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Motivation – Gradient Method with Long Steps

(a) Gradient descent (b) The paper

Gradient descent xk+1 = xk �
hk
L rf (xk)

empty line
Classical result: hk  1,

f (xk)� f (x?) 
LD2

2k
New result: hk = (2.9, 1.5, 2.9, 1.5, . . .),

f (xk)� f (x?) 
LD2

2.2k
+O

✓
1

k2

◆

Proximal bundle method and restarted Nesterov’s accelerated gradient.
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Optimization and Sampling

Fast algorithm design for solving fundamental optimization and sampling problems
using the proximal point framework.

(c) Optimization, min f(x) (d) Sampling, samp exp(�f(x))
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Algorithms for Optimization and Sampling

Stochastic gradient descent, minx E⇠[F (x, ⇠)]

xk+1 = xk � �ks(xk, ⇠k), s(xk, ⇠k) 2 @F (xk, ⇠k)

Accelerated gradient descent, minx f(x)

x̃k =
Akyk + akxk

Ak+1
, yk+1 = x̃k � �krf(x̃k), xk+1 =

Ak+1

ak
yk+1�

Ak

ak
yk

Unadjusted Langevin algorithm, sample from ⌫(x) / exp(�f(x))

xk+1 = xk � �krf(xk) +
p

2�kz, z ⇠ N (0, I)
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A Universal Proximal Framework

Optimization

Algorithm Proximal Point Framework
1. yk  argmin

x

1
2�kx� xkk

2 = xk

2. xk+1  argmin
x

�
f(x) + 1

2�kx� ykk2
 

E.g., GD, SGD, AGD, Newton, Chambolle-Pock, ADMM, proximal bundle ...

Sampling

Algorithm Alternating Sampling Framework
1. Sample yk ⇠ ⇡Y |X(y | xk) / exp[� 1

2�kxk � yk2]

2. Sample xk+1 ⇠ ⇡X|Y (x | yk) / exp[�f(x)� 1
2�kx� ykk2]

E.g., ULA, proximal Langevin algorithm, symmetric Langevin algorithm ...
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Outline

1 Nonsmooth Optimization

2 Stochastic Optimization

3 High-dimensional Sampling
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Assumptions

Convex nonsmooth composite problem

�⇤ := min {�(x) := f(x) + h(x) : x 2 Rn
}

(A1) bounded subgradient
kf 0(x)k M ;

(A2) h is µ-strongly convex (µ � 0).

8 / 37



Motivation - Proximal Bundle Method

Goal: find x̂ such that �(x̂)� �⇤  "

Subgradient, Mirror descent, Bundle-level, and Prox Level method are
optimal.

Proximal bundle method O("�3)  previously best, improvable?

Lower complexity bound ⌦("�2)

Proximal bundle method is not optimal in general

We close the gap by showing the tight upper bound O("�2)
through a new proximal bundle method and a refined analysis
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Review of the Proximal Bundle Method

Proximal point framework: constructs a sequence of proximal problems.
empty line
Approximately solve the proximal problem by an iterative process

x+
 min

z2Rn

⇢
f(z) + h(z) +

1

2�
kz � xc

k
2

�
.

empty line
Recursively build up a cutting-plane model

fj(z) = max{f(zi) + hf
0(zi), z � zii : 0  i  j � 1}
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Relaxed Proximal Bundle Method (L. and Monteiro, 2021)

Consider a proximal problem

min
u2Rn

⇢
f(u) + h(u) +

1

2�
ku� xc

k
2

�

Algorithm RPB (one stage)

If find an ("/2)-solution to the current proximal problem, then change the prox-
center;  serious
empty line
Otherwise, keep the prox-center, update the cutting-plane model and solve the
prox subproblem based on the current model, i.e.,  null

xj = argmin
u2Rn

⇢
fj(u) + h(u) +

1

2�
ku� xc

k
2

�
.
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Main Results (L. and Monteiro, 2021)

We establish improved upper bounds and matching lower bounds.

Table: Upper and lower complexity bounds

Convex Strongly convex

Upper bound O

⇣
M2d20
"2

⌘
O

⇣
M2

µ" log
µd20
"

⌘

Lower bound ⌦
⇣

M2d20
"2

⌘
⌦
⇣

M2

µ"

⌘

Optimal for convex and nearly optimal for strongly convex
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Outline

1 Nonsmooth Optimization

2 Stochastic Optimization

3 High-dimensional Sampling
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Motivation

Main problem

�⇤ := min
x2Rn

{�(x) := f(x) + h(x)} , f(x) = E⇠[F (x, ⇠)]

empty line
Applications: Two-stage SP, Statistical learning, Statistical inference

min
P✓2P2(Rn)

KL(P✓0 ||P✓) = min
P✓2P2(Rn)

Z
log

P✓0

P✓
P✓0(x)dz

=

Z
logP✓0P✓0(z)dz �max

✓2⇥
Ez⇠P✓0

[logP✓(z)].

