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Introduction

Main problem:

φ∗ := min {φ(x) := f (x) + h(x) : x ∈ Rn} (1)

Main goal:
To show the iteration-complexity of the relaxed proximal bundle
(RPB) method is optimal.
Main techniques:

Inexact proximal point framework
Bundle method
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Assumptions

Convex nonsmooth problem

Consider (1), where

(A1) functions f , h ∈ Conv (Rn) are such that dom h ⊂ dom f and
function f ′ : dom h→ Rn is such that f ′(x) ∈ ∂f (x) for all
x ∈ dom h;

(A2) the set of optimal solutions X∗ of problem (1) is nonempty;

(A3) h is µ-convex and ‖f ′(x)‖ ≤ Mf for all x ∈ dom h;

(A4) h is Mh-Lipschitz continuous on dom h, i.e.,

|h(u)− h(v)| ≤ Mh‖u − v‖ ∀u, v ∈ dom h.
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Literature review

Lower complexity bound results

Convex, unconstrained, min f (x)

Ω

(
M2

f d2
0

ε̄2

)
where d0 := inf{‖x0 − x∗‖ : x∗ ∈ X∗} and ε̄ is the tolerance.

Strongly convex, unconstrained, min f (x)

Ω

(
M2

f
µε̄

)
where µ is the strong convexity of f .

Drawback: bounds are inconsistent when µ→ 0
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Upper bound complexity results

Subgradient, Mirror descent and Bundle-level method are optimal.

Bundle method
convex, Kiwiel 2000

O1

(
M̃2D̃4

λε̄3

)
where D̃ = D̃[f̃ ] := sup{d(xj ,X∗) : j ≥ 0},
M̃ = M̃[f̃ ] := sup{‖f̃ ′(xj)‖ : j ≥ 0}.
µ-strongly convex, Du and Ruszczyński 2017

Õ1

(
M̃2λ

α2ε̄

)
where α := min{λµ, 1}.

Drawback: bounds are not optimal in general (i.e., for a large
range of prox stepsizes λ)



Introduction The RPB method Main results Optimal complexity Conclusion
Review of the composite subgradient method

1 Introduction
Assumptions
Literature review

2 The RPB method
Review of the composite subgradient method
Bundle method
RPB
CS as an instance of RPB

3 Main results
Upper complexity bounds
Complexity bounds for another proximal bundle variant

4 Optimal complexity
Lower complexity bounds
Optimal complexity bounds

5 Conclusion



Introduction The RPB method Main results Optimal complexity Conclusion
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Composite subgradient (CS) method

xj = argmin
u∈Rn

{
f (xj−1) + 〈f ′(xj−1), u − xj−1〉+ h(u) +

1
2λ‖u − xj−1‖2

}

Theorem
For any given universal constant C > 1, CS with any stepsize λ such that
ε̄/(CM2

f ) ≤ 4λ ≤ ε̄/M2
f has ε̄-iteration complexity bound given by

O1

(
min

{
M2

f d2
0

ε̄2 ,

(
M2

f
µε̄

+ 1
)

log

(
µd2

0
ε̄

+ 1
)})

(2)

where d0 = inf{‖x0 − x∗‖ : x∗ ∈ X∗} = ‖x0 − x∗0 ‖.
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Bundle method

Solving the proximal problem

x+ ← min
u∈Rn

{
φ(u) +

1
2λ‖u − x‖2

}
(3)

can be as difficult as solving min{φ(u) : u ∈ Rn}.
empty line
Bundle method approximately solves (3) and recursively builds up a
model by using a standard cutting-plane approach.
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Bundle method

The bundle method solves a sequence of prox subproblems of the form

xj = argmin
u∈Rn

{
Γλ

j (u) := fj(u) + h(u) +
1
2λ‖u − x c

j−1‖2
}
, (4)

where x c
j−1 is the prox-center, fj is the cutting-plane model defined as

fj(u) = max{f (x) + 〈f ′(x), u − x〉 : x ∈ Cj} ∀u ∈ Rn.
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Bundle method

The bundle method solves a sequence of prox subproblems of the form

xj = argmin
u∈Rn

{
Γλ

j (u) := fj(u) + h(u) +
1
2λ‖u − x c

j−1‖2
}
,

where x c
j−1 is the prox-center, fj is the cutting-plane model defined as

fj(u) = max{f (x) + 〈f ′(x), u − x〉 : x ∈ Cj} ∀u ∈ Rn,

and decides to perform a serious or null iteration based on the descent
condition φ (xj) ≤ (1− γ)φ

(
x c

j−1
)

+ γ (fj + h) (xj) for some γ ∈ (0, 1).
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Relaxed proximal bundle (RPB) method

0. Let x0 ∈ dom h, λ > 0 and ε̄ > 0 be given, and set x c
0 = x0,

C1 = {x0}, and j = 1;

1. Compute

xj = argmin
u∈Rn

{
Γλ

j (u) := fj(u) + h(u) +
1
2λ‖u − x c

j−1‖2
}
, mj = Γλ

j (xj).

