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Introduction

Design and analysis of fast algorithms for sampling problems by leveraging tools
from optimization.

(a) Optimization, min f(x) (b) Sampling, samp exp(−f(x))
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Overview

A proximal sampling algorithm for nonconvex, semi-smooth and composite
potentials

Improved complexity to sample from a distribution ε-close to the target
distribution in KL, χ2 and Rényi divergences

Close interplay between sampling and optimization
Proximal point framework
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Assumptions

Problem: sample from ν(x) ∝ exp(−f(x))

(A1) f is semi-smooth, i.e., there exist αi ∈ [0, 1] and Li > 0, i = 1, . . . , n, s.t.

‖f ′(u)− f ′(v)‖ ≤
n∑
i=1

Lαi‖u− v‖αi , ∀u, v ∈ Rd

where f ′(x) is in the Frechet subdiffernetial ∂̃φ(x);
Examples: n = 1
1) α1 = 1, smooth, 2) α1 = 0, nonsmooth, 3) 0 < α1 < 1, weakly smooth

(A2) ν satisfies log-Sobolev inequality (LSI) or Poincaré inequality (PI).

LSI: Hν(ρ) ≤ CLSI
2 Jρ(ν), PI: Eν [(ψ − Eν [ψ])2] ≤ CPIEν [‖∇ψ‖2]

Observations: ν is not necessarily log-concave, f is not necessarily convex.
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Comparison
Source Complexity Assumption Metric

Chewi et al. Õ
(
C

1+1/α
PI L2/α

α d2+1/α

ε1/α

)
weakly smooth
α > 0, PI

Rényi

This work Õ
(
CPIL

2/(1+α)
α d2

)
semi-smooth, PI Rényi

Table: Complexity bounds for sampling from non-convex semi-smooth potentials.

Source Complexity Assumption Metric

Nguyen
et al.

Õ

(
C

1+max{ 1
αi
}

LSI

[
nmax{L2

αi
}d

ε

]max{ 1
αi
}
)

weakly smooth
αi > 0, LSI

KL

This
work

Õ
(
CLSI

∑n
i=1 L

2/(αi+1)
αi d

)
semi-smooth, LSI KL

This
work

Õ
(
CPI

∑n
i=1 L

2/(αi+1)
αi d

)
semi-smooth, PI Rényi

Table: Complexity bounds for sampling from non-convex composite potentials.
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Alternating Sampling Framework (ASF)

Joint distribution π(x, y) ∝ exp[−f(x)− 1
2η‖x− y‖

2]

Algorithm 1 ASF (Shen, Tian and Lee 2021)

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η‖xk − y‖

2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Restricted Gaussian Oracle (RGO)
Given y, sample from

πX|Y (·|y) ∝ exp

(
−f(·)− 1

2η
‖ · −y‖2

)
.
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Alternating Sampling Framework (ASF)

Joint distribution π(x, y) ∝ exp[−f(x)− 1
2η‖x− y‖

2]

Algorithm 2 ASF (Shen, Tian and Lee 2021)

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η‖xk − y‖

2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Restricted Gaussian Oracle (RGO)
Given y, sample from

πX|Y (·|y) ∝ exp

(
−f(·)− 1

2η
‖ · −y‖2

)
.

Without an implementable and provable RGO, ASF is only conceptual.

Nontrivial
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Proximal Point Framework (PPF)

Proximal point framework: constructs a sequence of proximal problems

xk+1 ← proxηf (xk) = argmin
x

{
f(x) +

1

2η
‖x− xk‖2

}
(∗) (1)

E.g., Chambolle-Pock for saddle point, ADMM for distributed optimization

Algorithm 3 PPF
1. yk ← argmin

x

1
2η‖x− xk‖

2 = xk

2. xk+1 ← argmin
x

{
fηyk(x) := f(x) + 1

2η‖x− yk‖
2
}

ASF for sampling ←→ PPF for optimization
empty line
RGO in sampling ←→ proximal mapping in optimization

8 / 25



Relaxed Proximal Bundle Method (L. and Monteiro 2021)
f is convex and Lipschitz continuous (nonsmooth, α1 = 0). Subgradient method.
empty line
Approximately solve (1) by the cutting-plane method (implementable)

zj ← proxηfj (x0) = min
z

{
fj(z) +

1

2η
‖z − z0‖2

}
, z0 = xk

where fj(z) = max{f(w) + 〈f ′(w), z − w〉 : w ∈ {z0, z1, . . . , zj−1}}

Complexities: PPF O(ε−1)× cutting-plane O(ε−1) =⇒ total O(ε−2) optimal

implementable and provable
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RGO Implementation

