Proximal Oracles for Optimization and Sampling

Jiaming Liang

Department of Computer Science & Goergen Institute for Data Science Univerity of Rochester

March 24, 2024

Joint work with Yongxin Chen (Georgia Tech)

IOS Conference 2024, Houston, Texas

イロト イロト イヨト イヨト 二日

1/28

Algorithm design for optimization and sampling using proximal oracles.

(a) Optimization, $\min f(x)$

(b) Sampling, samp $\exp(-f(x))$

Gradient descent

$$x_{k+1} = x_k - \eta \nabla f(x_k)$$

 \bullet Unadjusted Langevin algorithm (ULA), $\nu(x) \propto \exp(-f(x))$

$$x_{k+1} = x_k - \eta \nabla f(x_k) + \sqrt{2\eta}z, \quad z \sim \mathcal{N}(0, I)$$

equivalent to sampling $x_{k+1} \sim p(y|x_k)$ where

$$p(y|x_k) \propto \exp\left(-\frac{1}{2\eta}\|x - (x_k - \eta \nabla f(x_k))\|^2\right)$$

<ロト < 部ト < 言ト < 言ト 言 のへで 3/28 Langevin dynamics

$$\mathrm{d}X_t = -\nabla f(X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t$$

Fokker-Planck equation (continuity equation)

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu} \right) = -\mathsf{grad}_{\rho_t} H_{\nu}(\rho_t)$$

Jordan, Kinderlehrer, and Otto 1998: Langevin dynamics in space corresponds to the gradient flow of the relative entropy in the space of measures with the Wasserstein metric

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \left\{ H_{\nu}(\rho) = \int \rho \log \frac{\rho}{\nu} \right\}$$

ULA is biased: $\rho_k \to \bar{\rho}$ as $k \to \infty$, but $H_{\nu}(\rho_{\infty}) > 0$.

Metropolis-adjusted Langevin algorithm: take ULA as a proposal density $p(\cdot|x_k)$, draw $y_k \sim p(y_k|x_k)$, and accept y_k with probability

$$\min\left\{1, \frac{\nu(y_k)p(x_k|y_k)}{\nu(x_k)p(y_k|x_k)}\right\}$$

MH filter makes the Markov chain reversible and hence $\boldsymbol{\nu}$ is the stationary distribution.

Joint distribution

$$\pi(x,y) \propto \exp\left(-f(x) - \frac{1}{2\eta} \|x - y\|^2\right)$$

Gibbs sampling:

- given x_k , sample $y_k \sim \pi^{Y|X}(\cdot|x_k)$
- given y_k , sample $x_{k+1} \sim \pi^{X|Y}(\cdot|y_{k+1})$

It is known from Gibbs sampling that $(x_k, y_k)_{k\geq 1}$ form a reversible MC with stationary distribution $\pi(x, y)$, whose x-marginal is $\nu(x) \propto \exp(-f(x))$.

Proximal Frameworks

Optimization

Algorithm Proximal Point Framework

1.
$$y_k \leftarrow \underset{x}{\operatorname{argmin}} \frac{1}{2\eta} \|x - x_k\|^2 = x_k$$

2. $x_{k+1} \leftarrow \underset{x}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2\eta} \|x - y_k\|^2 \right\}$

E.g., GD, SGD, AGD, Newton, Chambolle-Pock, ADMM, proximal bundle ...

Sampling

Algorithm Alternating Sampling Framework (Shen, Tian and Lee 2021)

1. Sample
$$y_k \sim \pi^{Y|X}(y \mid x_k) \propto \exp[-\frac{1}{2\eta} \|x_k - y\|^2]$$

2. Sample $x_{k+1} \sim \pi^{X|Y}(x \mid y_k) \propto \exp[-f(x) - \frac{1}{2\eta} \|x - y_k\|^2]$

E.g., ULA, proximal Langevin algorithm, symmetric Langevin algorithm ...

(A1) f is semi-smooth, i.e., there exist $\alpha \in [0,1]$ and $L_{\alpha} > 0$, s.t.

$$\|f'(u) - f'(v)\| \le L_{\alpha} \|u - v\|^{\alpha}, \quad \forall u, v \in \mathbb{R}^d$$

1) $\alpha = 1$, smooth, 2) $\alpha = 0$, nonsmooth, 3) $0 < \alpha < 1$, weakly smooth

(A2) f is composite, i.e., there exist $\alpha_i \in [0,1]$ and $L_{\alpha_i} > 0$, $i = 1, \dots, n$, s.t.

$$\|f'(u) - f'(v)\| \le \sum_{i=1}^n L_{\alpha_i} \|u - v\|^{\alpha_i}, \quad \forall u, v \in \mathbb{R}^d$$

