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Introduction

Design and analysis of fast algorithms for sampling problems by leveraging tools
from optimization.
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(a) Optimization, min f(z) (b) Sampling, samp exp(—f(x))
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Overview

@ A proximal sampling algorithm for nonconvex, semi-smooth and composite
potentials

@ Improved complexity to sample from a distribution e-close to the target
distribution in KL, x? and Rényi divergences

@ Close interplay between sampling and optimization
Proximal point framework
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Problem: sample from v(z) o< exp(—f(z))
(A1) f is semi-smooth, i.e., there exist a; € [0,1] and L; >0, i=1,...,n, s.t.

1£"(u) = ()] < ZLa I

Yu,v e R?

where f'(z) is in the Frechet subdiffernetial d¢(x);
Examples: n =1
1) @y = 1, smooth, 2) @3 =0, nonsmooth, 3) 0 < «a; < 1, weakly smooth

(A2) v satisfies log-Sobolev inequality (LSI) or Poincaré inequality (PI).
LSI: H,(p) < St Jp(v), Pl By [(4 — By [¢])%] < Cpiy [ VY]

Observations: v is not necessarily log-concave, f is not necessarily convex.
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Comparison

Source Complexity Assumption Metric

. ~ C1+1/aL2/ad2+1/a , .

Chewi et al. O ——F— weakly smooth Rényi
a>0,Pl

This work o (CPILE/ (HO‘)dQ) semi-smooth, Pl | Rényi

Table: Complexity bounds for sampling from non-convex semi-smooth potentials.

Source Complexity Assumption Metric
~ max{} | nmax{L2 max{57}

Nguyen| O (C’i; e {iL“}d] ) weakly smooth KL

et al. a; > 0, LSI

This 1) (C’LSI Zn 2/ o +1)d) semi-smooth, LSI KL

work

This 1) (CPI S 2/(a1+1)d> semi-smooth, Pl | Rényi

work

Table: Complexity bounds for sampling from non-convex composite potentials.
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Alternating Sampling Framework (ASF)

Joint distribution 7(z,y) o exp[—f(z) — %Hx —y1?]

Algorithm 1 ASF (Shen, Tian and Lee 2021)

1. Sample i ~ 7 X (y | ) o expl— | — g2

2. Sample g1 ~ XY (x| yp) oc exp[—f () — 55l — ykl*]

Restricted Gaussian Oracle (RGO)
Given y, sample from

XY () o exp (—f(') -l —y||2) .
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Alternating Sampling Framework (ASF)

Joint distribution 7(z,y) o< exp[—f(z) — 5[z — y|]?]

Algorithm 2 ASF (Shen, Tian and Lee 2021)

1. Sample g ~ 71X (y | 1) o expl— [k — I

2. Sample @ys1 ~ 7 (2 | y) oc exp[—f (@) — 5 o — yul|?]

Restricted Gaussian Oracle (RGO)
Given y, sample from

X1 (Jy) o exp (—f(-) -l —y||2) .

Without an implementable and provable RGO, ASF is only conceptual.

Nontrivial
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Proximal Point Framework (PPF)

Proximal point framework: constructs a sequence of proximal problems

Try1 < prox, ¢ (rx) = arg;nin {f(m) + %Hx - l‘k|2} (%) (1)

E.g., Chambolle-Pock for saddle point, ADMM for distributed optimization

Algorithm 3 PPF

1 yp argmin%“m — x]|? =z
x

2. appn o argmin { £ (@) = f(z) + 55le — well? |
T

ASF for sampling «— PPF for optimization

RGO in sampling +— proximal mapping in optimization
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Relaxed Proximal Bundle Method (L. and Monteiro 2021)

f is convex and Lipschitz continuous (nonsmooth, «; = 0). Subgradient method.

Approximately solve (1) by the cutting-plane method (implementable)

. 1
zj <= prox, . (zg) = min {fj(z) + %Hz - zo||2} , 20 = Tg

where f;(z) = max{f(w) + (f'(w),z —w) : w € {20, 21,...,2j-1}}

Complexities: PPF O(e71)x cutting-plane O(e~!) = total O(¢~2) optimal
implementable and provable
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RGO Implementation

RGO: given y, sample from exp(—f/(z))

Algorithm 4 RGO Rejection Sampling

1. Compute an approximate stationary point w of f
2. Generate sample X ~ exp(—h1(x))
3. Generate sample U ~ U]0, 1]
4. If
exp(— /(X))
~ exp(—hi (X))’

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(—hi(x)) where hy(x) < f(x)
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Rejection Sampling

X ~ 7XIY(.]y) and

)
x))dm = [exp(—hy(z))dx (2)

Want to find h; and hgy such that
i) sampling exp(—hy(x)) is easy,
i) hi(z) < f)](x) < ha(x),

i) (2) is bounded from below.
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Consider n =1, a € [0,1] and L, >0

£ (w) = f'()|| € Lallu—v||* VYu,v € R

Assume f is L,-semi-smooth, then for 6 > 0 and every u,v € R, we have

M 1—a)d %“
150 = £~ (F @)= < o+ EZ o O
[(a+1)d]~r
Proof: I
_ _ / « a+1

£() = £(0) ~ (@)= )] < 22 fu— o]
Young's inequality ab < & + %, zl) + % =1 with

L, . 2 2

oot b= 5", p=

l1—a

- S | T
(a+1)5 =
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Definition

A stationary point w* of f; is such that fl(w*) + %(w* —y) =0.