Maximum likelihood estimation (MLE) is a sample average approximation (SAA)

max
✓2⇥

(
`(✓|Z) :=

1

N

NX

i=1

logP✓(Zi)

)
 o�ine

Goal: stochastic approximation (SA) based on proximal bundle  online
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Assumptions

Stochastic convex composite optimization

�⇤ := min {�(x) := f(x) + h(x) : x 2 Rn
} , f(x) = E⇠[F (x, ⇠)]

(A1) unbiased estimators

E[F (x, ⇠)] = f(x), E[s(x, ⇠)] = f 0(x) 2 @f(x);

(A2) bounded variance
E[ks(x, ⇠)k2] M2.

15 / 37



A Motivating Question

Stochastic gradient descent, minx E⇠[F (x, ⇠)]

xk+1 = xk � �ks(xk, ⇠k), s(xk, ⇠k) 2 @F (xk, ⇠k)

Approximation by a single cut: E[f(y) + hs(y; ⇠), x� yi] f(x)
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line
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Cutting-plane model: approximation by multiple cuts

fj(x) = max{f(xi) + hf
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In the stochastic setting, is it still true?

E[fj(x)] f(x)?
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Other bundle models

(E1) single cut update
1
: �+ = �+

⌧ := ⌧�+ (1� ⌧)`f (·;x).
empty line

(E2) two cuts update: �+ = max{A+
f , `f (·;x)} where

A+
f = ✓Af + (1� ✓)`f (·;x�).

empty line
Bundle of past information {(xi, f(xi), f 0(xi))}
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line empty line empty line empty line empty line
empty line empty line empty line

1Liang and Monteiro, 2021. A unified analysis of a class of proximal bundle methods for
solving hybrid convex composite optimization problems.
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Convergence of SCPB

Let pair (�,K) and constant m � 1 be given

Number of iterations within Ck, or number of null steps

|Ck| 

⇠
(m+ 1) ln

✓
�k

C
+ 1

◆⇡
+ 1.

Convergence of SCPB

E[�(ŷaK)]� �⇤ 
2D2

�K
+

2�M2

m
.

Its expected overall iteration complexity is Õ(mK).
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Comparison with Robust Stochastic Approximation
2

RSA is basically SGD with constant stepsize �

RSA: E[�(xa
K)]� �⇤ 

2D2

�K
+ 2�M2

SCPB: E[�(ŷaK)]� �⇤ 
2D2

�K
+

2�M2

m

Taking the optimal stepsize for SCPB � =
p
mD

M
p
K

empty line
RSA has iteration complexity O

⇣
mM2D2

"2

⌘
;

empty line
SCPB has iteration complexity Õ

⇣
M2D2

"2

⌘
.

2Nemirovski, Juditsky, Lan and Shapiro, 2009. Robust stochastic approximation approach to
stochastic programming.
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Two-stage Stochastic Program

⇢
min cTx1 + E[Q(x1, ⇠)]
x1 2 Rn : x1 � 0,

Pn
i=1 x1(i) = 1

where the second stage recourse function is given by

Q(x1, ⇠) =

8
>>><

>>>:

min
x22Rn

1

2

✓
x1

x2

◆T ⇣
⇠⇠T + �0I2n

⌘✓ x1

x2

◆
+ ⇠T

✓
x1

x2

◆

x2 � 0,
nX

i=1

x2(i) = 1.

empty line

Table: n = 50, N = 4000

Statistics RSA SCPB1 SCPB2

� 7.4⇥ 10�7 10�3 10�3

Min Inner 1 9 2

Max Inner 1 52 43

Avg Inner 1 43 5
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Two-stage Stochastic Program
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Take-away Message

Optimal complexity for large stepsizes
empty line
Non-trivial variance reduction by PPF
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Outline

1 Nonsmooth Optimization

2 Stochastic Optimization

3 High-dimensional Sampling
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Sampling - Generation from Data

Sample from a probability distribution / exp (�f(x)) where f has certain
properties, such as convexity and smoothness

Extensively used in Bayesian inference and scientific computing

(e) Statistical Mechanics (f) Molecular Dynamics
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Image Deconvolution – Bayesian Model Selection

p(M1|y) = 0.964, p(M2|y) = 0.036, p(M3|y) < 0.001

26 / 37



Assumptions

Problem: sample from ⌫(x) / exp(�f(x))

(A1) f is semi-smooth, i.e., there exist ↵i 2 [0, 1] and L↵i > 0, i = 1, . . . , n, s.t.

kf 0(u)� f 0(v)k 

nX

i=1

L↵iku� vk↵i , 8u, v 2 Rd

Examples: n = 1
1) ↵1 = 1, smooth, 2) ↵1 = 0, nonsmooth, 3) 0 < ↵1 < 1, weakly smooth

(A2) ⌫ satisfies log-Sobolev inequality (LSI) or Poincaré inequality (PI).

