
A Doubly Accelerated Inexact Proximal Point Method for
Nonconvex Composite Optimization Problem

Jiaming Liang ∗ Renato D.C. Monteiro∗

∗H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology

October 23, 2019

INFORMS Annual Meeting - Seattle, WA

1 / 26



Table of Contents

1 Introduction

2 Framework

3 Algorithms

2 / 26



Outline

1 Introduction

2 Framework

3 Algorithms

3 / 26



Assumptions

We are interested in the nonconvex smooth composite optimization (N-SCO)
problem

φ∗ := min {φ(z) := f(z) + h(z) : z ∈ Rn} (1)

where the following conditions are assumed to hold:

(A1) h ∈ Conv (Rn);

(A2) f is a differentiable function on domh and there exist scalars M ≥ m > 0
such that

f(z′) ≥ `f (z′; z)− m

2
‖z′ − z‖2 ∀z, z′ ∈ domh. (2)

holds and ∇f is M -Lipschitz continuous on domh, i.e.,

‖∇f(z′)−∇f(z)‖ ≤M‖z′ − z‖ ∀z′, z ∈ domh;

(A3) the diameter D of domh is finite.

4 / 26



Approximate solutions

ρ̂-approximate solution:
if (ẑ, v̂) ∈ Rn × Rn satisfies

v̂ ∈ ∇f(ẑ) + ∂h(ẑ), ‖v̂‖ ≤ ρ̂ (3)

(ρ̄, ε̄)-prox-approximate solution:
if (λ, z−, z, w, ε) ∈ R++ × Rn × Rn × Rn × R+ satisfies

w ∈ ∂ε
(
φ+

1

2λ
‖ · −z−‖2

)
(z),

∥∥∥∥ 1

λ
(z− − z)

∥∥∥∥ ≤ ρ̄, ε ≤ ε̄. (4)

5 / 26



Refinement

The next proposition shows how an approximate solution as in (3) can be obtained
from a prox-approximate solution by performing a composite gradient step.

Proposition

Let h ∈ Conv (Rn) and f be a differentiable function on domh whose gradient is
M -Lipschitz continuous on domh. Let (ρ̄, ε̄) ∈ R2

++ and a
(ρ̄, ε̄)-prox-approximate solution (λ, z−, z, w, ε) be given and define

zf := argmin
u

{
`f (u; z) + h(u) +

M + λ−1

2
‖u− z‖2

}
, (5)

qf := [M + λ−1](z − zf ), (6)

vf := qf +∇f(zf )−∇f(z). (7)

Then, (zf , vf ) satisfies

vf ∈ ∇f(zf ) + ∂h(zf ), ‖vf‖ ≤ 2‖qf‖ ≤ 2
[
ρ̄+

√
2ε̄(M + λ−1)

]
.

6 / 26



Literature review

S. Ghadimi and G. Lan (2016) Accelerated gradient methods for nonconvex
nonlinear and stochastic programming (AG method)

– The first time that the convergence of the AG method has been established for
solving nonconvex nonlinear programming

– Small stepsize

W. Kong, J.G. Melo and R.D.C. Monteiro (2018) Complexity of a quadratic
penalty accelerated inexact proximal point method for solving linearly
constrained nonconvex composite programs (AIPP method)

– Apply an accelerated inexact proximal point method for solving approximately
each prox-subproblem

– Large stepsize

7 / 26



Literature review

AG by Ghadimi and Lan

O

(
MmD2

ρ̂2
+

(
Md0
ρ̂

)2/3
)

AIPP by Kong, Melo and Monteiro

O

(√
Mm

ρ̂2
min

{
φ(z0)− φ∗,md20

}
+

√
M

m
log

(
M +m

m

))

D-AIPP in this paper

O

(
M1/2m3/2D2

ρ̂2
+

√
M

m
log

(
M +m

m

))

8 / 26



Literature review

AG by Ghadimi and Lan

O

(
MmD2

ρ̂2
+

(
Md0
ρ̂

)2/3
)

AIPP by Kong, Melo and Monteiro

O

(√
Mm

ρ̂2
min

{
φ(z0)− φ∗,md20

}
+

√
M

m
log

(
M +m

m

))

