▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A unified analysis of a class of proximal bundle methods for smooth-nonsmooth convex composite optimization

Jiaming Liang

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Renato Monteiro

October 27, 2021

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion

This talk is based on the following papers:

- J. Liang and R. D. C. Monteiro. A unified analysis of a class of proximal bundle methods for smooth-nonsmooth convex composite optimization. Technical report, 2021.
- J. Liang and R. D. C. Monteiro. A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes. To appear in SIAM Journal on Optimization, available on arXiv:2003.11457, 2020.

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method

Introduction

Main problem:

$$\phi_* := \min \left\{ \phi(x) := f(x) + h(x) : x \in \mathbb{R}^n \right\}$$
(1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main goal:

To present a framework consisting of most proximal bundle methods for convex smooth-nonsmooth composite optimization.

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Assumptions				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Assumptions

- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method

5 Conclusion

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Assumptions				

Convex hybrid (smooth-nonsmooth) composite problem

Consider (1), where

(A1) f, h ∈ Conv (ℝⁿ) are such that dom h ⊂ dom f and a subgradient oracle f' : dom h → ℝⁿ satisfying f'(x) ∈ ∂f(x) for every x ∈ dom h is available;

(A2) the set of optimal solutions X^* of problem (1) is nonempty;

(A3) $||f'(u) - f'(v)|| \le 2M_f + L_f ||u - v||$ for every $u, v \in \text{dom } h$;

(A4) h is μ -convex.

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Motivation				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assumptions

Motivation

• Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method

5 Conclusion

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Motivation				

In a previous paper ¹, we proposed a relaxed proximal bundle (RPB) method that is optimal for convex nonsmooth optimization.

In this work, we generalize and improve RPB in the following aspects:

- 1. hybrid cases;
- 2. a general framework including 3 bundle update schemes;
- 3. a unified and much simpler analysis;
- 4. stronger complexity results;
- 5. an adaptive variant.

¹J. Liang and R. D. C. Monteiro. A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes. To appear in SIAM Journal on Optimization, available on arXiv:2003.11457; $2020.4 \le 1 \le 1 \le 200.6$

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Review of the bundle	method			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method
- 5 Conclusion

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Review of the bundle method	od			

Bundle method

Solving the proximal problem

$$x^{+} \leftarrow \min_{u \in \mathbb{R}^{n}} \left\{ \phi(u) + \frac{1}{2\lambda} \|u - x\|^{2} \right\}$$
(2)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

can be as difficult as solving $\min\{\phi(u) : u \in \mathbb{R}^n\}$.

Bundle method approximately solves (2) and recursively builds up a model by using a standard cutting-plane approach.

Bundle method

The bundle method solves a sequence of prox subproblems of the form

$$x_j = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_j^{\lambda}(u) := f_j(u) + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}^c\|^2 \right\}, \qquad (3)$$

where x_{j-1}^{c} is the **prox-center**, f_{j} is the **cutting-plane** model defined as

$$f_j(u) = \max\{f(x) + \langle f'(x), u - x \rangle : x \in C_j\} \quad \forall u \in \mathbb{R}^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Review of the bundle	method			

Bundle method

The bundle method solves a sequence of prox subproblems of the form

$$x_j = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_j^{\lambda}(u) := f_j(u) + h(u) + \frac{1}{2\lambda} \|u - x_{j-1}^c\|^2 \right\},$$

where x_{j-1}^{c} is the **prox-center**, f_{j} is the **cutting-plane** model defined as

$$f_j(u) = \max\{f(x) + \langle f'(x), u - x \rangle : x \in C_j\} \quad \forall u \in \mathbb{R}^n,$$

and decides to perform a **serious** or **null** iteration based on the **descent** condition $\phi(x_j) \leq (1 - \gamma)\phi(x_{j-1}^c) + \gamma(f_j + h)(x_j)$ for some $\gamma \in (0, 1)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
НСРВ				
 Introd 	duction			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

HCPB

• RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method

5 Conclusion

A generic bundle update scheme

Definition

Let $C_{\mu}(\phi)$ denote a class of convex functions Γ satisfying $\Gamma \leq \phi$ and Γ is μ -convex.

