conclusion

0. Let $x_0 \in \text{dom } h$, $\lambda > 0$ and $\overline{\varepsilon} > 0$ be given, and set $x_0^c = x_0$, $C_1 = \{x_0\}$, and j = 1;

1. Compute

$$x_j = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_j^{\lambda}(u) := f_j(u) + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}^c\|^2 \right\}, \ m_j = \Gamma_j^{\lambda}(x_j).$$

Moreover, consider the function

$$\phi_j^{\lambda} = \phi + \frac{1}{2\lambda} \| \cdot -x_{j-1}^c \|^2,$$
 (5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and let \tilde{x}_i be such that

$$\tilde{x}_j \in \operatorname{Argmin}\left\{\phi_j^{\lambda}(u) : u \in \{x_j, \tilde{x}_{j-1}\}\right\};$$
 (6)

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
RPB				

2. **If**

$$t_j = \phi_j^\lambda(\widetilde{x}_j) - m_j \leq rac{\overline{arepsilon}}{2},$$
 (7)

- 2.a) then perform a serious iteration, i.e., set x_j^c = x_j, choose an arbitrary finite set C_{j+1} such that {x_j} ⊂ C_{j+1};
- 2.b) else perform a null iteration, i.e., set $x_j^c = x_{j-1}^c$, choose C_{j+1} such that

$$A_j \cup \{x_j\} \subset C_{j+1} \subset C_j \cup \{x_j\}$$
(8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where

$$A_j = \{x \in C_j : f(x) + \langle f'(x), x_j - x \rangle = f_j(x_j)\}$$
(9)

set $f_{j+1} = \max\{f(x) + \langle f'(x), \cdot - x \rangle : x \in C_{j+1}\};$

3. Set $j \leftarrow j + 1$ and go to step 1.

RPB vs. standard bundle method

- introduce an auxiliary iterate \tilde{x}_j , convergence in $\{\tilde{x}_j\}$
- null/serious iterate decision making based on t_j
- motivation for \tilde{x}_j and t_j : define $m_j^* := \min\{\phi_j^{\lambda}(u) : u \in \mathbb{R}^n\}$, then we have

$$m_j \leq m_j^* \leq \phi_j^\lambda(ilde x_j),$$

and hence

$$\phi_j^\lambda(ilde x_j) - m_j^* \leq t_j \leq rac{arepsilon}{2}$$

where $t_j = \phi_j^{\lambda}(\tilde{x}_j) - m_j$.

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
CS as an instance of I	RPB			
• Ass • Lite	sumptions erature review			
 2 The F Rev Bu RP CS 	RPB method view of the compos ndle method B as an instance of F	ite subgradient RPB	method	
MainUpCon	results per complexity bou mplexity bounds for	nds r another proxin	nal bundle variant	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Optimal complexity

- Lower complexity bounds
- Optimal complexity bounds

5 Conclusion

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
CS as an instance of RPB				

Exploration-exploitation trade-off

- RPB can be viewed as an inexact proximal point method that consists of a number of stages (exploration) and each stage aims to solve approximately a proximal subproblem by an iterative procedure (exploitation).
- inner complexity: $\mathcal{O}_1(\lambda M_f^2/\bar{\varepsilon})$, outer complexity: $\mathcal{O}_1(d_0^2/(\lambda \bar{\varepsilon}))$.
- smaller $\lambda \implies$ less work done inside stages, and more number of stages.
- CS only conducts exploration but no exploitation.
- If $\lambda = \bar{\varepsilon}/M_f^2$, then it can be shown that every iteration index of RPB is a serious one, and RPB reduces to CS.

Introduct	ion The RPB method	Main results	Optimal complexity	Conclusior
Upper comp	exity bounds			
	AssumptionsLiterature review			
2	The RPB method • Review of the compo • Bundle method • RPB • CS as an instance of	site subgradient RPB	method	
3	Main results Upper complexity boo Complexity bounds for 	unds or another proxir	nal bundle variant	
4	Optimal complexity • Lower complexity bou	unds		

- Optimal complexity bounds
- **5** Conclusion

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Upper complexity bounds				

A general complexity bound

Theorem

The total number of iterations performed until RPB obtains a $\bar{\varepsilon}\mbox{-solution}$ is bounded by

$$\mathcal{O}\left(\left[\frac{M_f\min\{\lambda M,\lambda_{\mu}M_f+d_0\}}{\bar{\varepsilon}}+1\right]\left[\min\left\{\frac{d_0^2}{\lambda\bar{\varepsilon}},\frac{1}{\lambda_{\mu}\mu}\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}}+1\right)\right\}+1\right]\right)$$

where

$$M=M_f+M_h, \quad \lambda_\mu=rac{\lambda}{1+\lambda\mu}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Upper complexity bounds				

Reduction to the bound of CS in the strongly convex case

Theorem

Let universal constants C, C' > 0 be given and consider an instance $(x_0, (f, f'; h))$ of (1) which satisfies (A1)-(A4) with parameter triple (M_f, M_h, μ) such that

$$\frac{CM_f d_0}{\bar{\varepsilon}} \ge 1, \qquad M_h \in [0, +\infty], \qquad 0 \le \mu \le \frac{C'M_f}{d_0}. \tag{10}$$

Then, RPB with any λ lying in the (nonempty) interval

$$\frac{d_0}{M_f} \le \lambda \le \frac{C d_0^2}{\bar{\varepsilon}} \tag{11}$$

has $\bar{\varepsilon}$ -iteration complexity bound given by (17).