D-AIPP in this paper

O

(
M1/2m3/2D2

ρ̂2
+

√
M

m
log

(
M +m

m

))

8 / 26



Literature review

AG by Ghadimi and Lan

O

(
MmD2

ρ̂2
+

(
Md0
ρ̂

)2/3
)

AIPP by Kong, Melo and Monteiro

O

(√
Mm

ρ̂2
min

{
φ(z0)− φ∗,md20

}
+

√
M

m
log

(
M +m

m

))

D-AIPP in this paper

O

(
M1/2m3/2D2

ρ̂2
+

√
M

m
log

(
M +m

m

))

8 / 26



Outline

1 Introduction

2 Framework

3 Algorithms

9 / 26



GAIPP framework

0. Let x0 = y0 ∈ domh, 0 < θ < α, δ ≥ 0, 0 < κ < min{1, 1/α} be given, and
set k = 0 and A0 = 0;

1. compute

ak =
1 +
√

1 + 4Ak
2

, Ak+1 = Ak + ak, x̃k =
Ak
Ak+1

yk +
ak
Ak+1

xk;

2. choose λk > 0 and find a triple (yk+1, ṽk+1, ε̃k+1) satisfying

ṽk+1 ∈ ∂ε̃k+1

(
λkφ(·) +

1

2
‖ · −x̃k‖2 −

α

2
‖ · −yk+1‖2

)
(yk+1),

1

α+ δ
‖ṽk+1 + δ(yk+1 − x̃k)‖2 + 2ε̃k+1 ≤ (κα+ δ)‖yk+1 − x̃k‖2;

3. compute

xk+1 :=
−ṽk+1 + αyk+1 + δxk/ak − (1− 1/ak)θyk

α− θ + (θ + δ)/ak
;

4. set k ← k + 1 and go to step 1.

10 / 26



modified FISTA

0. Let x0 = y0 ∈ domh, a pair (m,M) ∈ R2
++ satisfying (A2), a tolerance

ρ̄ ∈ R++ be given, and set k = 0 and A0 = 0; also, choose positive
parameters 0 < θ < α < 1 and δ ≥ 0;

1. compute

ak =
1 +
√

1 + 4Ak
2

, Ak+1 = Ak + ak, x̃k =
Ak
Ak+1

yk +
ak
Ak+1

xk;

2. choose 0 < λ < min{α/M, (1− α)/m} and set yk+1 to be

yk+1 := argmin

{
`f (·; x̃k) + h+

1

2λ
‖ · −x̃k‖2

}
;

3. compute

xk+1 :=
−λ[∇f(yk+1)−∇f(x̃k)] + αyk+1 + δxk/ak − (1− 1/ak)θyk

α− θ + (θ + δ)/ak
;

4. set k ← k + 1 and go to step 1.

11 / 26



Results – boundedness

Lemma
Define

β := 3 +
4(θ + δ)

α− θ
, τ0 :=

√
κα+ δ√
α+ δ

. (8)

where α, θ, δ and κ are the parameters as in step 0 of the GAIPP framework.
Then, τ0 < 1 and, for every x̄ ∈ domh, we have

‖xk − x̄‖ ≤ τk0 ‖x0 − x̄‖+
β

1− τ0
D ∀k ≥ 1.

where D is as in (A3). As a consequence, {xk} is bounded.

12 / 26



Results – convergence

Proposition

For every k ≥ 0,

1− κα
2

k−1∑
i=0

Ai+1‖x̃i− yi+1‖2 ≤

[
θ + δ

2
+ (1− θ) 2β2k

(1− τ0)2
+ (1− θ)

k−1∑
i=0

ai

]
D2.

As a consequence,

min
0≤i≤k−1

‖x̃i − yi+1‖2

λ2i
≤

[
θ + δ + c0k + 2 (1− θ)

∑k−1
i=0 ai

]
D2

(1− κα)
∑k−1
i=0 Ai+1λ2i

where

c0 :=
4(1− θ)β2

(1− τ0)2
= O(δ4)

and β and τ0 are as in (8).