For a given quadruple $(\Gamma, x_0, \lambda, \tau) \in C_{\mu}(\phi) \times \mathbb{R}^n \times \mathbb{R}_{++} \times (0, 1)$, the generic bundle update scheme returns $\Gamma^+ \in C_{\mu}(\phi)$ satisfying

$$\tau \overline{\Gamma} + (1 - \tau) [\ell_f(\cdot; x) + h] \le \Gamma^+$$
(4)

where

$$x = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma(u) + \frac{1}{2\lambda} \|u - x_0\|^2 \right\}$$

and $\bar{\mathsf{\Gamma}} \in \mathcal{C}_\mu(\phi)$ is such that

$$\bar{\Gamma}(x) = \Gamma(x), \quad x = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \bar{\Gamma}(u) + \frac{1}{2\lambda} \|u - x_0\|^2 \right\}. \tag{5}$$

Examples

- (E1) convex combination update: $\Gamma^+ = \Gamma^+_{\tau} := \tau \Gamma + (1 - \tau)[\ell_f(\cdot; x) + h]$ with $\overline{\Gamma} = \Gamma$.
- (E2) **multiple cuts update:** assume $\Gamma = \Gamma(\cdot; C)$ where $C \subset \mathbb{R}^n$ is the current bundle set and $\Gamma(\cdot; C) := \max\{\ell_f(\cdot; c) : c \in C\} + h$, choose the next bundle set C^+ satisfying

$$C(x)\cup\{x\}\subset C^+\subset C\cup\{x\}, \quad C(x):=\{c\in C: \ell_f(x;c)+h(x)=\Gamma(x)\},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and then set $\Gamma^+ = \Gamma(\cdot; C^+)$ and $\overline{\Gamma} = \Gamma(\cdot; C(x))$.

Examples

(E3) cut aggregation update: assume $\Gamma = \max\{A_f, \ell_f(\cdot; x^-)\} + h$ where A_f is an affine function satisfying $A_f \leq f$, set

$$\Gamma^+ = \max\{A_f^+, \ell_f(\cdot; x)\} + h$$

where $A_f^+ = \theta A_f + (1 - \theta) \ell_f(\cdot; x^-)$ and

$$\theta \begin{cases} = 1, & \text{if } A_f(x) > \ell_f(x; x^-), \\ = 0, & \text{if } A_f(x) < \ell_f(x; x^-), \\ \in [0, 1], & \text{if } A_f(x) = \ell_f(x; x^-). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Also set $\overline{\Gamma} = A_f^+ + h$.

Hybrid composite proximal bundle (HCPB) framework

0. Let $x_0 \in \operatorname{dom} h$, $\lambda > 0$, $\bar{\varepsilon} > 0$ and $\tau \in [\bar{\tau}, 1)$ be given where

$$\bar{\tau} = \left[1 + \frac{(1 + \lambda \bar{\mu})\bar{\varepsilon}}{8\lambda T_{\bar{\varepsilon}}}\right]^{-1},\tag{6}$$

and set $y_0 = x_0$, $t_0 = 0$ and j = 0;

1. if $t_j \leq \overline{\varepsilon}/2$, then perform a **serious update**, i.e., set $x_{j+1}^c = x_j$ and find $\Gamma_{j+1} \in C_{\mu}(\phi)$ such that $\Gamma_{j+1} \geq \ell_f(\cdot; x_j) + h$; else, perform a **null update**, i.e., set $x_{j+1}^c = x_j^c$ and find $\Gamma_{j+1} \in C_{\phi}(\Gamma_j, x_j^c, \lambda, \tau)$;

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
НСРВ				
2. com	npute			

$$x_{j+1} = \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \Gamma_{j+1}^{\lambda}(u) := \Gamma_{j+1}(u) + \frac{1}{2\lambda} \|u - x_{j+1}^c\|^2 \right\}, \quad (7)$$

choose $y_{j+1} \in \{x_{j+1}, y_j\}$ such that

$$\phi_{j+1}^{\lambda}(y_{j+1}) = \min\left\{\phi_{j+1}^{\lambda}(x_{j+1}), \phi_{j+1}^{\lambda}(y_{j})\right\}$$
(8)

where ϕ_i^{λ} is defined as

$$\phi_j^{\lambda} := \phi + \frac{1}{2\lambda} \| \cdot - x_j^c \|^2, \tag{9}$$

(ロ)、(型)、(E)、(E)、 E) の(()

and set

$$m_{j+1} = \Gamma_{j+1}^{\lambda}(x_{j+1}), \quad t_{j+1} = \phi_{j+1}^{\lambda}(y_{j+1}) - m_{j+1};$$
 (10)

3. set $j \leftarrow j + 1$ and go to step 1.

