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Mixed-Integer MPC for Real-Time Decision Making

MI-MPC provides a general-purpose
modeling framework for real-time
decision making.

We are particularly interested in an MI-
MPC formulation of a high-level motion
planning task for an autonomous vehicle,

including discrete decisions resulting from

lane changes, static and dynamic ~
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obstacles

The MI-MPC framework solves an MIQP "
problem at every sampling time instant.

« Switches in system dynamics, e.g., contacts
« Discrete decisions, e.g., pass or stay in lane
« (Quantized decisions, e.g., on/off actuation 0
 Disjoint constraint sets, e.g., obstacle avoidance ,

For example, using big-M formulation and 4 binary () ;@ -
variables N ’

Branch-and-Bound Algorithm for MIQP

« Convex QP relaxations solved to obtain lower bounds (LB)

« Each integer-feasible solution forms an upper bound (UB) for the MIQP
solution

* A node can be pruned due to LB > UB (Py) or infeasibility (P,)

LB UB: ) Early termination of QP solvers in B&B: aim to
0 o Jo =10 prune node without need to solve convex QP
% W el st - If dual feasible objective y(-) > UB,

Jy=13 e Jo =12 then primal optimal objective ¢* > UB:

D, A) < P* < ¢o* < Pz, y)

« Terminate the QP solver before convergence.

Infeasible IPM: Projection to Dual Feasibility

Equality-constrained optimization for minimum-norm projection on constraint
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But projection does not guarantee nonnegativity of Lagrange multipliers, i.e., u=0
Proposed approach: modified optimization problem for projection on constraint
Wk = diag (w") and wf = Z—z > 0

Anl =S, (2002

Indirectly enforces positivity constraints u>0

Solve equality-constrained optimization problem tQ_compute, projection step
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Az, AN Ap i E==)  Active inequality constraints:
St [Cg} Aw+FTA)\+GTAu: B [79“] , s;—~>0and y; > 0= wi=%—>0 (small penalty)
y

Inactive inequality constraints:

" u;>0ands; >0= w; = %—> o (large penalty)

is equivalent to solving KKT system to compute Newton-type search direction

7077 Projection corresponds to IPM iteration with
H FT GT Az [r’“] = different right-hand side: obtain dual
F —equarl 0 AN| = — 5’ ; feasibility while maintaining optimality
G 0 —Wk| | Ap 0 conditions

is equivalent to solving reduced KKT system to compute search direction Az

lllllllllllllllllllllllllllllllllllllll

{H+ L FTF+GTWk1G)Az:—[%],
€dual (] 5

Yy

We can reuse the KKT matrix factorization
=) between IPM iterations and projection steps
for computational efficiency
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which is used to compute projection step for Lagrange multipliers (Au*, A2%):

L FAz, Ap=w*'GA:

€dual

A =

Certificate of primal infeasibility (i.e.,

Js =15 ]= Js = 13 6 _16 ° Also effective in detecting primal infeasibility.

: Primal QP Formulatlon ® Infeasible IPM: Newton-type iteration
. 1 T T T B T T 77T kT ™a
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Yy oz y) 2" o T Y F 0 0 ANC| = — | 7§
s.t.  Ggpxr+Gyy < g, G 0 —WF] |Ap”] LA
.................. ez + Iyy = f, . . . .
Dual QP Formulation ® Problem. infeasible IPM iterations
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generally do not satisfy dual feasibility

N z until convergence
max (A = — lui} NP — HT H ® Proposed solution: computationally
o\ AR g U efficient projection to obtain dual
st. Guu+F X = —hy, feasible solution guess for early
>0, termination of infeasible IPM

Early Termination of IPM: Infeasibility detection
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Compute dual feasible solution guess

\

unboundedness of dual) the following
set of equations is strictly infeasible

_ Continue QP_ NoO Y > UB AND
Gz < 9, Iz = f ? . iterations ... dual feasible

Evaluate dual objective value i

~

if and only if there exists a pair (1 ,1)
such that (Farkas’ lemma)

Early termination of
convex QP solver
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No feasible solution
exists to convex QP

G a+F " A=0, g'a+f'A<0, >0

Optimal objective value is
larger than upper bound

« |nstead, our proposed early termination
technique can be used for infeasibility . _ _
d t t d . l t d Algorithm 1 Early termination for IPM in B&B method.
etec ]On.an requires ].m] e i 1: Input: Warm start {(2°, 1%, A%, 5°) }, tol, and UE.
computational cost (projection based i 2 while max{7", [|r*|[} > tol do

. . . x if ¥(u*, \¥) > UB & dual_feasible then
on reuse Of KKT matrix faCtorlzatlon)- 4: break while loop. > Early termination
s: else if v(p*, \F) > UB then
6: Compute projection step (A, AA) in (13).
. . . _ o S0 N E AN
* Intuition behind using early o e R
° ° ° ° o e i . "y "{ ‘ "} Il’ ly‘
termination for infeasibility o if 4 >0 & |lryl| < tol then
. . F0: pt = p, AF A 3 1y, and
deteCtlon' I1: dual.feasible « 1.
N b if ¢(p*, \¥) > UB then
:| Proposition 4.3: If the sequence of IPM iterates|: ' db.';.eak While Joop. b
Bk \k gk v bk < 07 0 and |k P -
E{(z,,u, ,s)}satlsy,u, s < p’ s and ||u”|| — oo, s _
' then the dual objective 1 (u”*, \F) — oo. i 16 endif
: : 17: Perform an IPM iteration (8), e.g., see [18].

1%: end while

”
“
.
.
.
Py
-------------------------------------------------------------------------------------------------------------

Simulation Results: Real-Time Vehicle Decision Making
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Early Terminated versus Fully Solved QPs
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Infeasibility Detection

Number of IPM Iterations for Certificate Versus Early Termination With and Without Warm Starting

QP#1 | QP#2 | QP # 3
Certificate of primal infeasibility 40 45 38
Early termination: cold started 10 12 10
Early termination: warm started 0 0 11

> Early termination requires considerably less IPM iterations than the
computation of a certificate of infeasibility.

» Warm starting can reduce the number of IPM iterations further and it can
lead to immediate termination, i.e., termination at O iterations.

Conclusions

An efficient early termination strategy based on a projection step tailored to IPMs,
in order to reduce the computational cost within B&B method in solving MI-MPC.
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/’I::arly termination of QP S\ l,'F;A:\lyl(téer;E;nnaastlon is performed by using Newton-type,

solvers in MI-MPC works . o
D reuses KKT matrix factorizations for

well in | fe
A terminating QPs whose computational efficiency;
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objective value > UB; @ intuitively guarantees the inequality constraint
® detecting infeasible 1€ po.s1t1V1ty n i,
. QPs. ;o 2 projection also makes progress towards
S — ) 'S convergence. .
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