 1 Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

Proximal Sampling Algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

Proximal Sampling Algorithm

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 10/28

Regularized Cutting-plane Method

Proximal subproblem

$$f_y^{\eta}(x^*) = \min_{x \in \mathbb{R}^d} \left\{ f_y^{\eta}(x) = f(x) + \frac{1}{2\eta} \|x - y\|^2 \right\}$$

Algorithm Regularized Cutting-Plane Method (RCPM)

- 1. Let $y \in \mathbb{R}^d$, $\eta > 0$, and $\delta > 0$ be given, and set $x_0 = \tilde{x}_0 = y$, and j = 1.
- 2. Update $f_j(x) = \max_{0 \le i \le j-1} \{ f(x_i) + \langle f'(x_i), x x_i \rangle \}.$
- 3. Compute

$$x_j = \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ f_j^{\eta}(x) := f_j(x) + \frac{1}{2\eta} ||x - y||^2 \right\},$$

$$\tilde{x}_j = \operatorname{argmin}\left\{f_y^{\eta}(x) : x \in \{x_j, \tilde{x}_{j-1}\}\right\}.$$

4. If $f_y^{\eta}(\tilde{x}_j) - f_j^{\eta}(x_j) \leq \delta$, then stop and return $J = j, x_J, \tilde{x}_J$; else, go to step 5.

5. Set $j \leftarrow j + 1$ and go to step 2.

Recursively build up a cutting-plane model

$$f_j(x) = \max_{0 \le i \le j-1} \{ f(x_i) + \langle f'(x_i), x - x_i \rangle \}$$

Convergence Analysis

Define $\delta_j := f_y^\eta(\tilde{x}_j) - f_j^\eta(x_j)$. Note that $\delta_j \ge f_y^\eta(\tilde{x}_j) - f_j^\eta(x^*)$.

Recall that we want to find $\delta_J \leq \delta$. If $\delta_j > \delta$, then $(1 + \beta)\delta_j \leq \delta_{j-1}$ where

$$\beta = \frac{1}{2\eta} \left(\frac{\alpha+1}{L_{\alpha}}\right)^{\frac{2}{\alpha+1}} \delta^{\frac{1-\alpha}{\alpha+1}}$$

The complexity is $\tilde{\mathcal{O}}(\beta^{-1}+1)$

Theorem

If f is semi-smooth, RCPM takes $\tilde{\mathcal{O}}\left(\eta L_{\alpha}^{\frac{2}{\alpha+1}}\left(\frac{1}{\delta}\right)^{\frac{1-\alpha}{\alpha+1}}+1\right)$ iterations to terminate. If f is composite, RCPM takes $\tilde{\mathcal{O}}\left(\eta M+1\right)$ iterations to terminate, where

$$M = \sum_{i=1}^{n} \frac{L_{\alpha_i}^{\frac{1}{\alpha_i+1}}}{\left[(\alpha_i+1)\delta\right]^{\frac{1-\alpha_i}{\alpha_i+1}}}$$

13/28

Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

Proximal Sampling Algorithm

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 14/28

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$
 where f is semi-smooth

proximal bundle method \approx proximal point framework + RCPM

Inner complexity is $\tilde{\mathcal{O}}(\beta^{-1}+1)$. In practice, it is desirable to have a relatively small number, say 10. Prescribe this number by choosing $\beta_0 \in (0,1]$) and check

$$(1+\beta_0)\delta_j \le \delta_{j-1}.$$

If always true, we have complexity $\tilde{\mathcal{O}}(\beta_0^{-1}+1)$. Otherwise, reduce η in the next cycle. This is because $(1+\beta)\delta_j \leq \delta_{j-1}$ where

$$\beta = \frac{1}{2\eta} \left(\frac{\alpha+1}{L_{\alpha}}\right)^{\frac{2}{\alpha+1}} \delta^{\frac{1-\alpha}{\alpha+1}}$$

This approach is adaptive and parameter-free.

Adaptive Proximal Bundle Method

Inequality to check

$$(1+\beta_0)\delta_j \le \delta_{j-1}.$$
 (*)

Algorithm Adaptive Proximal Bundle Method (APBM)

- 1. Let $y_0 \in \mathbb{R}^d$, $\eta_0 > 0$, $\beta_0 \in (0,1]$, and $\varepsilon > 0$ be given, and set k = 1
- 2. Call RCPM with $(y, \eta, \delta) = (y_{k-1}, \eta_{k-1}, \varepsilon/2)$ and output $(y_k, \tilde{y}_k) = (x_J, \tilde{x}_J)$
- 3. In the execution of RCPM, if (*) is always true, then set $\eta_k = \eta_{k-1}$; otherwise, set $\eta_k = \eta_{k-1}/2$
- 4. Set $k \leftarrow k+1$ and go to step 2.

