A Doubly Accelerated Inexact Proximal Point Method for Nonconvex Composite Optimization Problem

Jiaming Liang * Renato D.C. Monteiro*
*H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

October 23, 2019

INFORMS Annual Meeting - Seattle, WA

Table of Contents

(1) Introduction
(2) Framework
(3) Algorithms

Outline

(1) Introduction
(2) Framework
(3) Algorithms

Assumptions

We are interested in the nonconvex smooth composite optimization (N-SCO) problem

$$
\begin{equation*}
\phi_{*}:=\min \left\{\phi(z):=f(z)+h(z): z \in \mathbb{R}^{n}\right\} \tag{1}
\end{equation*}
$$

where the following conditions are assumed to hold:
(A1) $h \in \overline{\operatorname{Conv}}\left(\mathbb{R}^{n}\right)$;
(A2) f is a differentiable function on $\operatorname{dom} h$ and there exist scalars $M \geq m>0$ such that

$$
\begin{equation*}
f\left(z^{\prime}\right) \geq \ell_{f}\left(z^{\prime} ; z\right)-\frac{m}{2}\left\|z^{\prime}-z\right\|^{2} \quad \forall z, z^{\prime} \in \operatorname{dom} h . \tag{2}
\end{equation*}
$$

holds and ∇f is M-Lipschitz continuous on dom h, i.e.,

$$
\left\|\nabla f\left(z^{\prime}\right)-\nabla f(z)\right\| \leq M\left\|z^{\prime}-z\right\| \quad \forall z^{\prime}, z \in \operatorname{dom} h ;
$$

(A3) the diameter D of $\operatorname{dom} h$ is finite.

Approximate solutions

- $\hat{\rho}$-approximate solution:
if $(\hat{z}, \hat{v}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ satisfies

$$
\begin{equation*}
\hat{v} \in \nabla f(\hat{z})+\partial h(\hat{z}), \quad\|\hat{v}\| \leq \hat{\rho} \tag{3}
\end{equation*}
$$

- $(\bar{\rho}, \bar{\varepsilon})$-prox-approximate solution:
if $\left(\lambda, z^{-}, z, w, \varepsilon\right) \in \mathbb{R}_{++} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}_{+}$satisfies

$$
\begin{equation*}
w \in \partial_{\varepsilon}\left(\phi+\frac{1}{2 \lambda}\left\|\cdot-z^{-}\right\|^{2}\right)(z), \quad\left\|\frac{1}{\lambda}\left(z^{-}-z\right)\right\| \leq \bar{\rho}, \quad \varepsilon \leq \bar{\varepsilon} . \tag{4}
\end{equation*}
$$

Refinement

The next proposition shows how an approximate solution as in (3) can be obtained from a prox-approximate solution by performing a composite gradient step.

Proposition

Let $h \in \overline{\operatorname{Conv}}\left(\mathbb{R}^{n}\right)$ and f be a differentiable function on dom h whose gradient is M-Lipschitz continuous on dom h. Let $(\bar{\rho}, \bar{\varepsilon}) \in \mathbb{R}_{++}^{2}$ and a $(\bar{\rho}, \bar{\varepsilon})$-prox-approximate solution $\left(\lambda, z^{-}, z, w, \varepsilon\right)$ be given and define

$$
\begin{align*}
z_{f} & :=\underset{u}{\operatorname{argmin}}\left\{\ell_{f}(u ; z)+h(u)+\frac{M+\lambda^{-1}}{2}\|u-z\|^{2}\right\}, \tag{5}\\
q_{f} & :=\left[M+\lambda^{-1}\right]\left(z-z_{f}\right), \tag{6}\\
v_{f} & :=q_{f}+\nabla f\left(z_{f}\right)-\nabla f(z) . \tag{7}
\end{align*}
$$

Then, $\left(z_{f}, v_{f}\right)$ satisfies

$$
v_{f} \in \nabla f\left(z_{f}\right)+\partial h\left(z_{f}\right), \quad\left\|v_{f}\right\| \leq 2\left\|q_{f}\right\| \leq 2\left[\bar{\rho}+\sqrt{2 \bar{\varepsilon}\left(M+\lambda^{-1}\right)}\right] .
$$