HCPB vs. standard bundle method

- introduce an auxiliary iterate y_j , convergence in $\{y_j\}$
- null/serious iterate decision making based on t_j
- motivation for y_j and t_j : define $m_j^* := \min\{\phi_j^{\lambda}(u) : u \in \mathbb{R}^n\}$, then we have

$$m_j \leq m_j^* \leq \phi_j^\lambda(y_j),$$

and hence

$$\phi_j^{\lambda}(y_j) - m_j^* \leq t_j \leq \frac{\varepsilon}{2}$$

where $t_j = \phi_j^{\lambda}(y_j) - m_j$.

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
RPB as an instance of	НСРВ			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- Adaptive HCPB method
- 5 Conclusion

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
RPB as an instance of H	СРВ			

RPB can be viewed as HCPB with bundle update scheme (E2).

While RPB only deals with the nonsmooth case ($L_f = 0$), HCPB extends the analysis to the hybrid case ($L_f \ge 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Complexity bounds fo	r HCPB			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- 4 Adaptive HCPB method

5 Conclusion

Complexity for HCPB variants

Theorem

Let $x_0 \in \text{dom } h$, $\bar{\varepsilon} > 0$ and C > 0 be given, and assume

$$\frac{C^2(M_f^2 + \bar{\varepsilon}L_f)d_0^2}{\bar{\varepsilon}^2} \ge 1.$$
(11)

Then, any variant of HCPB with input (x₀, $\lambda, \bar{\varepsilon}, \tau$) satisfying

$$\tau = \left[1 + \frac{(1 + \lambda\mu)\bar{\varepsilon}}{8\lambda(M_f^2 + \bar{\varepsilon}L_f)}\right]^{-1}, \quad \frac{\bar{\varepsilon}}{C(M_f^2 + \bar{\varepsilon}L_f)} \le \lambda \le \frac{Cd_0^2}{\bar{\varepsilon}}, \quad (12)$$

has $\bar{\varepsilon}$ -iteration complexity given (up to a logarithmic term) by

$$\mathcal{O}_1\left(\min\left\{\frac{(M_f^2+\bar{\varepsilon}L_f)d_0^2}{\bar{\varepsilon}^2}, \left(\frac{M_f^2+\bar{\varepsilon}L_f}{\mu\bar{\varepsilon}}+1\right)\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}}+1\right)\right\}\right). \quad (13)$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Complexity bounds for HCPB				

Complexity for τ -free HCPB variants in the nonsmooth case

Theorem

Let $x_0 \in \text{dom } h$, $\overline{\varepsilon} > 0$ and C > 0 be given, and assume

$$\frac{CM_f d_0}{\bar{\varepsilon}} \ge 1. \tag{14}$$

Then, any variant of the $\tau\text{-free}$ HCPB subclass with input $(x_0,\lambda,\bar{\epsilon})$ satisfying

$$\frac{\bar{\varepsilon}}{CM_f^2} \le \lambda \le \frac{Cd_0^2}{\bar{\varepsilon}},\tag{15}$$

has $\bar{\varepsilon}$ -iteration complexity given (up to a logarithmic term) by

$$\mathcal{O}_1\left(\min\left\{\frac{M_f^2 d_0^2}{\bar{\varepsilon}^2}, \left(\frac{M_f^2}{\mu\bar{\varepsilon}} + 1\right)\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}} + 1\right)\right\}\right).$$
(16)

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Comparison with RPB				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

- Assumptions
- Motivation
- Review of the bundle method

2 HCPB framework

- HCPB
- RPB as an instance of HCPB

3 Main results

- Complexity bounds for HCPB
- Comparison with RPB
- 4 Adaptive HCPB method

5 Conclusion

Introduction	HCPB framework	Main results	Adaptive HCPB method	Conclusion
Comparison with RPB				