13 / 26



Results – convergence

Corollary

If, for some λ > 0, we have λi ≥ λ for every i = 0, · · · , k − 1, then

min
0≤i≤k−1

‖x̃i − yi+1‖2

λ2i
≤ D2

(1− κα)λ2

[
12(θ + δ)

k3
+

12c0
k2

+
8(1− θ)

k

]
.

Consequently,

min
0≤i≤k−1

‖x̃i − yi+1‖2

λ2i
= O

(
D2

λ2k

)
.

14 / 26



Outline

1 Introduction

2 Framework

3 Algorithms

15 / 26



Subproblem

Recall that, in the GAIPP framework, we solve a subproblem

ṽk+1 ∈ ∂ε̃k+1

(
λkφ(·) +

1

2
‖ · −x̃k‖2 −

α

2
‖ · −yk+1‖2

)
(yk+1),

in each outer iteration.
In fact, when the objective function in the parentheses are strongly convex, we
solve

min{ψ(z) := ψs(z) + ψn(z) : z ∈ Rn} (9)

where the following conditions hold:

(B1) ψn : Rn → (−∞,+∞] is a proper, closed and µ-strongly convex function
with µ ≥ 0;

(B2) ψs is a convex differentiable function whose gradient is L-Lipschitz
continuous on the domain of ψn.

16 / 26



Accelerated Composite Gradient (ACG) Method

0. Let a pair of functions (ψs, ψn) as in (9) and initial point z0 ∈ domψn be
given, and set y0 = z0, B0 = 0, Γ0 ≡ 0 and j = 0;

1. compute

Bj+1 = Bj +
µBj + 1 +

√
(µBj + 1)2 + 4L(µBj + 1)Bj

2L
,

z̃j =
Bj
Bj+1

zj +
Bj+1 −Bj
Bj+1

yj , Γj+1 =
Bj
Bj+1

Γj +
Bj+1 −Bj
Bj+1

lψs
(·, z̃j),

yj+1 = argmin
y

{
Γj+1(y) + ψn(y) +

1

2Bj+1
‖y − y0‖2

}
,

zj+1 =
Bj
Bj+1

zj +
Bj+1 −Bj
Bj+1

yj+1,

2. compute

uj+1 =
y0 − yj+1

Bj+1
,

ηj+1 = ψ(zj+1)− Γj+1(yj+1)− ψn(yj+1)− 〈uj+1, zj+1 − yj+1〉;
3. set j ← j + 1 and go to step 1.

17 / 26



ACG method

Proposition

Let positive constants α, δ and κ be given and consider the sequence
{(Bj ,Γj , zj , uj , ηj)} generated by the ACG method applied to (9) where (ψs, ψn)
is a given pair of data functions satisfying (B1) and (B2) with µ ≥ 0. The ACG
method obtains a triple (z, u, η) = (zj , uj , ηj) satisfying

u ∈ ∂η(ψs + ψn)(z)
1

α+ δ
‖uj + δ(zj − z0)‖2 + 2ηj ≤ (κα+ δ)‖zj − z0‖2

in at most ⌈
2

√
L(κ+ 1)

κα+ (κ+ 1)δ

⌉
iterations.

18 / 26



D-AIPP method

0. Let x0 = y0 ∈ domh, a pair (m,M) ∈ R2
++ satisfying (A2), a stepsize

0 < λ ≤ 1/(2m), and a tolerance pair (ρ̄, ε̄) ∈ R2
++ be given, and set k = 0,

A0 = 0 and ξ = 1− λm; also, choose parameters 0 < θ < ξ/2, δ ≥ 0;

1. compute

ak =
1 +
√

1 + 4Ak
2

, Ak+1 = Ak + ak, x̃k =
Ak
Ak+1

yk +
ak
Ak+1

xk;

and perform at least
⌈
6
√

2λM + 1
⌉

iterations of the ACG method started
from x̃k and with

ψs = ψks := λf +
1

4
‖ · −x̃k‖2, ψn = ψkn := λh+

1

4
‖ · −x̃k‖2

to obtain a triple (z, u, η) satisfying

u ∈ ∂η
(
λφ(·) +

1

2
‖ · −x̃k‖2

)
(z), (10)

1

ξ/2 + δ
‖u+ δ(z − x̃k)‖2 + 2η ≤ (ξ/4 + δ)‖z − x̃k‖2; (11)