Literature review

- S. Ghadimi and G. Lan (2016) Accelerated gradient methods for nonconvex nonlinear and stochastic programming (AG method)
- The first time that the convergence of the AG method has been established for solving nonconvex nonlinear programming
- Small stepsize
- W. Kong, J.G. Melo and R.D.C. Monteiro (2018) Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs (AIPP method)
- Apply an accelerated inexact proximal point method for solving approximately each prox-subproblem
- Large stepsize

Literature review

- AG by Ghadimi and Lan

$$
\mathcal{O}\left(\frac{M m D^{2}}{\hat{\rho}^{2}}+\left(\frac{M d_{0}}{\hat{\rho}}\right)^{2 / 3}\right)
$$

- AIPP by Kong, Melo and Monteiro

- D-AIPP in this paper

Literature review

- AG by Ghadimi and Lan

$$
\mathcal{O}\left(\frac{M m D^{2}}{\hat{\rho}^{2}}+\left(\frac{M d_{0}}{\hat{\rho}}\right)^{2 / 3}\right)
$$

- AIPP by Kong, Melo and Monteiro

$$
\mathcal{O}\left(\frac{\sqrt{M m}}{\hat{\rho}^{2}} \min \left\{\phi\left(z_{0}\right)-\phi_{*}, m d_{0}^{2}\right\}+\sqrt{\frac{M}{m}} \log \left(\frac{M+m}{m}\right)\right)
$$

- D-AIPP in this paper

Literature review

- AG by Ghadimi and Lan

$$
\mathcal{O}\left(\frac{M m D^{2}}{\hat{\rho}^{2}}+\left(\frac{M d_{0}}{\hat{\rho}}\right)^{2 / 3}\right)
$$

- AIPP by Kong, Melo and Monteiro

$$
\mathcal{O}\left(\frac{\sqrt{M m}}{\hat{\rho}^{2}} \min \left\{\phi\left(z_{0}\right)-\phi_{*}, m d_{0}^{2}\right\}+\sqrt{\frac{M}{m}} \log \left(\frac{M+m}{m}\right)\right)
$$

- D-AIPP in this paper

$$
\mathcal{O}\left(\frac{M^{1 / 2} m^{3 / 2} D^{2}}{\hat{\rho}^{2}}+\sqrt{\frac{M}{m}} \log \left(\frac{M+m}{m}\right)\right)
$$

Outline

(1) Introduction
(2) Framework
(3) Algorithms

GAIPP framework

0. Let $x_{0}=y_{0} \in \operatorname{dom} h, 0<\theta<\alpha, \delta \geq 0,0<\kappa<\min \{1,1 / \alpha\}$ be given, and set $k=0$ and $A_{0}=0$;
1. compute

$$
a_{k}=\frac{1+\sqrt{1+4 A_{k}}}{2}, \quad A_{k+1}=A_{k}+a_{k}, \quad \tilde{x}_{k}=\frac{A_{k}}{A_{k+1}} y_{k}+\frac{a_{k}}{A_{k+1}} x_{k}
$$

2. choose $\lambda_{k}>0$ and find a triple $\left(y_{k+1}, \tilde{v}_{k+1}, \tilde{\varepsilon}_{k+1}\right)$ satisfying

$$
\begin{aligned}
& \tilde{v}_{k+1} \in \partial_{\tilde{\varepsilon}_{k+1}}\left(\lambda_{k} \phi(\cdot)+\frac{1}{2}\left\|\cdot-\tilde{x}_{k}\right\|^{2}-\frac{\alpha}{2}\left\|\cdot-y_{k+1}\right\|^{2}\right)\left(y_{k+1}\right) \\
& \frac{1}{\alpha+\delta}\left\|\tilde{v}_{k+1}+\delta\left(y_{k+1}-\tilde{x}_{k}\right)\right\|^{2}+2 \tilde{\varepsilon}_{k+1} \leq(\kappa \alpha+\delta)\left\|y_{k+1}-\tilde{x}_{k}\right\|^{2}
\end{aligned}
$$

3. compute

$$
x_{k+1}:=\frac{-\tilde{v}_{k+1}+\alpha y_{k+1}+\delta x_{k} / a_{k}-\left(1-1 / a_{k}\right) \theta y_{k}}{\alpha-\theta+(\theta+\delta) / a_{k}}
$$

4. set $k \leftarrow k+1$ and go to step 1 .