Complexity of RPB in the strongly convex case

Theorem

Let $x_0 \in \operatorname{dom} h$, $\overline{\varepsilon} > 0$ and C > 0 be given, and assume

$$\frac{CM_f d_0}{\bar{\varepsilon}} \ge 1, \qquad 0 \le \mu \le \frac{CM_f}{d_0}.$$
(17)

Then, RPB with input $(x_0, \lambda, \overline{\varepsilon})$ satisfying

$$\frac{d_0}{M_f} \le \lambda \le \frac{C d_0^2}{\bar{\varepsilon}} \tag{18}$$

has $\bar{\varepsilon}$ -iteration complexity given by

$$\mathcal{O}_1\left(\min\left\{\frac{M_f^2 d_0^2}{\bar{\varepsilon}^2}, \left(\frac{M_f^2}{\mu\bar{\varepsilon}} + 1\right)\log\left(\frac{\mu d_0^2}{\bar{\varepsilon}} + 1\right)\right\}\right).$$
(19)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Complexity of RPB in the convex case

Theorem

Let $x_0 \in \operatorname{dom} h$, $\overline{\varepsilon} > 0$ and C > 0 be given, and assume

$$\frac{CM_f d_0}{\bar{\varepsilon}} \ge 1, \qquad M_h \le CM_f, \qquad \mu = 0.$$
 (20)

Then, RPB with input $(x_0, \lambda, \overline{\varepsilon})$ satisfying

$$\frac{\bar{\varepsilon}}{CM_f^2} \le \lambda \le \frac{Cd_0^2}{\bar{\varepsilon}} \tag{21}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

has $\bar{\varepsilon}$ -iteration complexity given by $\mathcal{O}_1(M_f^2 d_0^2/\bar{\varepsilon}^2)$.

Adaptive HCPB (A-HCPB)

0. Let $x_0 \in \text{dom } h$, $\lambda > 0$, $\tau_0 = 0$ and $\overline{\varepsilon} > 0$ be given, and set $y_0 = x_0$, $t_0 = 0$ and j = 0;

1. set $\tau = \tau_i$;

2. if $t_j \leq \overline{\varepsilon}/2$, then perform a **serious update**, i.e., set $x_{j+1}^c = x_j$ and $\Gamma_{j+1} = \ell_f(\cdot; x_j) + h$; else, perform a **null update**, i.e., set $x_{j+1}^c = x_j^c$ and $\Gamma_{j+1} = \tau \Gamma_j + (1 - \tau)[\ell_f(\cdot; x_j) + h]$;

3. compute x_{j+1} , y_{j+1} , m_{j+1} and t_{j+1} as in step 2 of HCPB;

4. if $t_j > \overline{\varepsilon}/2$ and $t_{j+1} > \tau t_j + (1 - \tau)\overline{\varepsilon}/4$, then set $\tau = (1 + \tau)/2$ and go to step 2; else, set $\tau_{j+1} = \tau$ and $j \leftarrow j + 1$, and go to step 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complexity of A-HCPB

The general $\bar{\varepsilon}$ -iteration complexity for A-HCPB is

$$\left[2\left(1+\frac{8\lambda_{\mu}(M_{f}^{2}+\bar{\varepsilon}L_{f})}{\bar{\varepsilon}}\right)\log\left(\frac{4\bar{t}}{\bar{\varepsilon}}\right)+1\right]\left[\min\left\{\frac{d_{0}^{2}}{\lambda\bar{\varepsilon}},\frac{1}{\mu\lambda_{\mu}}\log\left(\frac{\mu d_{0}^{2}}{\bar{\varepsilon}}+1\right)\right\}+1\right]$$

Under same assumptions as in previous theorems of HCPB, A-HCPB has the same iteration complexity as HCPB.

The total number of times au is updated in step 4 is at most

$$\left\lceil \log \left(1 + \frac{8 \lambda_{\mu} (M_f^2 + \bar{\varepsilon} L_f)}{\bar{\varepsilon}} \right) \right\rceil.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Concluding remarks

- A generic HCPB framework for convex hybrid composite optimization
- Including most proximal bundle variants such as RPB, and a new convex combination bundle update scheme
- A unified and simple analysis
- Stronger complexity results
- An adaptive variant that requires no prior knowledge of problem parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

THE END Thanks!