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Introduction

Design and analysis of fast algorithms for sampling problems by leveraging tools
from optimization.

(a) Optimization, min f(x) (b) Sampling, samp exp(−f(x))
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Overview

A proximal sampling algorithm for convex and nonsmooth potentials

Improved complexity to sample from a distribution ε-close to the target
distribution in total variation

Close interplay between sampling and optimization
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Story of the Smooth Setting

Sampling from ν(x) ∝ exp(−f(x)) where f is convex and L-smooth, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

Starting from x0 ∼ ρ0, unadjusted Langevin algorithm (ULA) iterates as

xk+1 = xk − η∇f(xk) +
√

2ηz, z ∼ N(0, I).

Suppose xk ∼ ρk and define ρ̄k = 1
k

∑k
i=1 ρi, then the iteration-complexity for

ULA to obtain KL(ρ̄k|ν) ≤ ε is

O
(
W 2

2 (ρ0, ν)Ld

ε2

)
,

where KL(ρ|ν) =
∫
ρ(x) log ρ(x)

ν(x)dx.
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Assumptions

Problem: sample from ν(x) ∝ exp(−f(x))

f is convex and M -Lipschitz continuous, i.e.,

‖f(u)− f(v)‖ ≤M‖u− v‖, ∀u, v ∈ Rd,

or equivalently,
‖f ′(u)‖ ≤M, ∀u ∈ Rd.

Typical approaches of dealing with nonsmoothness:
Moreau envelop
Gaussian smoothing
Assuming existence of proximal mapping

5 / 28



Comparison

Source Complexity Convergence
Chatterji et al. 2020 Õ(M6d5M3/2

4 ε−10) last iterate
Durmus et al. 2019 O(M2W 2

2 (ρ0, ν)ε−4) average iterate
Lee and Vempala 2017 O(d5/2 log(βε−1)) last iterate

This work Õ(M2dM1/2
4 ε−1) last iterate

Table: Complexity bounds for sampling from convex nonsmooth potentials.

M4: 4th moment,M4 ≈ d2 in the isotropic case
β: warmness, log β ≈ d if the initial distribution is not warm started
W 2

2 (ρ0, ν) ≈ d, M ≈
√
d in typical problems

Chatterji et al. 2020: Õ(M6d8ε−10)

Durmus et al. 2019: O(M2dε−4)

Lee and Vempala 2017: Õ(d7/2)

This work: Õ(M2d2ε−1)
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Alternating Sampling Framework (ASF)

Joint distribution π(x, y) ∝ exp[−f(x)− 1
2η‖x− y‖

2]

Algorithm 1 ASF (Lee, Shen, and Tian 2021)

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η‖xk − y‖

2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Theorem (Lee, Shen, and Tian 2021)
Let π ∝ exp(−f) be a distribution on Rd and suppose f is µ-strongly convex. Let
η ∈ (0, 1/µ] and ε > 0 be given. ASF, initialized at the minimizer of f , requires

Θ

(
1

ηµ
log

d

ηµε

)
iterations to obtain a sample whose distribution is within ε total variation distance
to π.
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Alternating Sampling Framework (ASF)

Joint distribution π(x, y) ∝ exp[−f(x)− 1
2η‖x− y‖

2]

Algorithm 2 ASF (Lee, Shen, and Tian 2021)

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η‖xk − y‖

2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Restricted Gaussian Oracle (RGO)
Given y, sample from

πX|Y (·|y) ∝ exp

(
−f(·)− 1

2η
‖ · −y‖2

)
.

Without an implementable and provable RGO, ASF is only conceptual.