Theorem

The complexity of APBM to find an ε -solution is $\tilde{\mathcal{O}}$

$$\left(\frac{L_{\alpha}^{\frac{2}{\alpha+1}}\|y_0-x_*\|^2}{\varepsilon^{\frac{2}{\alpha+1}}}+1\right).$$

Regularized Cutting-Plane Method

2 Adaptive Proximal Bundle Method

Sampling - Generation from Data

Sample from a probability distribution $\nu \propto \exp(-f(x))$ where f has certain properties, such as convexity and smoothness

Extensively used in Bayesian inference and scientific computing

Algorithm ASF

- 1. Sample $y_k \sim \pi^{Y|X}(y \mid x_k) \propto \exp[-\frac{1}{2n} ||x_k y||^2]$
- 2. Sample $x_{k+1} \sim \pi^{X|Y}(x \mid y_k) \propto \exp[-f(x) \frac{1}{2n} ||x y_k||^2]$

Restricted Gaussian Oracle (RGO)

Given y, sample from

$$\pi^{X|Y}(\cdot|y) \propto \exp\left(-f(\cdot) - \frac{1}{2\eta} \|\cdot -y\|^2\right).$$

Without an implementable and provable RGO, ASF is only conceptual.

Algorithm ASF

- 1. Sample $y_k \sim \pi^{Y|X}(y \mid x_k) \propto \exp[-\frac{1}{2n} ||x_k y||^2]$
- 2. Sample $x_{k+1} \sim \pi^{X|Y}(x \mid y_k) \propto \exp[-f(x) \frac{1}{2n} ||x y_k||^2]$

Restricted Gaussian Oracle (RGO)

Given y, sample from

$$\pi^{X|Y}(\cdot|y) \propto \exp\left(-f(\cdot) - \frac{1}{2\eta} \|\cdot -y\|^2\right).$$

Without an implementable and provable RGO, ASF is only conceptual.

RGO: given y, sample from $\exp(-f_y^{\eta}(x))$

Algorithm RGO Rejection Sampling

- 1. Run RCPM to compute x_J and \tilde{x}_J
- 2. Generate sample $X \sim \exp(-h_1(x))$
- 3. Generate sample $U \sim \mathcal{U}[0, 1]$

4. If

$$U \le \frac{\exp(-f_y^\eta(X))}{\exp(-h_1(X))},$$

then accept/return X; otherwise, reject X and go to step 2.

Rejection Sampling

Define

$$h_1 := \frac{1}{2\eta} \| \cdot -x_J \|^2 + f_y^{\eta}(\tilde{x}_J) - \delta,$$

$$h_2 := \frac{1}{2\eta} \| \cdot -x^* \|^2 + \frac{L_\alpha}{\alpha + 1} \| \cdot -x^* \|^{\alpha + 1} + f_y^{\eta}(x^*).$$

We have $h_1(x) \leq f_y^{\eta}(x) \leq h_2(x)$.

The intuition is to build a proposal as a Gaussian close to $\exp(-f_y^\eta(x))$. Similar to the Laplace approximation of a density.

Known for RJ: X is an unbiased sample from $\exp(-f_y^\eta(x))$ and the probability that X is accepted is

$$\mathbb{P}\left(U \leq \frac{\exp(-f_y^{\eta}(X))}{\exp(-h_1(X))}\right) = \frac{\int \exp(-f_y^{\eta}(x)) \mathrm{d}x}{\int \exp(-h_1(x)) \mathrm{d}x} \geq \frac{\int \exp(-h_2(x)) \mathrm{d}x}{\int \exp(-h_1(x)) \mathrm{d}x}$$

<ロ > < 部 > < 書 > < 書 > 書) < つ へ (?) 21/28

Rejection Sampling Efficiency

Lemma

Let $\alpha \in [0,1]$, $\eta > 0$, $a \ge 0$ and $d \ge 1$. If

$$2a(\eta d)^{(\alpha+1)/2} \le 1,$$

then

$$\int \exp\left(-\frac{1}{2\eta}\|x\|^2 - a\|x\|^{\alpha+1}\right) \mathrm{d}x \ge \frac{(2\pi\eta)^{d/2}}{2}.$$

Proposition

Assume f is convex and L_{α} -semi-smooth. If

$$\eta \le \frac{(\alpha+1)^{\frac{2}{\alpha+1}}}{(2L_{\alpha})^{\frac{2}{\alpha+1}}d},$$

then the expected number of iterations in the rejection sampling of RGO is at most $2 \exp(\delta)$.

