Average Curvature ACG

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An Average Curvature Accelerated Composite Gradient (ACG) Method for Nonconvex Smooth Composite Optimization Problems

Jiaming Liang¹ Renato D.C. Monteiro¹

¹School of Industrial and Systems Engineering, Georgia Tech

INFORMS Annual Meeting - October 22, 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results
- Implementation and Concluding Remarks

The Main Problem ●੦੦੦	Average Curvature ACG 0000000000	Computational Results	Implementation and Concluding Remarks
Assumptions			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results

Implementation and Concluding Remarks

The Main Problem 0●00	Average Curvature ACG 0000000000	Computational Results	Implementation and Concluding Remarks
Assumptions			

The main problem:

$$(P) \qquad \min \left\{ f(z) + h(z) : z \in \mathbb{R}^n \right\}$$

where

• $h:\mathbb{R}^n o (-\infty,\infty]$ is a closed proper convex function such that

$$D:=\sup\{\|z'-z\|:z,z'\in \mathrm{dom}\,h\}<\infty$$

f is differentiable (not necessarily convex) on dom h and there exist 0 < m ≤ L such that for every z, z' ∈ dom h

$$egin{aligned} \|
abla f(z') -
abla f(z)\| &\leq L \|z'-z\| \ f(z') - \ell_f(z';z) &\geq -rac{m}{2}\|z'-z\|^2 \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\ell_f(z';z) := f(z) + \langle \nabla f(z), z' - z \rangle$.

The Main Problem ○○●○	Average Curvature ACG	Computational Results	Implementation and Concluding Remarks
Approximate solutions			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results

Implementation and Concluding Remarks

The Main Problem ○○○●	Average Curvature ACG	Computational Results	Implementation and Concluding Remarks
Approximate solutions			

A necessary condition for \bar{z} to be a local minimizer of (P) is that

 $0\in \nabla f(\bar{z})+\partial h(\bar{z})$

Goal: for given $\hat{\rho} > 0$, find a $\hat{\rho}$ -approximate solution of (*P*), i.e., a pair (\hat{z}, \hat{v}) such that

$$\hat{\mathbf{v}} \in
abla f(\hat{z}) + \partial h(\hat{z}), \quad \|\hat{\mathbf{v}}\| \leq \hat{
ho}$$

There are a couple of ACG methods which accomplishes the above goal (e.g., Ghadimi-Lan's method). This talk describes a different and novel ACG method for doing that.

Motivation

1 The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results

Implementation and Concluding Remarks

Average Curvature ACG

Motivation

Traditional adaptive ACG methods compute the next iterate as

$$z_{k+1} = z_{k+1}(M_k) := \operatorname{argmin}_z \left\{ \ell_f(z; \tilde{x}_k) + h(z) + \frac{M_k}{2} \|z - \tilde{x}_k\|^2 \right\}$$

where \tilde{x}_k is a convex combination of z_k and another auxiliary iterate x_k , and $M_k > 0$ is chosen so as to satisfy

$$M_k \geq \mathcal{C}(z_{k+1}; ilde{x}_k) := rac{2[f(z_{k+1}) - \ell(z_{k+1}; ilde{x}_k)]}{\|z_{k+1} - ilde{x}_k\|^2} \quad (*)$$

Choosing M_k as the smallest one satisfying (*) results in faster convergence rate but finding an approximation to this M_k leads to an expensive line search on M_k . A sufficient condition for (*) is to impose the maximum curvature condition

$$M_k \geq \max_{i=0,\ldots,k} \mathcal{C}(z_{i+1}; \tilde{x}_i)$$

This strategy leads to a simpler search for M_k but results in a relatively large M_k .

Average Curvature ACG

Motivation

Traditional adaptive ACG methods compute the next iterate as

$$z_{k+1} = z_{k+1}(M_k) := \operatorname{argmin}_{z} \left\{ \ell_f(z; \tilde{x}_k) + h(z) + \frac{M_k}{2} \|z - \tilde{x}_k\|^2 \right\}$$

where \tilde{x}_k is a convex combination of z_k and another auxiliary iterate x_k , and $M_k > 0$ is chosen so as to satisfy

$$M_k \geq \mathcal{C}(z_{k+1}; ilde{x}_k) := rac{2[f(z_{k+1}) - \ell(z_{k+1}; ilde{x}_k)]}{\|z_{k+1} - ilde{x}_k\|^2} \quad (*)$$

Choosing M_k as the smallest one satisfying (*) results in faster convergence rate but finding an approximation to this M_k leads to an expensive line search on M_k . A sufficient condition for (*) is to impose the maximum curvature condition

$$M_k \geq \max_{i=0,\ldots,k} \mathcal{C}(z_{i+1}; \tilde{x}_i)$$

This strategy leads to a simpler search for M_k but results in a relatively large M_k .

Average Curvature ACG

Motivation

Traditional adaptive ACG methods compute the next iterate as

$$z_{k+1} = z_{k+1}(M_k) := \operatorname{argmin}_z \left\{ \ell_f(z; \tilde{x}_k) + h(z) + \frac{M_k}{2} \|z - \tilde{x}_k\|^2 \right\}$$

where \tilde{x}_k is a convex combination of z_k and another auxiliary iterate x_k , and $M_k > 0$ is chosen so as to satisfy

$$M_k \geq \mathcal{C}(z_{k+1}; ilde{x}_k) := rac{2[f(z_{k+1}) - \ell(z_{k+1}; ilde{x}_k)]}{\|z_{k+1} - ilde{x}_k\|^2} \quad (*)$$

Choosing M_k as the smallest one satisfying (*) results in faster convergence rate but finding an approximation to this M_k leads to an expensive line search on M_k . A sufficient condition for (*) is to impose the maximum curvature condition

$$M_k \geq \max_{i=0,\ldots,k} \mathcal{C}(z_{i+1}; \tilde{x}_i)$$

This strategy leads to a simpler search for M_k but results in a relatively large M_k .