Nontrivial
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Proximal Point Framework (PPF)

Proximal point framework: constructs a sequence of proximal problems

xk+1 ← proxηf (xk) = argmin
x

{
f(x) +

1

2η
‖x− xk‖2

}
(1)

E.g., Chambolle-Pock for saddle point, ADMM for distributed optimization

Algorithm 3 PPF
1. yk ← argmin

x

1
2η‖x− xk‖

2 = xk

2. xk+1 ← argmin
x

{
fηyk(x) := f(x) + 1

2η‖x− yk‖
2
}

ASF for sampling ←→ PPF for optimization
empty line
RGO in sampling ←→ proximal mapping in optimization
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Relaxed Proximal Bundle Method (L. and Monteiro 2021)
f is convex and M -Lipschitz continuous.
empty line
Approximately solve (1) by the cutting-plane method

zj ← proxηfj (x0) = min
z

{
fj(z) +

1

2η
‖z − z0‖2

}
, z0 = xk

where fj(z) = max{f(zi) + 〈f ′(zi), z − zi〉 : 0 ≤ i ≤ j − 1}

Complexities: PPF O(ε−1)× cutting-plane O(ε−1) =⇒ total O(ε−2) optimal
empty line
Sampling: ASF Õ((ηµ)−1)× RGO ?
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RGO Implementation – with an Oracle
Goal: sample from exp(−g(x)) where g(x) := f(x) + µ

2 ‖x− x
0‖2

empty line
RGO: given y, sample from exp(−gηy (x))

x∗ = argmin
x∈Rd

{
gηy (x) := g(x) +

1

2η
‖x− y‖2

}

Algorithm 4 RGO Rejection Sampling

1. Compute the minimizer x∗ of gηy
2. Generate sample X ∼ exp(−h1(x))
3. Generate sample U ∼ U [0, 1]
4. If

U ≤
exp(−gηy (X))

exp(−h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(−h1(x)) where h1(x) ≤ gηy (x)
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Rejection Sampling

X ∼ πX|Y (·|y) and

P(X is accepted) =P
(
U ≤

exp(−gηy (X))

exp(−h1(X))

)
=

∫
exp(−gηy (x))dx∫
exp(−h1(x))dx

≥
∫

exp(−h2(x))dx∫
exp(−h1(x))dx

(2)

Want to find functions h1 and h2 such that
empty line
i) sampling from exp(−h1(x)) is easy,
empty line
ii) h1(x) ≤ gηy (x) ≤ h2(x) ∀x ∈ Rd,
empty line
iii) (2) is bounded from below.
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Construction

h1(x) :=
1

2ηµ
‖x− x∗‖2 + gηy (x∗),

h2(x) :=
1

2ηµ
‖x− x∗‖2 + 2M‖x− x∗‖+ gηy (x∗).

Observations:
i) sampling from exp(−h1(x)) is easy;
ii) It follows from

x∗ = argmin
x∈Rd

{
gηy (x) := g(x) +

1

2η
‖x− y‖2

}
and the fact that gηy (x) is ηµ-strongly convex that

gηy (x) ≥ gηy (x∗) +
1

2ηµ
‖x− x∗‖2 = h1(x)
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Proof Sketch of gηy(x) ≤ h2(x)

It follows from the optimality condition of x∗ that

0 ∈ ∂f(x∗) + µ(x∗ − x0) +
x∗ − y
η

, −µ(x∗ − x0)− x∗ − y
η

∈ ∂f(x∗),

and hence that ∥∥∥∥µ(x∗ − x0) +
x∗ − y
η

∥∥∥∥ ≤M.

We have

gηy (x)− gηy (x∗) ≤ f(x)− f(x∗) + ‖x− x∗‖
∥∥∥∥µ(x∗ − x0) + x∗ − y

η

∥∥∥∥+
1

2ηµ
‖x− x∗‖2

≤ 2M‖x− x∗‖+ 1

2ηµ
‖x− x∗‖2,

and hence
gηy (x) ≤ gηy (x∗) + 2M‖x− x∗‖+ 1

2ηµ
‖x− x∗‖2 = h2(x).
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Remaining Question

Rejection sampling complexity

[P(X is accepted)]−1 ≤
∫

exp(−h1(x))dx∫
exp(−h2(x))dx

≤ ?