modified FISTA

0 . Let $x_{0}=y_{0} \in \operatorname{dom} h$, a pair $(m, M) \in \mathbb{R}_{++}^{2}$ satisfying (A2), a tolerance $\bar{\rho} \in \mathbb{R}_{++}$be given, and set $k=0$ and $A_{0}=0$; also, choose positive parameters $0<\theta<\alpha<1$ and $\delta \geq 0$;

1. compute

$$
a_{k}=\frac{1+\sqrt{1+4 A_{k}}}{2}, \quad A_{k+1}=A_{k}+a_{k}, \quad \tilde{x}_{k}=\frac{A_{k}}{A_{k+1}} y_{k}+\frac{a_{k}}{A_{k+1}} x_{k} ;
$$

2. choose $0<\lambda<\min \{\alpha / M,(1-\alpha) / m\}$ and set y_{k+1} to be

$$
y_{k+1}:=\operatorname{argmin}\left\{\ell_{f}\left(\cdot ; \tilde{x}_{k}\right)+h+\frac{1}{2 \lambda}\left\|\cdot-\tilde{x}_{k}\right\|^{2}\right\}
$$

3. compute

$$
x_{k+1}:=\frac{-\lambda\left[\nabla f\left(y_{k+1}\right)-\nabla f\left(\tilde{x}_{k}\right)\right]+\alpha y_{k+1}+\delta x_{k} / a_{k}-\left(1-1 / a_{k}\right) \theta y_{k}}{\alpha-\theta+(\theta+\delta) / a_{k}}
$$

4. set $k \leftarrow k+1$ and go to step 1 .

Results - boundedness

Lemma

Define

$$
\begin{equation*}
\beta:=3+\frac{4(\theta+\delta)}{\alpha-\theta}, \quad \tau_{0}:=\frac{\sqrt{\kappa \alpha+\delta}}{\sqrt{\alpha+\delta}} . \tag{8}
\end{equation*}
$$

where α, θ, δ and κ are the parameters as in step 0 of the GAIPP framework. Then, $\tau_{0}<1$ and, for every $\bar{x} \in \operatorname{dom} h$, we have

$$
\left\|x_{k}-\bar{x}\right\| \leq \tau_{0}^{k}\left\|x_{0}-\bar{x}\right\|+\frac{\beta}{1-\tau_{0}} D \quad \forall k \geq 1
$$

where D is as in (A3). As a consequence, $\left\{x_{k}\right\}$ is bounded.

Results - convergence

Proposition

For every $k \geq 0$,
$\frac{1-\kappa \alpha}{2} \sum_{i=0}^{k-1} A_{i+1}\left\|\tilde{x}_{i}-y_{i+1}\right\|^{2} \leq\left[\frac{\theta+\delta}{2}+(1-\theta) \frac{2 \beta^{2} k}{\left(1-\tau_{0}\right)^{2}}+(1-\theta) \sum_{i=0}^{k-1} a_{i}\right] D^{2}$.
As a consequence,

$$
\min _{0 \leq i \leq k-1} \frac{\left\|\tilde{x}_{i}-y_{i+1}\right\|^{2}}{\lambda_{i}^{2}} \leq \frac{\left[\theta+\delta+c_{0} k+2(1-\theta) \sum_{i=0}^{k-1} a_{i}\right] D^{2}}{(1-\kappa \alpha) \sum_{i=0}^{k-1} A_{i+1} \lambda_{i}^{2}}
$$

where

$$
c_{0}:=\frac{4(1-\theta) \beta^{2}}{\left(1-\tau_{0}\right)^{2}}=\mathcal{O}\left(\delta^{4}\right)
$$

and β and τ_{0} are as in (8).

Results - convergence

Corollary

If, for some $\underline{\lambda}>0$, we have $\lambda_{i} \geq \underline{\lambda}$ for every $i=0, \cdots, k-1$, then

$$
\min _{0 \leq i \leq k-1} \frac{\left\|\tilde{x}_{i}-y_{i+1}\right\|^{2}}{\lambda_{i}^{2}} \leq \frac{D^{2}}{(1-\kappa \alpha) \underline{\lambda}^{2}}\left[\frac{12(\theta+\delta)}{k^{3}}+\frac{12 c_{0}}{k^{2}}+\frac{8(1-\theta)}{k}\right] .
$$