Definition

An approximate stationary point w of f is s.t. || f'(w) + %(w —y)| < VMd.

) = £0) + (7 ()2 =) = e — i+ g e =yl = B0
(1-a)s

M 1
ha(@) := f(w?) + (f'(w"), 2 —w”) + o |lo = w? + o

2
gl — il +

Answers: i) sampling exp(—hq(z)) is easy;
i) verify hy(z) < f;/(z) < ha(x) by the key lemma.
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Remaining Questions

Q1. Rejection sampling complexity

. 1 _ Jexp(=h(x))dw
[P(X is accepted)] " < [ exp(—ha(z))da

Q2. Optimization complexity to find an approx. stat. pt. w s.t.

Fw) + 3w =) < VITd
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Answer to Q1 — RGO complexity

Proposition

Assume .
I [(a+ 1)d]eFr

Md R,

then the expected number of rejection steps in Algorithm 4 is at most
3(1-a)d a)(S
exp +3

n< —

Intuition: if ) is small enough, h; and hs are convex quadratic functions, so

Jexp(=hy(x))dex _ (14+nM 4/2 2 AN 2
[ exp(—hy(z))dz ~ (1 - 77M> < (1442 < (1 * d) =
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Answer to Q2 — Optimization complexity

Lemma

Let £ := f+ %H <=yl and (7)) := f'+ %( — ), then for every u,v € RY,

! (% . M) Ju =l = L < ) — pa0) — (£ @)u - )
§%<%+M) Hu—v||2—|—(1_—a)5.

f)] is nearly (n=* — M)-strongly convex and (n~! 4+ M)-smooth

Proposition

rssume n < MLd, then the iteration-complexity to find the approx. stat. pt. w s.t.

f(w) + %(w - y)” < v/Md by Nesterov acceleration is O(1).

1 1
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RGO and ASF Complexities

Putting previous results together, we can implement RGO with O(1) subgradients
of f and O(1) samples from Gaussian distribution in expectation.

Other ingredients for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)

If v ox exp(—f) satisfies LSl with C;s; > 0, then xy of ASF ~ py, which satisfies
H,(po)

(1 + CLSI)

Theorem (Chen, Chewi, Salim and Wibisono 2022)

If v < exp(—f) satisfies Pl with Cpy > 0, then xy, of ASF ~ py, which satisfies

Xz (po)

2
Xu(pk) < . %
(1+325)
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Main Result

Theorem

Suppose f is L,-semi-smooth and v satisfies Pl. With n < 1/(L5*" d), then ASF
with RGO by rejection has complexity bound

@] (CPIL Std )

to achieve ¢ error to v in terms of x* divergence. Each iteration queries @(1)

subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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General Results — LSI

Yu,v € R%;

£ (u) |<ZLa1II

Theorem

|

=il
Suppose f is semi-smooth and v satisfies LSI. With n < {2?21 LT d] , then
ASF with RGO by rejection has complexity bound

ooty

to achieve € error to v in terms of x? divergence. Each iteration queries @(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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General Results — Pl

Theorem

a4
Suppose f is semi-smooth and v satisfies Pl. With n < {Z?_l Theg d] , then
ASF with RGO by rejection has complexity bound

O (CPI zn: LT d)
p=1

to achieve ¢ error to v in terms of x? divergence. Each iteration queries O(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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Interpretation of Unadjusted Langevin Algorithm (ULA)

Algorithm 5 ASF

1. Sample g ~ 71X (y | 1) o expl— s — I

2. Sample w1 ~ 71 (@ | i) o< expl—f(w) — 55|z — yi ]

Algorithm 6 ULA

1. Sample yj, ~ 71X (y | x1) o< exp[— 55 [k — yl*]

2. Sample 241 ~ o (VIR w—yr) =gy llo—urll® o o=z le—(ue—nV F(yr))?

Try1 = Y — NV f(Ye) + N2k 2k ~ N(0,1),
Ykl = Teg1 + 02, 2, ~ N(0,1).

= Y1 = Yo~V () TV (26 +21) =y =0V f(ye) + /202, 2~ N(0,1)
ULA can be viewed as ASF with RGO implemented without rejection

ha(x) = f(yw+<Vf<yk>,xfyk>+%||x—ykn2 < f<x>+%||x—yku2 = 1 (2)
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Conclusions

@ A proximal sampling algorithm for v o< exp(—f).

f nonconvex, semi-smooth, composite. v satisfies either LS| or PI.
e Total complexity O (C Dy Lg;’“d) where C' = Cpg1 or C = Cpr.
Each iteration takes O(1) subgradients of f and O(1) samples from Gaussian.

@ Inspired by proximal point framework and proximal mapping.
Leverage tools from optimization to design and analyze sampling algorithms.

E.g., acceleration in sampling for weakly smooth potentials.
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Definition (Frechet e-subdiffernetial)

Let ¢ : R" — R U {co} be a proper closed function, then the Frechet ¢
subdiffernetial is defined as

d-¢(x) = {v € R™ : liminf ) = (@) = {v,y — 2) > 6}

e ly — =l

When ¢ = 0, we denote 50¢(x) simply by 5(]5(;10)

Lemma

| A

If  : R™ — RU {0} is an m-weakly convex function, then for any x,c € R", we
have

9¢(x) = 0 (¢m(;¢)) () —m(z —c) (3)
where

m
I =cll®.

bm5) 1= 6() + 2
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