∫
exp(−h1(x))dx =

∫
exp

(
− 1

2ηµ
‖x− x∗‖2 − gηy (x∗)

)
dx

= exp
(
−gηy (x∗)

)
(2πηµ)d/2∫

exp(−h2(x))dx = exp(−gηy (x∗))

∫
exp

(
− 1

2ηµ
‖x− x∗‖2 − 2M‖x− x∗‖

)
dx

Proposition (nontrivial)

For λ > 0, a ≥ 0 and d ≥ 1, if λ ≤ 1
4a2d , then∫

Rd
exp

(
− 1

2λ
‖x‖2 − a‖x‖

)
dx ≥ (2πλ)d/2

2
.
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RGO complexity

Proposition
Assume f is convex and M -Lipschitz continuous. If ηµ ≤ 1

16M2d , then the
expected number of rejection steps in Algorithm 4 is at most 2.

Proof sketch

∫
exp(−h1(x))dx∫
exp(−h2(x))dx

=
exp

(
−gηy (x∗)

)
(2πηµ)d/2

exp(−gηy (x∗))
∫

exp
(
− 1

2ηµ
‖x− x∗‖2 − 2M‖x− x∗‖

)
dx

≤ (2πηµ)d/2

(2πηµ)d/2/2
= 2.

16 / 28



RGO Implementation – without an Oracle

RGO: given y, sample from exp(−gηy (x))

xJ , x̃J ≈ argmin
x∈Rd

{
gηy (x) := g(x) +

1

2η
‖x− y‖2

}

Algorithm 5 RGO Rejection Sampling

1. Compute xJ and x̃J as in Algorithm 6;
2. Generate X ∼ exp(−h1(x));
3. Generate U ∼ U [0, 1];
4. If

U ≤
exp(−gηy (X))

exp(−h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(−h1(x)) where h1(x) ≤ gηy (x)
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Cutting-plane method

Algorithm 6 Proximal Bundle Method Subroutine

1. Let y ∈ Rd, η > 0, δ > 0 and x0 ∈ Rd be given, and set x0 = x̃0 = y, and
j = 1
2. Update fj(x) = max {f(xi) + 〈f ′(xi), x− xi〉 : 0 ≤ i ≤ j − 1}
3. Define gj(x) := fj(x) + µ

2 ‖x− x
0‖2 and compute

xj = argmin
u∈Rd

{
gηj (x) := gj(x) +

1

2η
‖x− y‖2

}
,

x̃j = argmin
{
gηy (x) : x ∈ {xj , x̃j−1}

}
4. If gηy (x̃j)− gηj (xj) ≤ δ, then return J = j, xJ , x̃J ; else, go to step 5
5. Set j ← j + 1 and go to step 2.

x̃j is a δ-solution to gηy (x)

gηy (x̃j)− gηy (x∗) ≤ gηy (x̃j)− gηj (xj) ≤ δ
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Construction

h1 :=
1

2ηµ
‖ · −xJ‖2 + gηy (x̃J)− δ,

h2 :=
1

2ηµ
‖ · −x̃J‖2 +

(
2M +

√
2δ
√
ηµ

)
‖ · −x̃J‖+ gηy (x̃J).

Observations:
i) Sampling from exp(−h1(x)) is easy;
ii) It holds that h1(x) ≤ gηy (x) ≤ h2(x) ∀x ∈ Rd;
iii) RGO complexity is bounded from above.

Proposition
Assume f is convex and M -Lipschitz continuous. If

ηµ ≤
1

64M2d
, δ ≤ 1

32d
,

then the expected number of rejection steps in Algorithm 5 is at most 2.
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Remaining Question

Optimization complexity to find approximate solutions xJ , x̃J s.t.

gηy (x̃J)− gηJ(xJ) ≤ δ.

Proposition

Algorithm 6 takes O(ηµM
2/δ + 1) iterations to terminate, and each iteration

takes one subgradient of f and solves an affinely constrained convex quadratic
programming.

In particular, taking
ηµ =

1

64M2d
, δ =

1

64d
,

we have
O
(
ηµM

2

δ
+ 1

)
= O(1).

