
Proximal Oracles for Optimization and Sampling

Jiaming Liang

Department of Computer Science & Goergen Institute for Data Science
Univerity of Rochester

March 24, 2024

Joint work with Yongxin Chen (Georgia Tech)

IOS Conference 2024, Houston, Texas

1 / 28



Optimization and Sampling

Algorithm design for optimization and sampling using proximal oracles.

(a) Optimization, min f(x) (b) Sampling, samp exp(−f(x))
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Algorithms for Optimization and Sampling

Gradient descent

xk+1 = xk − η∇f(xk)

Unadjusted Langevin algorithm (ULA), ν(x) ∝ exp(−f(x))

xk+1 = xk − η∇f(xk) +
√

2ηz, z ∼ N (0, I)

equivalent to sampling xk+1 ∼ p(y|xk) where

p(y|xk) ∝ exp

(
− 1

2η
∥x− (xk − η∇f(xk))∥2

)
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Sampling as Optimization

Langevin dynamics

dXt = −∇f(Xt)dt+
√
2dBt

Fokker-Planck equation (continuity equation)

∂ρt
∂t

= ∇ ·
(
ρt∇ log

ρt
ν

)
= −gradρt

Hν(ρt)

Jordan, Kinderlehrer, and Otto 1998: Langevin dynamics in space corresponds to
the gradient flow of the relative entropy in the space of measures with the
Wasserstein metric

min
ρ∈P2(Rd)

{
Hν(ρ) =

∫
ρ log

ρ

ν

}
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Metropolis-Hastings

ULA is biased: ρk → ρ̄ as k →∞, but Hν(ρ∞) > 0.
empty line
Metropolis-adjusted Langevin algorithm: take ULA as a proposal density p(·|xk),
draw yk ∼ p(yk|xk), and accept yk with probability

min

{
1,

ν(yk)p(xk|yk)
ν(xk)p(yk|xk)

}
empty line
MH filter makes the Markov chain reversible and hence ν is the stationary
distribution.

5 / 28



Gibbs Sampling

Joint distribution

π(x, y) ∝ exp

(
−f(x)− 1

2η
∥x− y∥2

)
empty line empty line
Gibbs sampling:

given xk, sample yk ∼ πY |X(·|xk)

given yk, sample xk+1 ∼ πX|Y (·|yk+1)

empty line empty line
It is known from Gibbs sampling that (xk, yk)k≥1 form a reversible MC with
stationary distribution π(x, y), whose x-marginal is ν(x) ∝ exp(−f(x)).
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Proximal Frameworks
Optimization

Algorithm Proximal Point Framework
1. yk ← argmin

x

1
2η∥x− xk∥2 = xk

2. xk+1 ← argmin
x

{
f(x) + 1

2η∥x− yk∥2
}

E.g., GD, SGD, AGD, Newton, Chambolle-Pock, ADMM, proximal bundle ...

Sampling

Algorithm Alternating Sampling Framework (Shen, Tian and Lee 2021)

1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1
2η∥xk − y∥2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η∥x− yk∥2]

E.g., ULA, proximal Langevin algorithm, symmetric Langevin algorithm ...
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Assumptions

(A1) f is semi-smooth, i.e., there exist α ∈ [0, 1] and Lα > 0, s.t.

∥f ′(u)− f ′(v)∥ ≤ Lα∥u− v∥α, ∀u, v ∈ Rd

1) α = 1, smooth, 2) α = 0, nonsmooth, 3) 0 < α < 1, weakly smooth

(A2) f is composite, i.e., there exist αi ∈ [0, 1] and Lαi
> 0, i = 1, . . . , n, s.t.

∥f ′(u)− f ′(v)∥ ≤
n∑

i=1

Lαi
∥u− v∥αi , ∀u, v ∈ Rd
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Outline

1 Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

3 Proximal Sampling Algorithm
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Regularized Cutting-plane Method
Proximal subproblem

fη
y (x

∗) = min
x∈Rd

{
fη
y (x) = f(x) +

1

2η
∥x− y∥2

}

Algorithm Regularized Cutting-Plane Method (RCPM)

1. Let y ∈ Rd, η > 0, and δ > 0 be given, and set x0 = x̃0 = y, and j = 1.
2. Update fj(x) = max

0≤i≤j−1
{f(xi) + ⟨f ′(xi), x− xi⟩}.