Consequently,

$$
\min _{0 \leq i \leq k-1} \frac{\left\|\tilde{x}_{i}-y_{i+1}\right\|^{2}}{\lambda_{i}^{2}}=\mathcal{O}\left(\frac{D^{2}}{\underline{\lambda}^{2} k}\right) .
$$

Outline

(1) Introduction

(2) Framework
(3) Algorithms

Subproblem

Recall that, in the GAIPP framework, we solve a subproblem

$$
\tilde{v}_{k+1} \in \partial_{\tilde{\varepsilon}_{k+1}}\left(\lambda_{k} \phi(\cdot)+\frac{1}{2}\left\|\cdot-\tilde{x}_{k}\right\|^{2}-\frac{\alpha}{2}\left\|\cdot-y_{k+1}\right\|^{2}\right)\left(y_{k+1}\right),
$$

in each outer iteration.
In fact, when the objective function in the parentheses are strongly convex, we solve

$$
\begin{equation*}
\min \left\{\psi(z):=\psi_{s}(z)+\psi_{n}(z): z \in \mathbb{R}^{n}\right\} \tag{9}
\end{equation*}
$$

where the following conditions hold:
(B1) $\psi_{n}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is a proper, closed and μ-strongly convex function with $\mu \geq 0$;
(B2) ψ_{s} is a convex differentiable function whose gradient is L-Lipschitz continuous on the domain of ψ_{n}.

Accelerated Composite Gradient (ACG) Method

0 . Let a pair of functions $\left(\psi_{s}, \psi_{n}\right)$ as in (9) and initial point $z_{0} \in \operatorname{dom} \psi_{n}$ be given, and set $y_{0}=z_{0}, B_{0}=0, \Gamma_{0} \equiv 0$ and $j=0$;

1. compute

$$
\begin{aligned}
B_{j+1} & =B_{j}+\frac{\mu B_{j}+1+\sqrt{\left(\mu B_{j}+1\right)^{2}+4 L\left(\mu B_{j}+1\right) B_{j}}}{2 L}, \\
\tilde{z}_{j} & =\frac{B_{j}}{B_{j+1}} z_{j}+\frac{B_{j+1}-B_{j}}{B_{j+1}} y_{j}, \quad \Gamma_{j+1}=\frac{B_{j}}{B_{j+1}} \Gamma_{j}+\frac{B_{j+1}-B_{j}}{B_{j+1}} l_{\psi_{s}}\left(\cdot, \tilde{z}_{j}\right), \\
y_{j+1} & =\underset{y}{\operatorname{argmin}\left\{\Gamma_{j+1}(y)+\psi_{n}(y)+\frac{1}{2 B_{j+1}}\left\|y-y_{0}\right\|^{2}\right\},} \\
z_{j+1} & =\frac{B_{j}}{B_{j+1}} z_{j}+\frac{B_{j+1}-B_{j}}{B_{j+1}} y_{j+1},
\end{aligned}
$$

2. compute

$$
\begin{aligned}
& u_{j+1}=\frac{y_{0}-y_{j+1}}{B_{j+1}}, \\
& \eta_{j+1}=\psi\left(z_{j+1}\right)-\Gamma_{j+1}\left(y_{j+1}\right)-\psi_{n}\left(y_{j+1}\right)-\left\langle u_{j+1}, z_{j+1}-y_{j+1}\right\rangle ;
\end{aligned}
$$

3. set $j \leftarrow j+1$ and go to step 1 .

ACG method

Proposition

Let positive constants α, δ and κ be given and consider the sequence $\left\{\left(B_{j}, \Gamma_{j}, z_{j}, u_{j}, \eta_{j}\right)\right\}$ generated by the ACG method applied to (9) where $\left(\psi_{s}, \psi_{n}\right)$ is a given pair of data functions satisfying (B1) and (B2) with $\mu \geq 0$. The ACG method obtains a triple $(z, u, \eta)=\left(z_{j}, u_{j}, \eta_{j}\right)$ satisfying

$$
u \in \partial_{\eta}\left(\psi_{s}+\psi_{n}\right)(z) \quad \frac{1}{\alpha+\delta}\left\|u_{j}+\delta\left(z_{j}-z_{0}\right)\right\|^{2}+2 \eta_{j} \leq(\kappa \alpha+\delta)\left\|z_{j}-z_{0}\right\|^{2}
$$

in at most

$$
\left\lceil 2 \sqrt{\frac{L(\kappa+1)}{\kappa \alpha+(\kappa+1) \delta}}\right\rceil
$$

iterations.