Reduction to the bound of CS in the convex case

Theorem

Let universal constants C, C' > 0 be given and consider an instance $(x_0, (f, f'; h))$ of (1) which satisfies (A1)-(A4) with parameter triple (μ, M_f, M_h) such that

$$\frac{CM_f d_0}{\bar{\varepsilon}} \ge 1, \qquad M_h \le C' M_f, \qquad \mu = 0.$$
(12)

Then, RPB with any λ lying in the (nonempty) interval

$$\frac{\bar{\varepsilon}}{CM_{f}^{2}} \leq \lambda \leq \frac{Cd_{0}^{2}}{\bar{\varepsilon}}$$
(13)

has $\bar{\varepsilon}$ -iteration complexity bound $\mathcal{O}_1(M_f^2 d_0^2/\bar{\varepsilon}^2)$, and hence agrees with (17).

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Complexity bounds for	r another proximal bundle variant	:		
 Introd Ass Lite 	luction sumptions erature review			
 The F Rev But RP 	RPB method view of the compos ndle method B	ite subgradient	method	

• CS as an instance of RPB

3 Main results

- Upper complexity bounds
- Complexity bounds for another proximal bundle variant

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Optimal complexity

- Lower complexity bounds
- Optimal complexity bounds

5 Conclusion

(Kiwiel 2000) and (Du and Ruszczyński 2017) study a proximal bundle variant (PBV) for solving the set constrained problem

$$\min\{\tilde{f}(x): x \in X\}$$
(14)

where X is a nonempty closed convex set and \tilde{f} is a μ -convex ($\mu \ge 0$) finite everywhere function.

• convex, Kiwiel 2000

$$\mathcal{O}_1\left(rac{ ilde{M}^2 ilde{D}^4}{\lambdaar{arepsilon}^3}
ight)$$

where

$$ilde{D}= ilde{D}[ilde{f}]:=\sup\{d(x_j,X^*):j\geq 0\},\quad ilde{M}= ilde{M}[ilde{f}]:=\sup\{\| ilde{f}'(x_j)\|:j\geq 0\}.$$

• µ-strongly convex, Du and Ruszczyński 2017

$$\tilde{\mathcal{O}}_1\left(\frac{\tilde{M}^2\lambda}{\alpha^2\bar{\varepsilon}}\right)$$

where $\alpha := \min\{\lambda \mu, 1\}$.

Compare RPB with PBV

Consider $\tilde{f} = f + h$ with f satisfying (A1)-(A3), $h \equiv \mu \| \cdot -x_0 \|^2/2$ and $X = \mathbb{R}^n$. When $\mu = 0$, PBV has the iteration complexity (Kiwiel)

$$\mathcal{O}_1\left(\frac{M_f^2(d_0+\lambda M_f)^4}{\lambda\bar{\varepsilon}^3}\right),\tag{15}$$

when $\mu > 0$, PBV has the iteration complexity (Du and Ruszczyński)

$$\tilde{\mathcal{O}}_1\left(\frac{M_f^2}{\lambda\mu^2\bar{\varepsilon}} + \frac{d_0^2}{\lambda\bar{\varepsilon}}\right).$$
(16)

In general, the above bounds are worse than that of PRB

$$\mathcal{O}_1\left(\min\left\{\frac{M_f^2 d_0^2}{\bar{\varepsilon}^2}, \left(\frac{M_f^2}{\mu\bar{\varepsilon}} + 1\right)\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}} + 1\right)\right\}\right).$$
(17)

Proof for the convex case

Note that the arithmetic-geometric mean inequality implies that

$$d_0 + \lambda M_f = rac{d_0}{3} + rac{d_0}{3} + rac{d_0}{3} + \lambda M_f \ge 4 \left(rac{1}{27} d_0^3 \lambda M_f\right)^{1/4},$$

and hence that

$$\mathcal{O}_1\left(rac{M_f^2(d_0+\lambda M_f)^4}{\lambdaar{arepsilon}^3}
ight)$$

is minorized by $\mathcal{O}_1(M_f^3 d_0^3/\bar{\varepsilon}^3)$, which in turn is minorized by $\mathcal{O}_1(M_f^2 d_0^2/\bar{\varepsilon}^2)$ in view of the assumption that $CM_f d_0/\bar{\varepsilon} \geq 1$.