3. Compute

xj = argmin
x∈Rd

{
fη
j (x) := fj(x) +

1

2η
∥x− y∥2

}
,

x̃j = argmin
{
fη
y (x) : x ∈ {xj , x̃j−1}

}
.

4. If fη
y (x̃j) − fη

j (xj) ≤ δ, then stop and return J = j, xJ , x̃J ; else, go to
step 5.
5. Set j ← j + 1 and go to step 2.
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Cutting-Plane Model

Recursively build up a cutting-plane model

fj(x) = max
0≤i≤j−1

{f(xi) + ⟨f ′(xi), x− xi⟩}
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Convergence Analysis

Define δj := fη
y (x̃j)− fη

j (xj). Note that δj ≥ fη
y (x̃j)− fη

j (x
∗).

empty line
Recall that we want to find δJ ≤ δ. If δj > δ, then (1 + β)δj ≤ δj−1 where

β =
1

2η

(
α+ 1

Lα

) 2
α+1

δ
1−α
α+1 .

The complexity is Õ(β−1 + 1)

Theorem

If f is semi-smooth, RCPM takes Õ
(
ηL

2
α+1
α

(
1
δ

) 1−α
α+1 + 1

)
iterations to terminate.

If f is composite, RCPM takes Õ (ηM + 1) iterations to terminate, where

M =

n∑
i=1

L
2

αi+1
αi

[(αi + 1)δ]
1−αi
αi+1

.
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Outline

1 Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

3 Proximal Sampling Algorithm
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Intuition

Goal: min
x∈Rd

f(x) where f is semi-smooth

proximal bundle method ≈ proximal point framework + RCPM
empty line
Inner complexity is Õ(β−1 + 1). In practice, it is desirable to have a relatively
small number, say 10. Prescribe this number by choosing β0 ∈ (0, 1]) and check

(1 + β0)δj ≤ δj−1.

empty line
If always true, we have complexity Õ(β−1

0 + 1). Otherwise, reduce η in the next
cycle. This is because (1 + β)δj ≤ δj−1 where

β =
1

2η

(
α+ 1

Lα

) 2
α+1

δ
1−α
α+1 .

This approach is adaptive and parameter-free.
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Adaptive Proximal Bundle Method

Inequality to check
(1 + β0)δj ≤ δj−1. (*)

Algorithm Adaptive Proximal Bundle Method (APBM)

1. Let y0 ∈ Rd, η0 > 0, β0 ∈ (0, 1], and ε > 0 be given, and set k = 1
2. Call RCPM with (y, η, δ) = (yk−1, ηk−1, ε/2) and output (yk, ỹk) = (xJ , x̃J)
3. In the execution of RCPM, if (*) is always true, then set ηk = ηk−1; otherwise,
set ηk = ηk−1/2
4. Set k ← k + 1 and go to step 2.

Theorem

The complexity of APBM to find an ε-solution is Õ
(

L
2

α+1
α ∥y0−x∗∥2

ε
2

α+1
+ 1

)
.
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Sampling - Generation from Data
Sample from a probability distribution ν ∝ exp (−f(x)) where f has certain
properties, such as convexity and smoothness

Extensively used in Bayesian inference and scientific computing

(c) Statistical Mechanics (d) Molecular Dynamics
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Proximal Sampling

Algorithm ASF
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η∥xk − y∥2]
2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1

2η∥x− yk∥2]

Restricted Gaussian Oracle (RGO)
Given y, sample from

πX|Y (·|y) ∝ exp

(
−f(·)− 1

2η
∥ · −y∥2

)
.

Without an implementable and provable RGO, ASF is only conceptual.
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RGO Implementation

RGO: given y, sample from exp(−fη
y (x))

Algorithm RGO Rejection Sampling

1. Run RCPM to compute xJ and x̃J

2. Generate sample X ∼ exp(−h1(x))
3. Generate sample U ∼ U [0, 1]
4. If

U ≤
exp(−fη

y (X))

exp(−h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.
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Rejection Sampling

Define

h1 :=
1

2η
∥ · −xJ∥2 + fη

y (x̃J)− δ,

h2 :=
1

2η
∥ · −x∗∥2 + Lα

α+ 1
∥ · −x∗∥α+1 + fη

y (x
∗).