D-AIPP method

0 . Let $x_{0}=y_{0} \in \operatorname{dom} h$, a pair $(m, M) \in \mathbb{R}_{++}^{2}$ satisfying (A2), a stepsize $0<\lambda \leq 1 /(2 m)$, and a tolerance pair $(\bar{\rho}, \bar{\varepsilon}) \in \mathbb{R}_{++}^{2}$ be given, and set $k=0$, $A_{0}=0$ and $\xi=1-\lambda m$; also, choose parameters $0<\theta<\xi / 2, \delta \geq 0$;

1. compute

$$
a_{k}=\frac{1+\sqrt{1+4 A_{k}}}{2}, \quad A_{k+1}=A_{k}+a_{k}, \quad \tilde{x}_{k}=\frac{A_{k}}{A_{k+1}} y_{k}+\frac{a_{k}}{A_{k+1}} x_{k} ;
$$

and perform at least $\lceil 6 \sqrt{2 \lambda M+1}\rceil$ iterations of the ACG method started from \tilde{x}_{k} and with

$$
\psi_{s}=\psi_{s}^{k}:=\lambda f+\frac{1}{4}\left\|\cdot-\tilde{x}_{k}\right\|^{2}, \quad \psi_{n}=\psi_{n}^{k}:=\lambda h+\frac{1}{4}\left\|\cdot-\tilde{x}_{k}\right\|^{2}
$$

to obtain a triple (z, u, η) satisfying

$$
\begin{align*}
& u \in \partial_{\eta}\left(\lambda \phi(\cdot)+\frac{1}{2}\left\|\cdot-\tilde{x}_{k}\right\|^{2}\right)(z), \tag{10}\\
& \frac{1}{\xi / 2+\delta}\left\|u+\delta\left(z-\tilde{x}_{k}\right)\right\|^{2}+2 \eta \leq(\xi / 4+\delta)\left\|z-\tilde{x}_{k}\right\|^{2} ; \tag{11}
\end{align*}
$$

D-AIPP method

2. if

$$
\left\|z-\tilde{x}_{k}\right\| \leq \frac{\lambda \bar{\rho}}{2}
$$

then go to step 3; otherwise, set $\left(y_{k+1}, \tilde{v}_{k+1}, \tilde{\varepsilon}_{k+1}\right)=(z, u, 2 \eta)$,

$$
x_{k+1}:=\frac{-\tilde{v}_{k+1}+\xi y_{k+1} / 2+\delta x_{k} / a_{k}-\left(1-1 / a_{k}\right) \theta y_{k}}{\xi / 2-\theta+(\theta+\delta) / a_{k}}
$$

and $k \leftarrow k+1$, and go to step 1 ;
3. restart the previous call to the ACG method in step 1 to find an iterate $(\tilde{z}, \tilde{u}, \tilde{\eta})$ satisfying (10), (11) with (z, u, η) replaced by $(\tilde{z}, \tilde{u}, \tilde{\eta})$ and the extra condition

$$
\tilde{\eta} \leq \lambda \bar{\varepsilon}
$$

and set $\left(y_{k+1}, \tilde{v}_{k+1}, \tilde{\varepsilon}_{k+1}\right)=(\tilde{z}, \tilde{u}, 2 \tilde{\eta})$; finally, output $\left(\lambda, y^{-}, y, v, \varepsilon\right)$ where

$$
\left(y^{-}, y, v, \varepsilon\right)=\left(\tilde{x}_{k}, y_{k+1}, \tilde{v}_{k+1} / \lambda, \tilde{\varepsilon}_{k+1} /(2 \lambda)\right) .
$$