RGO: given y, sample from exp(−fηy (x))

Algorithm 4 RGO Rejection Sampling

1. Compute an approximate stationary point w of fηy
2. Generate sample X ∼ exp(−h1(x))
3. Generate sample U ∼ U [0, 1]
4. If

U ≤
exp(−fηy (X))

exp(−h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(−h1(x)) where h1(x) ≤ fηy (x)
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Rejection Sampling

X ∼ πX|Y (·|y) and

P(X is accepted) =P
(
U ≤

exp(−fηy (X))

exp(−h1(X))

)
=

∫
exp(−fηy (x))dx∫
exp(−h1(x))dx

≥
∫
exp(−h2(x))dx∫
exp(−h1(x))dx

(2)

Want to find h1 and h2 such that
empty line
i) sampling exp(−h1(x)) is easy,
empty line
ii) h1(x) ≤ fηy (x) ≤ h2(x),
empty line
iii) (2) is bounded from below.

11 / 25



A Key Lemma
Consider n = 1, α ∈ [0, 1] and Lα > 0

‖f ′(u)− f ′(v)‖ ≤ Lα‖u− v‖α, ∀u, v ∈ Rd;

Lemma
Assume f is Lα-semi-smooth, then for δ > 0 and every u, v ∈ Rd, we have

|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ M

2
‖u− v‖2 + (1− α)δ

2
, M =

L
2

α+1
α

[(α+ 1)δ]
1−α
α+1

.

Proof:
|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ Lα

α+ 1
‖u− v‖α+1

Young’s inequality ab ≤ ap

p + bq

q ,
1
p +

1
q = 1 with

a =
Lα

(α+ 1)δ
1−α
2

‖u− v‖α+1, b = δ
1−α
2 , p =

2

α+ 1
, q =

2

1− α
.
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Construction

Definition
A stationary point w∗ of fηy is such that f ′(w∗) + 1

η (w
∗ − y) = 0.

Definition
An approximate stationary point w of fηy is s.t. ‖f ′(w) + 1

η (w − y)‖ ≤
√
Md.

h1(x) := f(w) + 〈f ′(w), x− w〉 − M

2
‖x− w‖2 + 1

2η
‖x− y‖2 − (1− α)δ

2
,

h2(x) := f(w∗) + 〈f ′(w∗), x− w∗〉+ M

2
‖x− w∗‖2 + 1

2η
‖x− y‖2 + (1− α)δ

2
.

Answers: i) sampling exp(−h1(x)) is easy;
ii) verify h1(x) ≤ fηy (x) ≤ h2(x) by the key lemma.
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Remaining Questions

Q1. Rejection sampling complexity

[P(X is accepted)]−1 ≤
∫
exp(−h1(x))dx∫
exp(−h2(x))dx

Q2. Optimization complexity to find an approx. stat. pt. w s.t.∥∥∥∥f ′(w) + 1

η
(w − y)

∥∥∥∥ ≤ √Md
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Answer to Q1 – RGO complexity

Proposition
Assume

η ≤ 1

Md
=

[(α+ 1)δ]
1−α
α+1

L
2

α+1
α d

,

then the expected number of rejection steps in Algorithm 4 is at most
exp

(
3(1−α)δ

2 + 3
)
.

Intuition: if η is small enough, h1 and h2 are convex quadratic functions, so∫
exp(−h1(x))dx∫
exp(−h2(x))dx

≈
(
1 + ηM

1− ηM

)d/2
≤ (1 + 4ηM)d/2 ≤

(
1 +

4

d

)d/2
≤ e2.
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Answer to Q2 – Optimization complexity

Lemma
Let fηy := f + 1

2η‖ · −y‖
2 and (fηy )

′ := f ′ + 1
η (· − y), then for every u, v ∈ Rd,

1

2

(
1

η
−M

)
‖u− v‖2 − (1− α)δ

2
≤ fηy (u)− fηy (v)− 〈(fηy )′(v), u− v〉

≤ 1

2

(
1

η
+M

)
‖u− v‖2 + (1− α)δ

2
.

fηy is nearly (η−1 −M)-strongly convex and (η−1 +M)-smooth

Proposition
Assume η ≤ 1

Md , then the iteration-complexity to find the approx. stat. pt. w s.t.∥∥∥f ′(w) + 1
η (w − y)

∥∥∥ ≤ √Md by Nesterov acceleration is Õ(1).