19 / 26



D-AIPP method

2. if

‖z − x̃k‖ ≤
λρ̄

2

then go to step 3; otherwise, set (yk+1, ṽk+1, ε̃k+1) = (z, u, 2η),

xk+1 :=
−ṽk+1 + ξyk+1/2 + δxk/ak − (1− 1/ak)θyk

ξ/2− θ + (θ + δ)/ak
;

and k ← k + 1, and go to step 1;

3. restart the previous call to the ACG method in step 1 to find an iterate
(z̃, ũ, η̃) satisfying (10), (11) with (z, u, η) replaced by (z̃, ũ, η̃) and the extra
condition

η̃ ≤ λε̄

and set (yk+1, ṽk+1, ε̃k+1) = (z̃, ũ, 2η̃); finally, output (λ, y−, y, v, ε) where

(y−, y, v, ε) = (x̃k, yk+1, ṽk+1/λ, ε̃k+1/(2λ)).

20 / 26



Technical result

Lemma

Assume that ψ ∈ Conv (Rn) is a ξ-strongly convex function and let
(y, η) ∈ Rn × R be such that 0 ∈ ∂ηψ(y). Then,

0 ∈ ∂2η
(
ψ − ξ

4
‖ · −y‖2

)
(y).

21 / 26



Lemma
The following statements hold about the algorithm D-AIPP:

(a) it is a special implementation of the GAIPP with α = ξ/2, and κ = 1/2;

(b) the number of outer of iterations performed by the D-AIPP is bounded by

O
(
D2

λ2ρ̄2

)
;

(c) at every outer iteration, the numer of calls to the ACG method in step 2 finds
a triple (z, u, η) satisfying (10) and (11) is at most

O
(√

λM + 1
)

;

(d) at the last outer iteration, say the K-th one, the triple (z̃, ũ, η̃) satisfies
‖x̃K − z̃‖ ≤ λρ̄, η̃ ≤ λε̄ and the extra number of ACG iterations is bounded
by

O

(
√
λM + 1 log+

1

(
ρ̄
√
λ2M + λ√

ε̄

))
.

22 / 26



Main results

Theorem

The D-AIPP method terminates with a (ρ̄, ε̄)-prox-solution (λ, y−, y, v, ε) by
performing a total number of inner iterations bounded by

O

{
√
λM + 1

[
D2

λ2ρ̄2
+ log+

1

(
ρ̄
√
λ2M + λ√

ε̄

)]}
.

As a consequence, if λ = Θ (1/m), the above inner-iteration complexity reduces to

O

(
M1/2m3/2D2

ρ̄2
+

√
M

m
log+

1

(
ρ̄
√
M

m
√
ε̄

))
.

23 / 26



Approximate solutions

ρ̂-approximate solution:
if (ẑ, v̂) ∈ Rn × Rn satisfies

v̂ ∈ ∇f(ẑ) + ∂h(ẑ), ‖v̂‖ ≤ ρ̂

(ρ̄, ε̄)-prox-approximate solution:
if (λ, z−, z, w, ε) ∈ R++ × Rn × Rn × Rn × R+ satisfies

w ∈ ∂ε
(
φ+

1

2λ
‖ · −z−‖2

)
(z),

∥∥∥∥ 1

λ
(z− − z)

∥∥∥∥ ≤ ρ̄, ε ≤ ε̄.

24 / 26



Main results

Corollary

Let a tolerance ρ̂ > 0 be given and let (λ, y−, y, v, ε) be the output obtained by
the D-AIPP method with inputs λ = 1/(2m) and (ρ̄, ε̄) defined as

ρ̄ :=
ρ̂

4
and ε̄ :=

ρ̂2

32(M + 2m)
.

Then the following statements hold:

(a) the number of inner iterations for D-AIPP method to terminate is at most

O

(
M1/2m3/2D2

ρ̂2
+

√
M

m
log+

1

(
M

m

))

(b) if ∇g is M -Lipschitz continuous, then the pair (ẑ, v̂) = (zg, vg) computed
according to (5) and (7) is a ρ̂-approximate solution of (1), i.e., (3) holds.

25 / 26



Thank you!

26 / 26


	Introduction
	Framework
	Algorithms