・ロト・西・・田・・田・・日・

Introduct	ion The RPB method	Main results	Optimal complexity	Conclusio
Lower comp	lexity bounds			
1	Introduction Assumptions Literature review 			
2	The RPB method • Review of the compose • Bundle method • RPB • CS as an instance of	site subgradient RPB	method	
3	Main results Upper complexity bot Complexity bounds for 	unds or another proxi	mal bundle variant	
4	Optimal complexity Lower complexity bot Optimal complexity b 	unds bounds		
5	Conclusion			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Lower complexity bounds				

Define a proper class of instances

Definition

Given $(M_f, \mu, R_0) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_{++}$, let $\mathcal{I}_{\mu}(M_f, R_0)$ denote the class consisting of all instances $(x_0, (f, f'; h))$ satisfying conditions (A1)-(A3) and the condition that $d_0 \leq R_0$. Moreover, let $\mathcal{I}_{\mu}^u(M_f, R_0)$ denote the unconstrained class consisting of all instances $(x_0, (f, f'; h)) \in \mathcal{I}_{\mu}(M_f, R_0)$ such that $h \equiv \mu \| \cdot \|^2/2$.

Introduction	The RPB method	Main results	Optimal complexity	Conclusion
Lower complexity bounds	s			

$\bar{\varepsilon}\text{-lower}$ complexity bound

Theorem

For any given quadruple $(M_f, \mu, R_0, \overline{\varepsilon}) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_{++} \times \mathbb{R}_{++}$, there exists an instance $(x_0, (f, f'; h))$ such that:

a)
$$(x_0, (f, f'; h)) \in \mathcal{I}^u_\mu(M_f, R_0);$$

b) it has lower complexity bound with respect to $\mathcal{A}(\mathcal{I}^u_\mu(M_f, R_0), \bar{\varepsilon})$ given by

$$\left\lfloor \min\left\{\frac{M_f^2 R_0^2}{128\bar{\varepsilon}^2}, \frac{M_f^2}{8\mu\bar{\varepsilon}}\right\} \right\rfloor + 1.$$
(18)

As a consequence, (18) is also a $\bar{\varepsilon}$ -lower complexity bound for any instance class $\mathcal{I} \supset \mathcal{I}^u_\mu(M_f, R_0)$.

Introduc	tion TI	ne RPB method	Main results	Optimal complexity	Conclusion
Optimal co	mplexity bounds				
1	Introductio Assumpt Literature 	n ions e review			
2	The RPB n • Review o • Bundle n • RPB • CS as an	nethod f the compos nethod instance of F	ite subgradient RPB	method	
3	Main result • Upper co • Complex	s mplexity bou ity bounds foi	nds r another proxir	nal bundle variant	
4	Optimal co • Lower co • Optimal	mplexity mplexity boun complexity bo	nds ounds		
5	Conclusion				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Optimality in the strongly convex case

Using Theorem 3, we can show that RPB with λ satisfying

$$\frac{R_0}{M_f} \le \lambda \le \frac{CR_0^2}{\bar{\varepsilon}}$$

has a complexity bound

$$\mathcal{O}_1\left(\min\left\{\frac{M_f^2R_0^2}{\bar{\varepsilon}^2},\frac{M_f^2}{\mu\bar{\varepsilon}}\log\left(\frac{\mu R_0^2}{\bar{\varepsilon}}+1\right)\right\}\right),$$

and RPB is optimal for any instance class ${\cal I}$ and scalar $\mu \in [0,\, C'M_f/R_0]$ such that

$$\mathcal{I}_{\mu}^{u}(M_{f},R_{0})\subseteq\mathcal{I}\subseteq\mathcal{I}_{\mu}(M_{f},R_{0}). \tag{19}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Optimality in the convex case

Using Theorem 4, we can show that RPB with λ satisfying

$$\frac{\bar{\varepsilon}}{CM_f^2} \le \lambda \le \frac{CR_0^2}{\bar{\varepsilon}}$$

has a complexity bound

$$\mathcal{O}_1\left(\frac{M_f^2 R_0^2}{\bar{\varepsilon}^2}\right),$$

and RPB is optimal for any instance class ${\mathcal I}$ such that

$$\mathcal{I}_0^u(M_f, R_0) \subseteq \mathcal{I} \subseteq \mathcal{I}_0(M_f, R_0; C)$$
(20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where

$$\mathcal{I}_0(M_f, R_0; C) := \{ (x_0, (f, f'; h)) \in \mathcal{I}_0(M_f, R_0) : \exists M_h \le CM_f \text{ such that } h \text{ satisfies (A4)} \}$$

Introduction	The RPB method	Main results	Optimal complexity	Conclusion

Concluding remarks

- Iteration-complexity bound for RPB to find a $\bar{\varepsilon}$ -solution.
- Optimal complexity bounds in both convex and strongly convex settings.
- RPB can be interpreted as an inexact proximal point method.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• RPB with sufficiently small constant prox stepsize becomes the composite subgradient method.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

THE END Thanks!