Each RGO needs O(1) subgradients of f and O(1) samples from Gaussian
distribution in expectation.
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Main Results – Strongly Convex

Theorem
Let x0 ∈ Rd, ε > 0, M > 0, and µ > 0 be given. Assume f is convex and
M -Lipschitz continuous and let g(x) = f(x) + µ

2 ‖x− x
0‖2. Set

δ =
1

64d
, η =

1

64M2d
.

Then the ASF with Algorithm 5 as an RGO achieves ε error in terms of total
variation with respect to the target distribution π ∝ exp(−g) in Õ

(
M2d
µ

)
iterations, and each iteration queries O(1) subgradient oracles of f and O(1)
Gaussian distribution sampling oracles.
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Main Results – Convex

Theorem
Let ν(x) ∝ exp(−f(x)) where f is convex and M -Lipschitz continuous on Rd.
Let x0 ∈ Rd and ε > 0 be given and

µ =
ε√

2
(√
M4 + ‖x0 − xmin‖2

)
whereM4 =

∫
x∈Rd ‖x−xmin‖4dν(x) and xmin = argmin{f(x) : x ∈ Rd}. Choose

δ =
1

64d
, η =

1

64M2d
.

and consider ASF using Algorithm 5 as an RGO for step 1, applied to
g(x) = f(x) + µ

2 ‖x− x
0‖2. Then, the iteration-complexity bound to achieve ε

error to ν in terms of total variation is

Õ

(
M2d

(√
M4 + ‖x0 − xmin‖2

)
ε

)
.
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Interpretation of Unadjusted Langevin Algorithm (ULA)

Algorithm 7 ASF
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

Algorithm 8 ULA
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ e−〈∇f(yk),x−yk〉−
1
2η ‖x−yk‖

2

∝ e−
1
2η ‖x−(yk−η∇f(yk))‖

2

xk+1 = yk − η∇f(yk) +
√
ηzk, zk ∼ N(0, I),

yk+1 = xk+1 +
√
ηz′k, z′k ∼ N(0, I).

=⇒ yk+1 = yk−η∇f(yk)+
√
η(zk+z′k) = yk−η∇f(yk)+

√
2ηz, z ∼ N(0, I)

ULA can be viewed as ASF with RGO implemented without rejection

h1(x) = f(yk) + 〈f ′(yk), x− yk〉+
1

2η
‖x− yk‖2 ≤ f(x) +

1

2η
‖x− yk‖2 = fηyk(x)

23 / 28



Conclusions

A proximal sampling algorithm for ν ∝ exp(−f).

f is convex and M -Lipschitz continuous

Total complexity Õ
(
M2d(

√
M4+‖x0−xmin‖2)

ε

)
Each iteration takes O(1) subgradients of f and O(1) samples from Gaussian.

Inspired by proximal point framework and proximal mapping.

Leverage tools from optimization to design and analyze sampling algorithms.
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Thank you!
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Extensions – Improved ASF Complexities

Theorem (Chen, Chewi, Salim and Wibisono 2022)
If ν ∝ exp(−f) satisfies LSI with CLSI > 0, then xk of ASF ∼ ρk, which satisfies

Hν(ρk) ≤ Hν(ρ0)(
1 + η

CLSI

)2k .

Theorem (Chen, Chewi, Salim and Wibisono 2022)
If ν ∝ exp(−f) satisfies PI with CPI > 0, then xk of ASF ∼ ρk, which satisfies

χ2
ν(ρk) ≤ χ2

ν(ρ0)(
1 + η

CPI

)2k .
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Extensions – Nonconvex and Semi-smooth Potentials

Sampling from ν(x) ∝ exp(−f(x)) where

‖f ′(u)− f ′(v)‖ ≤
n∑
i=1

Lαi‖u− v‖αi , ∀u, v ∈ Rd;

Theorem (Liang and Chen 2022)

Suppose f is semi-smooth and ν satisfies LSI. With η �
[∑n

i=1 L
2

αi+1
αi d

]−1
, then

ASF with RGO by rejection has complexity bound

Õ

(
CLSI

n∑
i=1

L
2

αi+1
αi d

)

to achieve ε error to ν in terms of KL divergence. Each iteration queries Õ(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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