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Motivation — Gradient Method with Long Steps

Provably Faster Gradient Descent via Long Steps

Benjamin Grimmer*

(a) Gradient descent (b) The paper

Gradient descent zj41 = xf — %Vf (zx)

Classical result: h, <1,

LD’
- <
Flon) ~ () < 2
New result: hy = (2.9,1.5,2.9,1.5,...),
LD? 1
_ < =
P~ ) <550 +0(55)

Proximal bundle method and restarted Nesterov's accelerated, gradient.
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Optimization and Sampling

Fast algorithm design for solving fundamental optimization and sampling problems
using the proximal point framework.
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(c) Optimization, min f(a:) (d) Sampling, samp exp(—f(x))
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Algorithms for Optimization and Sampling

@ Stochastic gradient descent, min, E¢[F(z,§)]

Try1 = T — MeS(Tr, &k),  s(on, &) € OF (2, &)

4/37



Algorithms for Optimization and Sampling

@ Stochastic gradient descent, min, E¢[F(z,§)]

Try1 = T — MeS(Tr, &k),  s(on, &) € OF (2, &)

o Accelerated gradient descent, min, f(x)

Ap1 Ay,

- Aryr + apy
Tp = ——F Ye+1 — — Yk
k ag

Apy1

v Ykl = Te — M V(TR), Trp1 =

4/37



Algorithms for Optimization and Sampling

@ Stochastic gradient descent, min, E¢[F(z,§)]

Tpy1 = Tp — Mes(@r, &),  s(a, &) € OF (v, &k)

o Accelerated gradient descent, min, f(x)

Ap1 Ay,

- Aryr + apy
Tp = ——F Ye+1 — — Yk
k ag

Apy1

v Ykl = Te — M V(TR), Trp1 =

o Unadjusted Langevin algorithm, sample from v(z) o exp(—f(x))

Tpp1 = Tk — MV (@k) + V2Az, 2~ N(0,1)
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A Universal Proximal Framework

Optimization

Algorithm Proximal Point Framework

1. yp < argmings ||z — 2|2 = zy,
xT

2. Tpy1 ¢ argmin {f(a:) + i”x — yk||2}
x

E.g., GD, SGD, AGD, Newton, Chambolle-Pock, ADMM, proximal bundle ...
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A Universal Proximal Framework

Optimization

Algorithm Proximal Point Framework

1. yp < argmings ||z — 2|2 = zy,
xT

2. Tpy1 ¢ argmin {f(a:) + i”x — yk||2}
x

E.g., GD, SGD, AGD, Newton, Chambolle-Pock, ADMM, proximal bundle ...

Sampling

Algorithm Alternating Sampling Framework

1. Sample yj, ~ 71X (y | @) oc expl— g5 |2k — ]

2. Sample 21 ~ XY (2 | ) o exp[—f(z) — o5l — yil|*]

E.g., ULA, proximal Langevin algorithm, symmetric Langevin algorithm ...
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@ Nonsmooth Optimization
© Stochastic Optimization

© High-dimensional Sampling
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@ Nonsmooth Optimization
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Convex nonsmooth composite problem

¢« = min{o(z) = f(z) + h(z) : x € R"}

(A1) bounded subgradient
1" ()] < M;

(A2) h is p-strongly convex (> 0).
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Motivation - Proximal Bundle Method

Goal: find & such that ¢(&) — ¢, < ¢

@ Subgradient, Mirror descent, Bundle-level, and Prox Level method are
optimal.
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Motivation - Proximal Bundle Method

Goal: find & such that ¢(&) — ¢, < ¢

@ Subgradient, Mirror descent, Bundle-level, and Prox Level method are
optimal.

@ Proximal bundle method O(s73) « previously best, improvable?
e Lower complexity bound Q(c72)

Proximal bundle method is not optimal in general

We close the gap by showing the tight upper bound O(¢~2)
through a new proximal bundle method and a refined analysis

9/37



Review of the Proximal Bundle Method

Proximal point framework: constructs a sequence of proximal problems.

Approximately solve the proximal problem by an iterative process

1
ot ;161]}{71) {f(z) + h(z) + 5”2 xc||2}.