We have h1(x) ≤ fη
y (x) ≤ h2(x).

empty line
The intuition is to build a proposal as a Gaussian close to exp(−fη

y (x)). Similar
to the Laplace approximation of a density.
empty line
Known for RJ: X is an unbiased sample from exp(−fη

y (x)) and the probability
that X is accepted is

P
(
U ≤

exp(−fη
y (X))

exp(−h1(X))

)
=

∫
exp(−fη

y (x))dx∫
exp(−h1(x))dx

≥
∫
exp(−h2(x))dx∫
exp(−h1(x))dx

.
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Rejection Sampling Efficiency

Lemma
Let α ∈ [0, 1], η > 0, a ≥ 0 and d ≥ 1. If

2a(ηd)(α+1)/2 ≤ 1,

then ∫
exp

(
− 1

2η
∥x∥2 − a∥x∥α+1

)
dx ≥ (2πη)d/2

2
.

Proposition

Assume f is convex and Lα-semi-smooth. If

η ≤ (α+ 1)
2

α+1

(2Lα)
2

α+1 d
,

then the expected number of iterations in the rejection sampling of RGO is at
most 2 exp(δ).
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ASF Complexity
Another ingredient for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)
If ν ∝ exp(−f) is log-concave, then xk of ASF ∼ ρk, which satisfies

Hν(ρk) ≤
W 2

2 (ρ0, ν)

kη
.

If ν ∝ exp(−f) satisfies log-Sobolev inequality with CLSI > 0, then

Hν(ρk) ≤
Hν(ρ0)(

1 + η
CLSI

)2k .
If ν ∝ exp(−f) satisfies Poincaré inequality with CPI > 0, then

χ2
ν(ρk) ≤

χ2
ν(ρ0)(

1 + η
CPI

)2k .
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Total Complexity

Combining complexities of ASF, RGO, and RCPM

Theorem
Assume f is convex and Lα-semi-smooth, then ASF using the RGO
implementation, initialized with ρ0 and stepsize η ≍ 1/(L

2
α+1
α d), has the

iteration-complexity bound

O

L
2

α+1
α dW 2

2 (ρ0, ν)

ε

 (1)

to achieve ε error to the target ν ∝ exp(−f) in terms of KL divergence. Each
RGO requires Õ

(
1
d

(
1
δ

) 1−α
α+1 + 1

)
subgradient evaluations of f and 2 exp(δ)

rejection steps in expectation.

Generalize to LSI, PI, composite.
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Approximation

Algorithm ASF
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η∥xk − y∥2]
2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1

2η∥x− yk∥2]

Algorithm ULA
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η∥xk − y∥2]
2. Sample xk+1 ∼ e−⟨∇f(yk),x−yk⟩− 1

2η ∥x−yk∥2

∝ e−
1
2η ∥x−(yk−η∇f(yk))∥2

xk+1 = yk − η∇f(yk) +
√
ηzk, zk ∼ N(0, I),

yk+1 = xk+1 +
√
ηz′k, z′k ∼ N(0, I).

=⇒ yk+1 = yk−η∇f(yk)+
√
η(zk+z′k) = yk−η∇f(yk)+

√
2ηz, z ∼ N(0, I)

ULA can be viewed as ASF with RGO implemented without rejection

h1(x) = f(yk) + ⟨f ′(yk), x− yk⟩+
1

2η
∥x− yk∥2 ≤ f(x) +

1

2η
∥x− yk∥2 = fη

yk
(x)
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Conclusion

Interplay between optimization and sampling
Proximal frameworks

Proximal point framework
Alternating sampling framework

Proximal oracles
Proximal map
Restricted Gaussian oracle

Applications
Adaptive proximal bundle method
Proximal sampling algorithm

Simplifications
Subgradient method
Unadjusted Langevin algorithm

empty line
Future directions: Parameter-free sampling? Acceleration in sampling?
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Thank you!
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