
A Proximal Algorithm for Sampling from Non-smooth Potentials
Georgia Statistics Day 2021

Jiaming Liang 1 Yongxin Chen 2

1School of Industrial and Systems Engineering, Georgia Tech 2School of Aerospace Engineering, Georgia Tech

An Overview

Problem: Sampling from a distribution π on Rd proportional to exp(−f (x)) where the potential f is convex
and M‐Lipschitz continuous.
Goal: Design an algorithm to generate a point following a distribution within ε total variation distance to π.
Four Algorithmic Tools:
‐ the alternating sampling framework;
‐ the restricted Gaussian oracle (RGO);
‐ the proximal bundle method;
‐ the rejection sampling algorithm.
Features:
‐ a polynomial complexity Õ(dε−1) to obtain ε total variation distance to the target density π;
‐ an efficient and implementable RGO for convex and Lipschitz continuous functions.

Main results

Total complexity for strongly convex potentials
Theorem 1. Let x0 ∈ Rd, ε > 0, δ > 0, M > 0 µ > 0 and η > 0 satisfying

δ

M2 ≤ η ≤ min
{

1
64M2d

,
1
µ

}
(1)

be given. Let π be a distribution on Rd satisfying

π(x) ∝ exp(−g(x)) = exp
(
−f (x)− µ

2
∥x− x0∥2

)
.

Consider Algorithm 1 using Algorithm 4 as an RGO for step 1, initialized at a β‐warm start, then the
iteration‐complexity bound for obtaining ε total tolerance to π in terms of total variation is

Õ
(

M2

µδ
log
(

log β

ε

)
+ 1

)
,

and each iteration queries one subgradient oracle of f and solves a quadratic programming problem.
Moreover, the number of Gaussian distribution sampling queries in Algorithm 1 is

Θ
(

1
ηµ

log
(

log β

ε

)
+ 1
)

.

Total complexity for convex potentials
Theorem 2. Let π be a distribution on Rd satisfying π(x) ∝ exp(−f (x)). Let x0 ∈ Rd and ε > 0 be given and

µ = ε√
M4 + ∥x0 − x∗∥2

where
M4 =

∫
x∈Rd

∥x− x∗∥4dπ(x), x∗ ∈ Argmin
{

f (x) : x ∈ Rd
}

.

Choose δ > 0 and η > 0 such that (1) holds and consider Algorithm 1 using Algorithm 4 as an RGO for step
1, applied to

g = f + µ

2

∥∥∥· − x0
∥∥∥2

,

and initialized at a β‐warm start. Then, the iteration‐complexity bound for obtaining ε total tolerance to π is

Õ

(
M2 (√M4 + ∥x0 − x∗∥2

)
εδ

log
(

log β

ε

)
+ 1

)
.

Alternating sampling framework and RGO

Proximal mapping in optimization:
argmin

{
g(·) + 1

2η
∥ · −y∥2

}
.

RGO in sampling:
sample exp

(
−g(·)− 1

2η
∥ · −y∥2

)
.

Algorithm 1 Alternating Sampling Framework

0. sample y ∼ πx(y) ∝ e
− 1

2η∥x−y∥2

1. sample x ∼ πy(x) ∝ e
−g(x)− 1

2η∥x−y∥2

Theorem 3. Let π be a distribution on Rd with π(x) ∝ exp (−foracle (x)) such that foracle is µ‐strongly convex,
and let ε ∈ (0, 1). Let η > 0,

T = Θ
(

1
ηµ

log log β

ε

)
for some β ≥ 1. Algorithm 1, initialized at a β‐warm start, runs in T iterations, each querying RGO for foracle
with parameter η a constant number of times, and obtais ε total variation distance to π.

RGOwith an optimization oracle

Assume that f has a proximal mapping and let

x∗ = argmin
x∈Rd

{
gη(x) := g(x) + 1

2η
∥x− y∥2

}
. (2)

Lemma 1. Let ηµ := η/(1 + ηµ) and define

h1 := 1
2ηµ
∥ · −x∗∥2 + gη(x∗), h2 := 1

2ηµ
∥ · −x∗∥2 + 2M∥ · −x∗∥ + gη(x∗).

Then, for every x ∈ Rd, we have
h1(x) ≤ gη(x) ≤ h2(x).

Algorithm 2 Implementation of the RGO with an optimization oracle
1. Compute x∗ as in (2);
2. Generate X ∼ exp(−h1(x));
3. Generate U ∼ U [0, 1];
4. If

U ≤ exp(−gη(X))
exp(−h1(X))

,

then accept X̃ = X ; otherwise, reject X and go to step 2.

Proposition 1. Let
p(x) = p(x|y) ∝ exp

(
−g(x)− 1

2η
∥x− y∥2

)
,

then X̃ ∼ p(x). If ηµ ≤ 1/(16M2d), then the expected number of iteration in Algorithm 2 is at most 2.

Review of the proximal bundle method

Consider the subproblem

g
η
∗ := gη(x∗) = min

{
gη(x) := g(x) + 1

2η
∥x− y∥2 : x ∈ Rd

}
,

and we aim at obtaining a δ‐solution (i.e., a point x̄ such that gη(x̄)− g
η
∗ ≤ δ) to the above subproblem.

Algorithm 3 Solving the Proximal Bundle Subproblem
0. Let y, η > 0 and δ > 0 be given, and set x̃0 = y, C1 = {y} and j = 1;
1. Update

fj = max
{

f (x) + ⟨f ′(x), · − x⟩ : x ∈ Cj
}

;

2. Define gj := fj + µ∥ · −x0∥2/2 and compute

xj = argmin
u∈Rn

{
g

η
j (u) := gj(u) + 1

2η
∥u− y∥2

}
, x̃j ∈ Argmin

{
gη(u) : u ∈ {xj, x̃j−1}

}
;

3. If gη(x̃j)− g
η
j (xj) ≤ δ, then stop; else, go to step 4;

4. Choose Cj+1 such that
Aj ∪ {xj} ⊂ Cj+1 ⊂ Cj ∪ {xj}

where
Aj :=

{
x ∈ Cj : f (x) + ⟨f ′(x), xj − x⟩ = fj(xj)

}
;

5. Set j ← j + 1 and go to step 1.

Proposition 2. Algorithm 3 takes Õ(ηµM2/δ + 1) iterations to terminate, and each iteration solves a linearly
constrained convex quadratic programming problem.

RGOwithout an optimization oracle

Define

h1 := 1
2ηµ
∥ · −xj∥2 + gη(x̃j)− δ,

h2 := 1
2ηµ
∥ · −x̃j∥2 +

(
2M +

√
2δ
√

ηµ

)
∥ · −x̃j∥ + gη(x̃j).

Algorithm 4 Implementation of the RGO without an optimization oracle
1. Compute xj and x̃j as in Algorithm 3;
2. Generate X ∼ exp(−h1(x));
3. Generate U ∼ U [0, 1];
4. If

U ≤ exp(−gη(X))
exp(−h1(X))

,

then accept X̃ = X ; otherwise, reject X and go to step 2.

Lemma 2. For every x ∈ Rd, we have h1(x) ≤ gη(x) ≤ h2(x).
Proposition 3. If

ηµ ≤
1

64M2d
, δ ≤ 1

32d
,

then the expected number of iterations in the rejection sampling is at most 3.