Recursively build up a cutting-plane model

fi(z) = max{f(z;) + (f'(zi), 2 —2z) : 0<i < j—1}
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Relaxed Proximal Bundle Method (L. and Monteiro, 2021)

Consider a proximal problem

min {f(u) b+ o - :L‘C||2}

u€ER™

Algorithm RPB (one stage)

If find an (£/2)-solution to the current proximal problem, then change the prox-
center; < serious

Otherwise, keep the prox-center, update the cutting-plane model and solve the
prox subproblem based on the current model, i.e., <— null

: 1 c
x; = argmin {fj(u) + h(u) + ﬁHU —x ||2} .
u€R™
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Main Results (L. and Monteiro, 2021)

We establish improved upper bounds and matching lower bounds.

Table: Upper and lower complexity bounds

Convex Strongly convex
Upper bound | O (M:ng) (@] (]f—; log %d‘%>
Lower bound | 2 (M:ng) Q (A:—;)

Optimal for convex and nearly optimal for strongly convex
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© Stochastic Optimization
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Main problem
¢y = min {¢(z) := f(x) + h(z)}, f(z)=Ee[F(z,8)]

TER™

Applications: Two-stage SP, Statistical learning, Statistical inference
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¢y = min {¢(z) := f(x) + h(z)}, f(z)=Ee[F(z,8)]

TER™

Applications: Two-stage SP, Statistical learning, Statistical inference

Py
min lo, Py (z)dz
Peepz(]R")/ s Py 90( )

= / log Py, Py, (z)dz — max E.~py, [log Py(2)].

min KL(P90||P9)
PyePa(R™)
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Main problem

¢w := min {$(z) := f(z) + h(x)}, [f(z) = Ee[F(z, )]

TER"™

Applications: Two-stage SP, Statistical learning, Statistical inference

Py
i KL(Py ||Py) = i I P, d
Pger%ir(lnan) (PoollFo) pee%i?um / 8 Py 0, ()dz

/ log Py, Py, (z)dz — max E.~py, [log Py(2)].

Maximum likelihood estimation (MLE) is a sample average approximation (SAA)

rgleaéc{ 012) : Zlong } < offline

Goal: stochastic approximation (SA) based on proximal bundle +— online
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Stochastic convex composite optimization
¢y = min{d(x) = f(x)+ h(z) : 2 € R"},  f(z) = E¢[F(x,8)]

(A1) unbiased estimators

E[F(z,8)] = f(z), Els(z,8)]=f'(z) € 0f(2);

(A2) bounded variance
E[]ls(z,&)II”) < M*.
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A Motivating Question

@ Stochastic gradient descent, min, E¢[F(z,§)]

Tt = T — MeS(@, €k)s S(h; Ek) € OF (g, &)
Approximation by a single cut: E[f(y) + (s(y; &),z — v)]< f(x)
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A Motivating Question

e Stochastic gradient descent, min, E¢[F(x,§)]

Tr1 = Tk — \es(Tr, §k), (k&) € OF (v, k)
Approximation by a single cut: E[f(y) + (s(y; &),z — y)]< f(x)
o Cutting-plane model: approximation by multiple cuts

fi(@) = max{f(z;) + (f'(zs), 2 —2;) : 0< i < j—1}< f(x)
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A Motivating Question

e Stochastic gradient descent, min, E¢[F(x,§)]

Tr1 = Tk — \es(Tr, §k), (k&) € OF (v, k)
Approximation by a single cut: E[f(y) + (s(y; &),z — y)]< f(x)
o Cutting-plane model: approximation by multiple cuts

fi(@) = max{f(z;) + (f'(zs), 2 —2;) : 0< i < j—1}< f(x)

@ In the stochastic setting, is it still true?

Elfj(@)]< f(z)?
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Other bundle models

(E1) single cut update': " =T := 7 + (1 — 7)0s(; ).

(E2) two cuts update: I' = max{A?,Ef(qx)} where
A? =0Ar+ (1 —0)ls(527).

Bundle of past information {(z;, f(z;), f'(z:))}

NS

Multiple cuts Two cuts One cut

ILiang and Monteiro, 2021. A unified analysis of a class of proximal bundle methods for
solving hybrid convex composite optimization problems.
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Convergence of SCPB

Let pair (A, K) and constant m > 1 be given

@ Number of iterations within Cg, or number of null steps

ICx| < [(m+ 1)In (% + 1)] +1.

v

o Convergence of SCPB

2D%  2\M?