ASF Complexity

Another ingredient for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)

If $\nu \propto \exp(-f)$ is log-concave, then x_k of ASF $\sim
ho_k$, which satisfies

$$H_{\nu}(\rho_k) \le \frac{W_2^2(\rho_0, \nu)}{k\eta}.$$

If $\nu \propto \exp(-f)$ satisfies log-Sobolev inequality with $C_{\text{LSI}} > 0$, then

$$H_{\nu}(\rho_k) \leq \frac{H_{\nu}(\rho_0)}{\left(1 + \frac{\eta}{C_{LSI}}\right)^{2k}}.$$

If $\nu \propto \exp(-f)$ satisfies Poincaré inequality with $C_{\rm PI} > 0$, then

$$\chi_{\nu}^{2}(\rho_{k}) \leq \frac{\chi_{\nu}^{2}(\rho_{0})}{\left(1 + \frac{\eta}{C_{\mathrm{PI}}}\right)^{2k}}.$$

Total Complexity

Combining complexities of ASF, RGO, and RCPM

Theorem

Assume f is convex and L_{α} -semi-smooth, then ASF using the RGO implementation, initialized with ρ_0 and stepsize $\eta \asymp 1/(L_{\alpha}^{\frac{2}{\alpha+1}}d)$, has the iteration-complexity bound

$$\mathcal{O}\left(\frac{L_{\alpha}^{\frac{2}{\alpha+1}}dW_{2}^{2}(\rho_{0},\nu)}{\varepsilon}\right) \tag{1}$$

to achieve ε error to the target $\nu \propto \exp(-f)$ in terms of KL divergence. Each RGO requires $\tilde{\mathcal{O}}\left(\frac{1}{d}\left(\frac{1}{\delta}\right)^{\frac{1-\alpha}{\alpha+1}}+1\right)$ subgradient evaluations of f and $2\exp(\delta)$ rejection steps in expectation.

Generalize to LSI, PI, composite.

Algorithm ASF

- 1. Sample $y_k \sim \pi^{Y|X}(y \mid x_k) \propto \exp[-\frac{1}{2\eta} \|x_k y\|^2]$
- 2. Sample $x_{k+1} \sim \pi^{X|Y}(x \mid y_k) \propto \exp[-f(x) \frac{1}{2\eta} ||x y_k||^2]$

Algorithm ULA

1. Sample
$$y_k \sim \pi^{Y|X}(y \mid x_k) \propto \exp[-\frac{1}{2\eta} \|x_k - y\|^2]$$

2. Sample $x_{k+1} \sim e^{-\langle \nabla f(y_k), x - y_k \rangle - \frac{1}{2\eta} \|x - y_k\|^2} \propto e^{-\frac{1}{2\eta} \|x - (y_k - \eta \nabla f(y_k))\|^2}$

$$x_{k+1} = y_k - \eta \nabla f(y_k) + \sqrt{\eta} z_k, \quad z_k \sim N(0, I),$$

$$y_{k+1} = x_{k+1} + \sqrt{\eta} z'_k, \quad z'_k \sim N(0, I).$$

 $\implies y_{k+1} = y_k - \eta \nabla f(y_k) + \sqrt{\eta} (z_k + z'_k) = y_k - \eta \nabla f(y_k) + \sqrt{2\eta} z, \quad z \sim N(0, I)$

ULA can be viewed as ASF with RGO implemented without rejection

$$h_1(x) = f(y_k) + \langle f'(y_k), x - y_k \rangle + \frac{1}{2\eta} \|x - y_k\|^2 \le f(x) + \frac{1}{2\eta} \|x - y_k\|^2 = f_{y_k}^{\eta}(x)$$

Conclusion

Interplay between optimization and sampling

- Proximal frameworks
 - Proximal point framework
 - Alternating sampling framework
- Proximal oracles
 - Proximal map
 - Restricted Gaussian oracle
- Applications
 - Adaptive proximal bundle method
 - Proximal sampling algorithm
- Simplifications
 - Subgradient method
 - Unadjusted Langevin algorithm

Future directions: Parameter-free sampling? Acceleration in sampling?

- Chen, Chewi, Salim, and Wibisono. Improved Analysis for a Proximal Algorithm for Sampling. Conference on Learning Theory 2022
- Jordan, Kinderlehrer, and Otto. The variational formulation of the Fokker–Planck equation. SIAM Journal on Mathematical Analysis 1998
- Lee, Shen, and Tian. Structured Logconcave Sampling with a Restricted Gaussian Oracle. Conference on Learning Theory 2021

Thank you!