µ =
1

η
−M ≈M(d− 1), L =

1

η
+M ≈M(d+ 1),

√
L/µ ≈ 1
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RGO and ASF Complexities
Putting previous results together, we can implement RGO with Õ(1) subgradients
of f and O(1) samples from Gaussian distribution in expectation.
empty line
Other ingredients for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)
If ν ∝ exp(−f) satisfies LSI with CLSI > 0, then xk of ASF ∼ ρk, which satisfies

Hν(ρk) ≤
Hν(ρ0)(

1 + η
CLSI

)2k .
Theorem (Chen, Chewi, Salim and Wibisono 2022)
If ν ∝ exp(−f) satisfies PI with CPI > 0, then xk of ASF ∼ ρk, which satisfies

χ2
ν(ρk) ≤

χ2
ν(ρ0)(

1 + η
CPI

)2k .
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Main Result

Theorem
Suppose f is Lα-semi-smooth and ν satisfies PI. With η � 1/(L

2
α+1
α d), then ASF

with RGO by rejection has complexity bound

Õ
(
CPIL

2
α+1
α d

)
to achieve ε error to ν in terms of χ2 divergence. Each iteration queries Õ(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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General Results – LSI

‖f ′(u)− f ′(v)‖ ≤
n∑
i=1

Lαi‖u− v‖αi , ∀u, v ∈ Rd;

Theorem

Suppose f is semi-smooth and ν satisfies LSI. With η �
[∑n

i=1 L
2

αi+1
αi d

]−1
, then

ASF with RGO by rejection has complexity bound

Õ

(
CLSI

n∑
i=1

L
2

αi+1
αi d

)

to achieve ε error to ν in terms of χ2 divergence. Each iteration queries Õ(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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General Results – PI

Theorem

Suppose f is semi-smooth and ν satisfies PI. With η �
[∑n

i=1 L
2

αi+1
αi d

]−1
, then

ASF with RGO by rejection has complexity bound

Õ

(
CPI

n∑
i=1

L
2

αi+1
αi d

)

to achieve ε error to ν in terms of χ2 divergence. Each iteration queries Õ(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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Interpretation of Unadjusted Langevin Algorithm (ULA)

Algorithm 5 ASF
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Algorithm 6 ULA
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ e−〈∇f(yk),x−yk〉−
1
2η ‖x−yk‖

2

∝ e−
1
2η ‖x−(yk−η∇f(yk))‖

2

xk+1 = yk − η∇f(yk) +
√
ηzk, zk ∼ N(0, I),

yk+1 = xk+1 +
√
ηz′k, z′k ∼ N(0, I).

=⇒ yk+1 = yk−η∇f(yk)+
√
η(zk+z

′
k) = yk−η∇f(yk)+

√
2ηz, z ∼ N(0, I)

ULA can be viewed as ASF with RGO implemented without rejection

h1(x) = f(yk)+ 〈∇f(yk), x− yk〉+
1

2η
‖x− yk‖2 ≤ f(x)+

1

2η
‖x− yk‖2 = fηyk(x)
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Conclusions

A proximal sampling algorithm for ν ∝ exp(−f).

f nonconvex, semi-smooth, composite. ν satisfies either LSI or PI.

Total complexity Õ
(
C
∑n
i=1 L

2
αi+1
αi d

)
where C = CLSI or C = CPI.

Each iteration takes Õ(1) subgradients of f and O(1) samples from Gaussian.

Inspired by proximal point framework and proximal mapping.

Leverage tools from optimization to design and analyze sampling algorithms.

E.g., acceleration in sampling for weakly smooth potentials.
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Thank you!
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Definition (Frechet ε-subdiffernetial)
Let φ : Rn → R ∪ {∞} be a proper closed function, then the Frechet ε
subdiffernetial is defined as

∂̃εφ(x) =

{
v ∈ Rn : lim inf

y→x

φ(y)− φ(x)− 〈v, y − x〉
‖y − x‖

≥ −ε
}

When ε = 0, we denote ∂̃0φ(x) simply by ∂̃φ(x).

Lemma
If φ : Rn → R ∪ {∞} is an m-weakly convex function, then for any x, c ∈ Rn, we
have

∂̃φ(x) = ∂ (φm(·; c)) (x)−m(x− c) (3)

where
φm(·; c) := φ(·) + m

2
‖ · −c‖2.
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