E[¢(9%)] — ¢ < K + m

o lts expected overall iteration complexity is O(mK). J
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Comparison with Robust Stochastic Approximation 2

RSA is basically SGD with constant stepsize A

RSA: E[p(2%)] — ¢ < 207 + 2\M?
e AV
2D%  2AM?

SCPB: Elg(j})] — 6. <

ANK + m

2Nemirovski, Juditsky, Lan and Shapiro, 2009. Robust stochastic approximation approach to
stochastic programming.
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Comparison with Robust Stochastic Approximation 2

RSA is basically SGD with constant stepsize A

RSA: E[p(2%)] — ¢ < 2D° + 2\M?
e AV
2D%  2AM?
: )] — b < ——
SCPB: E[¢(9i)] — ¢« < o + —
/mD

Taking the optimal stepsize for SCPB \ = VE

@ RSA has iteration complexity O (’"”i#)

e SCPB has iteration complexity O <M2D2>.

2

2Nemirovski, Juditsky, Lan and Shapiro, 2009. Robust stochastic approximation approach to

stochastic programming.
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Two-stage Stochastic Program

min c¢Txy + E[Q(z1, €)]
r1 €R" 2y > 072?:1 x1(i) =1

where the second stage recourse function is given by

o1
min —
o ER™ 2

n
X9 Z 0, Z
=1

Q(th) =

Table: n =50, N = 4000

T
n) (o) (1) ve (

LL’Q(Z) =1.

Statistics RSA SCPB1 | SCPB2
A 74x1077 | 1073 1073
Min Inner 1 9 2
Max Inner 1 52 43
Avg Inner 1 43 5

x1
T2
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Two-stage Stochastic Program

Estimated Function Value

Prob1 RSA vs SCPB1 vs SCPB2

= RSA
==SCPB1
==SCPB2

1000

1500

2000
Inner Iteration

2500

3000

3500

4000
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Take-away Message

@ Optimal complexity for large stepsizes

@ Non-trivial variance reduction by PPF
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© High-dimensional Sampling
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Sampling - Generation from Data

Sample from a probability distribution o exp (—f(z)) where f has certain
properties, such as convexity and smoothness

e
N

JEN

»

/ «—9

(e) Statistical Mechanics

(f) Molecular Dynamics
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Image Deconvolution — Bayesian Model Selection

(c) ()

p(Maly) =0.964, p(Maly) =0.036, p(Msly) <0.001
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Problem: sample from v(z) o< exp(—f(x))

(A1) f is semi-smooth, i.e., there exist a; € [0,1] and Lo, > 0,i=1,...,n, s.t.

1/ () |<ZLQ|

Yu,v e RY

27 /37



Problem: sample from v(z) o< exp(—f(x))

(A1) f is semi-smooth, i.e., there exist a; € [0,1] and Lo, > 0,i=1,...,n, s.t.

I1f (u) ||<ZL

Yu,v e RY

Examples: n =1
1) @y =1, smooth, 2) @3 =0, nonsmooth, 3) 0 < a3 < 1, weakly smooth

27 /37



Problem: sample from v(z) o< exp(—f(x))

(A1) f is semi-smooth, i.e., there exist a; € [0,1] and Lo, > 0,i=1,...,n, s.t.

1/ () |<ZLQ|

Yu,v e RY

Examples: n =1
1) @y =1, smooth, 2) @3 =0, nonsmooth, 3) 0 < a3 < 1, weakly smooth

(A2) v satisfies log-Sobolev inequality (LSI) or Poincaré inequality (PI).

LSI: H,(p) < S£517,(v), Pl E,[(¢ — E,[¢])%] < CpiE,[|Ve]|?]

27 /37



Problem: sample from v(z) o< exp(—f(x))

(A1) f is semi-smooth, i.e., there exist a; € [0,1] and Lo, > 0,i=1,...,n, s.t.

1/ () |<ZLQ|

Yu,v e RY

Examples: n =1
1) @y =1, smooth, 2) @3 =0, nonsmooth, 3) 0 < a3 < 1, weakly smooth

(A2) v satisfies log-Sobolev inequality (LSI) or Poincaré inequality (PI).

LSI: H,(p) < S£517,(v), Pl E,[(¢ — E,[¢])%] < CpiE,[|Ve]|?]

Observations: v is not necessarily log-concave, f is not necessarily convex.

27 /37



Comparison

Source Complexity Assumption Metric

. ~ C1+1/aL2/ad2+1/a , .