Technical result

Lemma

Assume that $\psi \in \overline{\operatorname{Conv}}\left(\mathbb{R}^{n}\right)$ is a ξ-strongly convex function and let $(y, \eta) \in \mathbb{R}^{n} \times \mathbb{R}$ be such that $0 \in \partial_{\eta} \psi(y)$. Then,

$$
0 \in \partial_{2 \eta}\left(\psi-\frac{\xi}{4}\|\cdot-y\|^{2}\right)(y)
$$

Lemma

The following statements hold about the algorithm D-AIPP:
(a) it is a special implementation of the GAIPP with $\alpha=\xi / 2$, and $\kappa=1 / 2$;
(b) the number of outer of iterations performed by the D-AIPP is bounded by

$$
\mathcal{O}\left(\frac{D^{2}}{\lambda^{2} \bar{\rho}^{2}}\right) ;
$$

(c) at every outer iteration, the numer of calls to the ACG method in step 2 finds a triple (z, u, η) satisfying (10) and (11) is at most

$$
\mathcal{O}(\sqrt{\lambda M+1}) ;
$$

(d) at the last outer iteration, say the K-th one, the triple ($\tilde{z}, \tilde{u}, \tilde{\eta})$ satisfies $\left\|\tilde{x}_{K}-\tilde{z}\right\| \leq \lambda \bar{\rho}, \tilde{\eta} \leq \lambda \bar{\varepsilon}$ and the extra number of ACG iterations is bounded by

$$
\mathcal{O}\left(\sqrt{\lambda M+1} \log _{1}^{+}\left(\frac{\bar{\rho} \sqrt{\lambda^{2} M+\lambda}}{\sqrt{\bar{\varepsilon}}}\right)\right) .
$$

Main results

Theorem

The D-AIPP method terminates with a $(\bar{\rho}, \bar{\varepsilon})$-prox-solution $\left(\lambda, y^{-}, y, v, \varepsilon\right)$ by performing a total number of inner iterations bounded by

$$
\mathcal{O}\left\{\sqrt{\lambda M+1}\left[\frac{D^{2}}{\lambda^{2} \bar{\rho}^{2}}+\log _{1}^{+}\left(\frac{\bar{\rho} \sqrt{\lambda^{2} M+\lambda}}{\sqrt{\bar{\varepsilon}}}\right)\right]\right\} .
$$

As a consequence, if $\lambda=\Theta(1 / m)$, the above inner-iteration complexity reduces to

$$
\mathcal{O}\left(\frac{M^{1 / 2} m^{3 / 2} D^{2}}{\bar{\rho}^{2}}+\sqrt{\frac{M}{m}} \log _{1}^{+}\left(\frac{\bar{\rho} \sqrt{M}}{m \sqrt{\bar{\varepsilon}}}\right)\right) .
$$

Approximate solutions

- $\hat{\rho}$-approximate solution:
if $(\hat{z}, \hat{v}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ satisfies

$$
\hat{v} \in \nabla f(\hat{z})+\partial h(\hat{z}), \quad\|\hat{v}\| \leq \hat{\rho}
$$

- $(\bar{\rho}, \bar{\varepsilon})$-prox-approximate solution:
if $\left(\lambda, z^{-}, z, w, \varepsilon\right) \in \mathbb{R}_{++} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}_{+}$satisfies

$$
w \in \partial_{\varepsilon}\left(\phi+\frac{1}{2 \lambda}\left\|\cdot-z^{-}\right\|^{2}\right)(z), \quad\left\|\frac{1}{\lambda}\left(z^{-}-z\right)\right\| \leq \bar{\rho}, \quad \varepsilon \leq \bar{\varepsilon} .
$$

Main results

Corollary

Let a tolerance $\hat{\rho}>0$ be given and let $\left(\lambda, y^{-}, y, v, \varepsilon\right)$ be the output obtained by the D-AIPP method with inputs $\lambda=1 /(2 m)$ and $(\bar{\rho}, \bar{\varepsilon})$ defined as

$$
\bar{\rho}:=\frac{\hat{\rho}}{4} \quad \text { and } \quad \bar{\varepsilon}:=\frac{\hat{\rho}^{2}}{32(M+2 m)} .
$$

Then the following statements hold:
(a) the number of inner iterations for D-AIPP method to terminate is at most

$$
\mathcal{O}\left(\frac{M^{1 / 2} m^{3 / 2} D^{2}}{\hat{\rho}^{2}}+\sqrt{\frac{M}{m}} \log _{1}^{+}\left(\frac{M}{m}\right)\right)
$$

(b) if ∇g is M-Lipschitz continuous, then the pair $(\hat{z}, \hat{v})=\left(z_{g}, v_{g}\right)$ computed according to (5) and (7) is a $\hat{\rho}$-approximate solution of (1), i.e., (3) holds.

Thank you!