Moreover, consider the function

φλj = φ+
1
2λ‖ · −x

c
j−1‖2, (5)

and let x̃j be such that

x̃j ∈ Argmin
{
φλj (u) : u ∈ {xj , x̃j−1}

}
; (6)
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2. If
tj = φλj (x̃j)−mj ≤

ε̄

2 , (7)

2.a) then perform a serious iteration, i.e., set x c
j = xj , choose an

arbitrary finite set Cj+1 such that {xj} ⊂ Cj+1;
2.b) else perform a null iteration, i.e., set x c

j = x c
j−1, choose Cj+1

such that
Aj ∪ {xj} ⊂ Cj+1 ⊂ Cj ∪ {xj} (8)

where

Aj = {x ∈ Cj : f (x) + 〈f ′(x), xj − x〉 = fj(xj)} (9)

set fj+1 = max{f (x) + 〈f ′(x), · − x〉 : x ∈ Cj+1};

3. Set j ← j + 1 and go to step 1.
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RPB vs. standard bundle method

introduce an auxiliary iterate x̃j , convergence in {x̃j}
null/serious iterate decision making based on tj
motivation for x̃j and tj :
define m∗

j := min{φλj (u) : u ∈ Rn}, then we have

mj ≤ m∗
j ≤ φλj (x̃j),

and hence
φλj (x̃j)−m∗

j ≤ tj ≤
ε̄

2
where tj = φλj (x̃j)−mj .
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Exploration-exploitation trade-off

RPB can be viewed as an inexact proximal point method that
consists of a number of stages (exploration) and each stage aims to
solve approximately a proximal subproblem by an iterative procedure
(exploitation).

inner complexity: O1(λM2
f /ε̄), outer complexity: O1(d2

0/(λε̄)).

smaller λ =⇒ less work done inside stages, and more number of
stages.

CS only conducts exploration but no exploitation.

If λ = ε̄/M2
f , then it can be shown that every iteration index of

RPB is a serious one, and RPB reduces to CS.
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A general complexity bound

Theorem
The total number of iterations performed until RPB obtains a ε̄-solution
is bounded by

O
([

Mf min{λM, λµMf + d0}
ε̄

+ 1
] [

min

{
d2

0
λε̄
,

1
λµµ

log

(
µd2

0
ε̄

+ 1
)}

+ 1
])

where
M = Mf + Mh, λµ =

λ

1 + λµ
.
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Reduction to the bound of CS in the strongly convex case

Theorem

Let universal constants C ,C ′ > 0 be given and consider an instance
(x0, (f , f ′; h)) of (1) which satisfies (A1)-(A4) with parameter triple
(Mf ,Mh, µ) such that

CMf d0
ε̄

≥ 1, Mh ∈ [0,+∞], 0 ≤ µ ≤ C ′Mf
d0

. (10)

Then, RPB with any λ lying in the (nonempty) interval

d0
Mf
≤ λ ≤ Cd2

0
ε̄

(11)

has ε̄-iteration complexity bound given by (17).
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Reduction to the bound of CS in the convex case

Theorem

Let universal constants C ,C ′ > 0 be given and consider an instance
(x0, (f , f ′; h)) of (1) which satisfies (A1)-(A4) with parameter triple
(µ,Mf ,Mh) such that

CMf d0
ε̄

≥ 1, Mh ≤ C ′Mf , µ = 0. (12)

Then, RPB with any λ lying in the (nonempty) interval

ε̄

CM2
f
≤ λ ≤ Cd2

0
ε̄

(13)

has ε̄-iteration complexity bound O1(M2
f d2

0/ε̄
2), and hence agrees with

(17).



Introduction The RPB method Main results Optimal complexity Conclusion
Complexity bounds for another proximal bundle variant

1 Introduction
Assumptions
Literature review

2 The RPB method
Review of the composite subgradient method
Bundle method
RPB
CS as an instance of RPB

3 Main results
Upper complexity bounds
Complexity bounds for another proximal bundle variant

4 Optimal complexity
Lower complexity bounds
Optimal complexity bounds

5 Conclusion



Introduction The RPB method Main results Optimal complexity Conclusion
Complexity bounds for another proximal bundle variant

(Kiwiel 2000) and (Du and Ruszczyński 2017) study a proximal bundle
variant (PBV) for solving the set constrained problem

min{f̃ (x) : x ∈ X} (14)

where X is a nonempty closed convex set and f̃ is a µ-convex (µ ≥ 0)
finite everywhere function.

convex, Kiwiel 2000

O1

(
M̃2D̃4

λε̄3

)
where

D̃ = D̃[f̃ ] := sup{d(xj ,X∗) : j ≥ 0}, M̃ = M̃[f̃ ] := sup{‖f̃ ′(xj)‖ : j ≥ 0}.