Chewi et al. O t——Fn— weakly smooth Rényi
a>0,Pl

This work o (CPILE/ (HO‘)dQ) semi-smooth, Pl | Rényi

Table: Complexity bounds for sampling from non-convex semi-smooth potentials.

Source Complexity Assumption Metric
~ max{} | nmax{L2 max{57}

Nguyen| O (C’i; e {iL“}d] ) weakly smooth KL

et al. «a; > 0, LSI

This 1) (C’LSI Zn 2/ o +1)d) semi-smooth, LSI KL

work

This 1) (CPI S 2/(a1+1)d> semi-smooth, Pl | Rényi

work

Table: Complexity bounds for sampling from non-convex composite potentials.
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Alternating Sampling Framework

Joint distribution 7(z,y) o exp[—f(z) — 5[z — y|]?]

Algorithm ASF (Shen, Tian and Lee 2021)
)’|){(

1. Sample g ~ 71X (y | 1) o expl— 2 [k — I

2. Sample @1 ~ 7 (2 | y) oc exp[—f (@) — g o — yul|?]

Restricted Gaussian Oracle (RGO)
Given y, sample from

X1 (Jy) o exp (—f(-) -l —y||2) .
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Alternating Sampling Framework

Joint distribution 7(z,y) o exp[—f(z) — 5[z — y|]?]

Algorithm ASF (Shen, Tian and Lee 2021)

1. Sample g ~ 71X (y | 1) o expl— 2 [k — I

2. Sample @1 ~ 7 (2 | y) oc exp[—f (@) — g o — yul|?]

Restricted Gaussian Oracle (RGO)
Given y, sample from

X1 (Jy) o exp (—f(-) -l —y||2) .

Without an implementable and provable RGO, ASF is only conceptual.

Nontrivial
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RGO Implementation

RGO: given y, sample from exp(—f(z))

Algorithm RGO Rejection Sampling

1. Compute an approximate stationary point w of f{]
2. Generate sample X ~ exp(—hq(z))
3. Generate sample U ~ U[0, 1]
4. If
exp(—f,/(X))
~ exp(—=hi (X))’

then accept/return X; otherwise, reject X and go to step 2.

Proposal: exp(—hi(z)) where hy(z) < f(x), construct the proposal as a
Gaussian
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Rejection Sampling Efficiency (L. and Chen, 2022)

Proposition

Assume -
1 a+ 1)d] e+t
n < d %7
Lsttd
then the expected number of rejection steps in RGO Rejection Sampling is at

most exp (3(1 )8 4 3)
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Rejection Sampling Efficiency (L. and Chen, 2022)

Proposition

Assume -
1 o+ 1))+t
p< - = let DI
Md La+1d

then the expected number of rejection steps in RGO Rejection Sampling is at
3(1—a)§
most exp ( + 3)

Proposition

| \

Assume n < M -, then the iteration-complexity to find the approx. stat. pt. w s.t.
) ' (w) + E(w —y ” < V/Md by Nesterov acceleration is O(1).

31/37



ASF Complexity

Another ingredient for total complexity: Convergence rate analysis of ASF

Theorem (Chen, Chewi, Salim and Wibisono 2022)

If v o< exp(—f) satisfies Pl with Cp1 > 0, then xy, of ASF ~ py, which satisfies

XE(PO)

X2 (k) < T
(1 + CLPI)
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Main Result (L. and Chen, 2022)

2

Suppose f is L,-semi-smooth and v satisfies Pl. With n < 1/(L5"* d), then ASF

with RGO by rejection has complexity bound

@] (CPIL Std )

to achieve ¢ error to v in terms of x* divergence. Each iteration queries @(1)
subgradients of f and generates O(1) samples in expectation from Gaussian
distribution.
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Gaussian-Laplace Mixture

v(z) = 0.5(27r)_d/2\/dethXp (—%(x -1)"Q(x — 1)> +0.5(2%) exp(—||4x||1)

(g) f(z) = —Inv(x) (h) Histogram ASF
(i) Histogram ULA (j) Histogram ULA with small n
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Conclusion

@ A universal proximal framework

o Nonsmooth optimization

Stochastic optimization

e High-dimensional sampling

Beyond gradient descent

o Restarted Nesterov's acceleratedgradient

@ Optimization and sampling + X

statistical signal processing, medical imaging, biostatistics, ...
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Thank you!



