Georgia Tech

An Overview

- **Problem**: Sampling from a distribution π on \mathbb{R}^d proportional to $\exp(-f(x))$ when and M-Lipschitz continuous.
- Goal: Design an algorithm to generate a point following a distribution within ε to
- Four Algorithmic Tools:
- the alternating sampling framework;
- the restricted Gaussian oracle (RGO);
- the proximal bundle method;
- the rejection sampling algorithm.
- Features:
- a polynomial complexity $\tilde{\mathcal{O}}(d\varepsilon^{-1})$ to obtain ε total variation distance to the targ
- an efficient and implementable RGO for convex and Lipschitz continuous funct

Main results

Total complexity for strongly convex potentials

Theorem 1. Let $x^0 \in \mathbb{R}^d$, $\varepsilon > 0$, $\delta > 0$, M > 0 $\mu > 0$ and $\eta > 0$ satisfying

$$\frac{\delta}{M^2} \leq \eta \leq \min\left\{\frac{1}{64M^2d}, \frac{1}{\mu}\right\}$$

be given. Let π be a distribution on \mathbb{R}^d satisfying

$$\pi(x) \propto \exp(-g(x)) = \exp\left(-f(x) - \frac{\mu}{2} ||x - x^0||^2\right).$$

Consider Algorithm 1 using Algorithm 4 as an RGO for step 1, initialized at a β -v iteration-complexity bound for obtaining ε total tolerance to π in terms of total

$$\tilde{\mathcal{O}}\left(\frac{M^2}{\mu\delta}\log\left(\frac{\log\beta}{\varepsilon}\right)+1\right),$$

and each iteration queries one subgradient oracle of f and solves a quadratic provide the provided set f and solves a quadratic provided the provided set f and solve the provided set f and Moreover, the number of Gaussian distribution sampling queries in Algorithm 1

$$\Theta\left(\frac{1}{\eta\mu}\log\left(\frac{\log\beta}{\varepsilon}\right)+1\right).$$

Total complexity for convex potentials

Theorem 2. Let π be a distribution on \mathbb{R}^d satisfying $\pi(x) \propto \exp(-f(x))$. Let $x^0 \in \mathbb{R}^d$

$$\mu = \frac{\varepsilon}{\sqrt{\mathcal{M}_4} + \|x^0 - x^*\|^2}$$

where

$$\mathcal{M}_4 = \int_{x \in \mathbb{R}^d} \|x - x^*\|^4 d\pi(x), \quad x^* \in \operatorname{Argmin}\left\{f(x) : x \in \mathbb{R}^d\right\}$$

Choose $\delta > 0$ and $\eta > 0$ such that (1) holds and consider Algorithm 1 using Algorithm 1, applied to

$$g = f + \frac{\mu}{2} \left\| \cdot - x^0 \right\|^2,$$

and initialized at a β -warm start. Then, the iteration-complexity bound for obtain

$$\tilde{\mathcal{O}}\left(\frac{M^2\left(\sqrt{\mathcal{M}_4} + \|x^0 - x^*\|^2\right)}{\varepsilon\delta}\log\left(\frac{\log\beta}{\varepsilon}\right) + 1\right).$$

A Proximal Algorithm for Sampling from Non-smooth Potentials **Georgia Statistics Day 2021**

Jiaming Liang¹ Yongxin Chen²

¹School of Industrial and Systems Engineering, Georgia Tech

	Alternating sampling
ere the potential f is convex total variation distance to π .	Proximal mapping in optimization: $\ \ rgmin \left\{g(\cdot)- ight.$
	RGO in sampling: sample $\exp\left(-g\right)$
rget density π ; actions.	Algorithm 1 Alternating Sampling Framework 0. sample $y \sim \pi_x(y) \propto e^{-\frac{1}{2\eta} x-y ^2}$ 1. sample $x \sim \pi_y(x) \propto e^{-g(x) - \frac{1}{2\eta} x-y ^2}$
	Theorem 3. Let π be a distribution on \mathbb{R}^d with $\pi(x) \propto$ and let $\varepsilon \in (0, 1)$. Let $\eta > 0$, $T = \Theta\left(\frac{1}{\eta}\right)$
(1)	for some $\beta \ge 1$. Algorithm 1, initialized at a β -warm solution with parameter η a constant number of times, and obt
	RGO with an opt
-warm start, then the I variation is	Assume that f has a proximal mapping and let $x^* = \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ g^\eta(x) := x \in \mathbb{R}^d \right\}$
programming problem. 1 is	Lemma 1. Let $\eta_{\mu} := \eta/(1+\eta\mu)$ and define $h_1 := \frac{1}{2\eta_{\mu}} \ \cdot -x^*\ ^2 + g^{\eta}(x^*), h_2 :=$
	Then, for every $x \in \mathbb{R}^d$, we have $h_1(x) \leq g^\eta$
$\in \mathbb{R}^d$ and $\varepsilon > 0$ be given and	Algorithm 2 Implementation of the RGO with an optimal. Compute x^* as in (2); 2. Generate $X \sim \exp(-h_1(x))$;
$\mathbb{R}^d \Big\}$.	3. Generate $U \sim \mathcal{U}[0, 1]$; 4. If
orithm 4 as an RGO for step	$U \leq \frac{ex}{ex}$ then accept $\tilde{X} = X$; otherwise, reject X and go to s
aining $arepsilon$ total tolerance to π is	Proposition 1. Let $p(x) = p(x y) \propto \exp\left(\int_{-\infty}^{\infty} p(x) dx \right)$

then $\tilde{X} \sim p(x)$. If $\eta_{\mu} \leq 1/(16M^2d)$, then the expected number of iteration in Algorithm 2 is at most 2.