µ-strongly convex, Du and Ruszczyński 2017

Õ1

(
M̃2λ

α2ε̄

)
where α := min{λµ, 1}.
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Compare RPB with PBV

Consider f̃ = f + h with f satisfying (A1)-(A3), h ≡ µ‖ · −x0‖2/2 and
X = Rn. When µ = 0, PBV has the iteration complexity (Kiwiel)

O1

(
M2

f (d0 + λMf )4

λε̄3

)
, (15)

when µ > 0, PBV has the iteration complexity (Du and Ruszczyński)

Õ1

(
M2

f
λµ2ε̄

+
d2

0
λε̄

)
. (16)

In general, the above bounds are worse than that of PRB

O1

(
min

{
M2

f d2
0

ε̄2 ,

(
M2

f
µε̄

+ 1
)

log

(
µd2

0
ε̄

+ 1
)})

. (17)
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Complexity bounds for another proximal bundle variant

Proof for the convex case

Note that the arithmetic-geometric mean inequality implies that

d0 + λMf =
d0
3 +

d0
3 +

d0
3 + λMf ≥ 4

(
1
27d

3
0λMf

)1/4
,

and hence that
O1

(
M2

f (d0 + λMf )4

λε̄3

)
is minorized by O1(M3

f d3
0/ε̄

3), which in turn is minorized by
O1(M2

f d2
0/ε̄

2) in view of the assumption that CMf d0/ε̄ ≥ 1.
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Lower complexity bounds

Define a proper class of instances

Definition

Given (Mf , µ,R0) ∈ R+ × R+ × R++, let Iµ(Mf ,R0) denote the class
consisting of all instances (x0, (f , f ′; h)) satisfying conditions (A1)-(A3)
and the condition that d0 ≤ R0. Moreover, let Iu

µ(Mf ,R0) denote the
unconstrained class consisting of all instances
(x0, (f , f ′; h)) ∈ Iµ(Mf ,R0) such that h ≡ µ‖ · ‖2/2.
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ε̄-lower complexity bound

Theorem

For any given quadruple (Mf , µ,R0, ε̄) ∈ R+ × R+ × R++ × R++, there
exists an instance (x0, (f , f ′; h)) such that:

a) (x0, (f , f ′; h)) ∈ Iu
µ(Mf ,R0);

b) it has lower complexity bound with respect to A(Iu
µ(Mf ,R0), ε̄)

given by ⌊
min

{
M2

f R2
0

128ε̄2 ,
M2

f
8µε̄

}⌋
+ 1. (18)

As a consequence, (18) is also a ε̄-lower complexity bound for any
instance class I ⊃ Iu

µ(Mf ,R0).
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Optimal complexity bounds

Optimality in the strongly convex case

Using Theorem 3, we can show that RPB with λ satisfying

R0
Mf
≤ λ ≤ CR2

0
ε̄

has a complexity bound

O1

(
min

{
M2

f R2
0

ε̄2 ,
M2

f
µε̄

log

(
µR2

0
ε̄

+ 1
)})

,

and RPB is optimal for any instance class I and scalar µ ∈ [0,C ′Mf /R0]
such that

Iu
µ(Mf ,R0) ⊆ I ⊆ Iµ(Mf ,R0). (19)
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Optimal complexity bounds

Optimality in the convex case

Using Theorem 4, we can show that RPB with λ satisfying

ε̄

CM2
f
≤ λ ≤ CR2

0
ε̄

has a complexity bound

O1

(
M2

f R2
0

ε̄2

)
,

and RPB is optimal for any instance class I such that

Iu
0 (Mf ,R0) ⊆ I ⊆ I0(Mf ,R0;C) (20)

where

I0(Mf ,R0;C)

:= {(x0, (f , f ′; h)) ∈ I0(Mf ,R0) : ∃ Mh ≤ CMf such that h satisfies (A4)}
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Concluding remarks

Iteration-complexity bound for RPB to find a ε̄-solution.
Optimal complexity bounds in both convex and strongly
convex settings.
RPB can be interpreted as an inexact proximal point method.
RPB with sufficiently small constant prox stepsize becomes
the composite subgradient method.
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THE END

Thanks!
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