LSI: H⌫(⇢) 
CLSI

2 J⇢(⌫), PI: E⌫ [( � E⌫ [ ])2]  CPIE⌫ [kr k2]

Observations: ⌫ is not necessarily log-concave, f is not necessarily convex.
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Comparison

Source Complexity Assumption Metric

Chewi et al. Õ

✓
C1+1/↵

PI L2/↵
↵ d2+1/↵

"1/↵

◆
weakly smooth
↵ > 0, PI

Rényi

This work Õ

⇣
CPIL

2/(1+↵)
↵ d2

⌘
semi-smooth, PI Rényi

Table: Complexity bounds for sampling from non-convex semi-smooth potentials.

Source Complexity Assumption Metric

Nguyen
et al.

Õ

 
C

1+max{ 1
↵i

}
LSI


nmax{L2

↵i
}d

"

�max{ 1
↵i

}
!

weakly smooth
↵i > 0, LSI

KL

This
work

Õ

⇣
CLSI

Pn
i=1 L

2/(↵i+1)
↵i d

⌘
semi-smooth, LSI KL

This
work

Õ

⇣
CPI

Pn
i=1 L

2/(↵i+1)
↵i d

⌘
semi-smooth, PI Rényi

Table: Complexity bounds for sampling from non-convex composite potentials.
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Alternating Sampling Framework

Joint distribution ⇡(x, y) / exp[�f(x)� 1
2⌘kx� yk2]

Algorithm ASF (Shen, Tian and Lee 2021)

1. Sample yk ⇠ ⇡Y |X(y | xk) / exp[� 1
2⌘kxk � yk2]

2. Sample xk+1 ⇠ ⇡X|Y (x | yk) / exp[�f(x)� 1
2⌘kx� ykk2]

Restricted Gaussian Oracle (RGO)

Given y, sample from

⇡X|Y (·|y) / exp

✓
�f(·)�

1

2⌘
k ·�yk2

◆
.

Without an implementable and provable RGO, ASF is only conceptual.

Nontrivial
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RGO Implementation

RGO: given y, sample from exp(�f⌘
y (x))

Algorithm RGO Rejection Sampling

1. Compute an approximate stationary point w of f⌘
y

2. Generate sample X ⇠ exp(�h1(x))
3. Generate sample U ⇠ U [0, 1]
4. If

U 
exp(�f⌘

y (X))

exp(�h1(X))
,

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(�h1(x)) where h1(x)  f⌘
y (x), construct the proposal as a

Gaussian
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Rejection Sampling E�ciency (L. and Chen, 2022)

Proposition

Assume

⌘ 
1

Md
=

[(↵+ 1)�]
1�↵
↵+1

L
2

↵+1
↵ d

,

then the expected number of rejection steps in RGO Rejection Sampling is at

most exp
⇣

3(1�↵)�
2 + 3

⌘
.

Proposition

Assume ⌘ 
1

Md , then the iteration-complexity to find the approx. stat. pt. w s.t.���f 0(w) + 1
⌘ (w � y)

��� 
p
Md by Nesterov acceleration is Õ(1).
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ASF Complexity

Another ingredient for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)

If ⌫ / exp(�f) satisfies PI with CPI > 0, then xk of ASF ⇠ ⇢k, which satisfies

�2
⌫(⇢k) 

�2
⌫(⇢0)⇣

1 + ⌘
CPI

⌘2k .
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Main Result (L. and Chen, 2022)

Theorem

Suppose f is L↵-semi-smooth and ⌫ satisfies PI. With ⌘ ⇣ 1/(L
2

↵+1
↵ d), then ASF

with RGO by rejection has complexity bound

Õ

✓
CPIL

2
↵+1
↵ d

◆

to achieve " error to ⌫ in terms of �2
divergence. Each iteration queries Õ(1)

subgradients of f and generates O(1) samples in expectation from Gaussian

distribution.
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Gaussian-Laplace Mixture

⌫(x) = 0.5(2⇡)�d/2
p
detQ exp

✓
�
1

2
(x� 1)>Q(x� 1)

◆
+ 0.5(2d) exp(�k4xk1)

(g) f(x) = � ln ⌫(x) (h) Histogram ASF

(i) Histogram ULA (j) Histogram ULA with small ⌘

34 / 37



Conclusion

A universal proximal framework
Nonsmooth optimization

empty line

Stochastic optimization

empty line

High-dimensional sampling

empty line

Beyond gradient descent

empty line

Restarted Nesterov’s acceleratedgradient

empty line
Optimization and sampling + X
empty line
statistical signal processing, medical imaging, biostatistics, ...
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