²School of Aerospace Engineering, Georgia Tech

g framework and RGO

$$+\frac{1}{2\eta}\|\cdot -y\|^2\bigg\}\,.$$

$$g(\cdot) - \frac{1}{2\eta} \| \cdot -y \|^2 \bigg) \,.$$

 $x \exp(-f_{\text{oracle}}(x))$ such that f_{oracle} is μ -strongly convex,

$$\frac{1}{\eta\mu}\log\frac{\log\beta}{\varepsilon}$$

start, runs in T iterations, each querying RGO for f_{oracle} btais ε total variation distance to π .

otimization oracle

$$x = g(x) + \frac{1}{2\eta} ||x - y||^2 \bigg\}.$$

$$= \frac{1}{2\eta_{\mu}} \|\cdot -x^*\|^2 + 2M\|\cdot -x^*\| + g^{\eta}(x^*).$$

$$\eta(x) \le h_2(x).$$

imization oracle

$$\frac{\operatorname{xp}(-g^{\eta}(X))}{\operatorname{xp}(-h_1(X))},$$

step 2.

$$\left(-g(x) - \frac{1}{2\eta} \|x - y\|^2\right),\,$$

Consider the subproblem

and we aim at obtaining a δ -solution (i.e., a point \bar{x} such that $g^{\eta}(\bar{x}) - g_*^{\eta} \leq \delta$) to the above subproblem. **Algorithm 3** Solving the Proximal Bundle Subproblem

0. Let $y, \eta > 0$ and $\delta > 0$ be given, and set $\tilde{x}_0 = y, C_1 = \{y\}$ and j = 1; 1. Update

2. Define $g_j := f_j + \mu \| \cdot -x^0 \|^2/2$ and compute

$$\begin{aligned} x_j &= \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ g_j^{\eta}(u) \coloneqq g_j(u) + \frac{1}{2\eta} \|u - y\|^2 \right\}, \qquad \tilde{x}_j \in \operatorname{Argmin} \left\{ g^{\eta}(u) \colon u \in \{x_j, \tilde{x}_{j-1}\} \right\}; \\ \text{8. If } g^{\eta}(\tilde{x}_j) - g_j^{\eta}(x_j) \leq \delta, \text{ then } \mathbf{stop}; \text{ else, go to step 4;} \\ \text{4. Choose } C_{j+1} \text{ such that} \end{aligned}$$

where

5. Set $j \leftarrow j + 1$ and go to step 1.

Proposition 2. Algorithm 3 takes $\tilde{\mathcal{O}}(\eta_{\mu}M^2/\delta + 1)$ iterations to terminate, and each iteration solves a linearly constrained convex quadratic programming problem.

Define

(2)

- 1. Compute x_i and \tilde{x}_i as in Algorithm 3;
- 2. Generate $X \sim \exp(-h_1(x))$; 3. Generate $U \sim \mathcal{U}[0, 1]$;
- 4. If

Proposition 3. If

then the expected number of iterations in the rejection sampling is at most 3.

Review of the proximal bundle method

$$g_*^{\eta} := g^{\eta}(x^*) = \min\left\{g^{\eta}(x) := g(x) + \frac{1}{2\eta} \|x - y\|^2 : x \in \mathbb{R}^d\right\},\$$

$$f_j = \max\left\{f(x) + \langle f'(x), \cdot - x \rangle : x \in C_j\right\};$$

$$A_j \cup \{x_j\} \subset C_{j+1} \subset C_j \cup \{x_j\}$$

$$A_j := \{ x \in C_j : f(x) + \langle f'(x), x_j - x \rangle = f_j(x_j) \};$$

RGO without an optimization oracle

$$h_{1} := \frac{1}{2\eta_{\mu}} \| \cdot -x_{j} \|^{2} + g^{\eta}(\tilde{x}_{j}) - \delta,$$

$$h_{2} := \frac{1}{2\eta_{\mu}} \| \cdot -\tilde{x}_{j} \|^{2} + \left(2M + \frac{\sqrt{2\delta}}{\sqrt{\eta_{\mu}}} \right) \| \cdot -\tilde{x}_{j} \| + g^{\eta}(\tilde{x}_{j}).$$

Algorithm 4 Implementation of the RGO without an optimization oracle

$$U \le \frac{\exp(-g^{\eta}(X))}{\exp(-h_1(X))}$$

then accept $\tilde{X} = X$; otherwise, reject X and go to step 2.

Lemma 2. For every $x \in \mathbb{R}^d$, we have $h_1(x) \leq g^{\eta}(x) \leq h_2(x)$.

$$\eta_{\mu} \le \frac{1}{64M^2 d}, \quad \delta \le \frac{1}{32d},$$