The Main Problem 0000	Average Curvature ACG	Computational Results	Implementation and Concluding Remarks
Motivation			

We will exploit the novel idea of choosing M_k as

$$M_k = \frac{\sum_{i=0}^{k-1} \mathcal{C}(z_{i+1}; \tilde{x}_i)}{k \alpha}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\alpha \in (0, 1)$

Note: No search for M_k is involved here!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

AC-ACG method

1 The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

Motivation

AC-ACG method

- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results

Implementation and Concluding Remarks

Average Curvature ACG

Computational Results

Implementation and Concluding Remarks

AC-ACG method

Average Curvature ACG (AC-ACG) Method

0. Let $\alpha, \gamma \in (0, 1)$, tolerance $\hat{\rho} > 0$ and initial point $z_0 \in \text{dom } h$ be given; set $A_0 = 0$, $x_0 = z_0$, $M_0 = \gamma L$ and k = 0

1. compute

$$a_k = rac{1 + \sqrt{1 + 4M_kA_k}}{2M_k}$$
 $A_{k+1} = A_k + a_k$ $ilde{x}_k = rac{A_kz_k + a_kx_k}{A_{k+1}}$

2. compute

$$x_{k+1} = \operatorname{argmin}_{u} \left\{ a_{k} \left(\ell_{f}(u; \tilde{x}_{k}) + h(u) \right) + \frac{1}{2} \|u - x_{k}\|^{2} \right\}$$
$$z_{k+1}^{g} = \operatorname{argmin}_{u} \left\{ \ell_{f}(u; \tilde{x}_{k}) + h(u) + \frac{M_{k}}{2} \|u - \tilde{x}_{k}\|^{2} \right\}$$
$$v_{k+1} = M_{k} (\tilde{x}_{k} - z_{k+1}^{g}) + \nabla f(z_{k+1}^{g}) - \nabla f(\tilde{x}_{k})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Average Curvature ACG

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

AC-ACG method

3. if $||v_{k+1}|| \leq \hat{\rho}$ then output $(\hat{z}, \hat{v}) = (z_{k+1}^g, v_{k+1})$ and **stop**; otherwise, compute

$$C_{k} = \max\left\{\frac{2\left[f(z_{k+1}^{g}) - \ell_{f}(z_{k+1}^{g}; \tilde{x}_{k})\right]}{\|z_{k+1}^{g} - \tilde{x}_{k}\|^{2}}, \frac{\|\nabla f(z_{k+1}^{g}) - \nabla f(\tilde{x}_{k})\|}{\|z_{k+1}^{g} - \tilde{x}_{k}\|}\right\}$$
$$C_{k}^{avg} = \frac{1}{k+1}\sum_{j=0}^{k} C_{j}$$
$$M_{k+1} = \max\left\{\frac{1}{\alpha}C_{k}^{avg}, \gamma L\right\}$$

4. set

$$z_{k+1} = \begin{cases} z_{k+1}^{g} & \text{if } C_k \leq 0.9M_k \pmod{\text{iteration}} \\ \frac{A_k z_k + a_k x_{k+1}}{A_{k+1}} & \text{otherwise} \pmod{\text{iteration}} \end{cases}$$

and $k \leftarrow k + 1$, and go to step 1

 both good and bad iterations perform well-known types of acceleration steps

if

$$lpha \leq rac{0.9}{8} \left(1 + rac{1}{0.9\gamma}
ight)^{-1}$$

then it can be shown that the proportion of good iterations is at least $2/3\,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- in practice, α can be much larger, i.e., $\Omega(1)$ instead of $\Omega(\gamma)$
- our implementation sets lpha= 0.5 or 0.7 or 1

Average Curvature ACG

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Convergence rate and iteration-complexity

1 The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results
- Implementation and Concluding Remarks

Average Curvature ACG

Computational Results

Implementation and Concluding Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convergence rate and iteration-complexity

Theorem

The following statements hold:

(a) for every
$$k \ge 1$$
, we have $v_k \in \nabla f(z_k) + \partial h(z_k)$

(b) for every $k \ge 12$, we have

$$\min_{1 \le i \le k} \|v_i\|^2 \le \mathcal{O}\left(\frac{M_k^2 D^2}{\gamma k^2} + \frac{\theta_k m M_k D^2}{k}\right)$$

where

$$\theta_k := \max\left\{\frac{M_k}{M_i}: 0 \le i \le k\right\} \ge 1.$$

The facts that $\theta_k = \mathcal{O}(1)$ and $M_k/L = \mathcal{O}(1)$ imply that the iteration-complexity bound for AC-ACG to obtain $\hat{\rho}$ -approx. sol. is

$$\mathcal{O}\left(\frac{LD}{\hat{\rho}} + \frac{mLD^2}{\hat{\rho}^2} + 1\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof techniques

1 The Main Problem

- Assumptions
- Approximate solutions

2 Average Curvature ACG Method

- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
- 3 Computational Results

Implementation and Concluding Remarks

The Main Problem 0000	Average Curvature ACG	Computational Results	Implementation and Concluding Remarks
Proof techniques			

Define

$$\mathcal{G} := \{k \ge 0 : C_k \le 0.9M_k\}, \quad \mathcal{B} := \{k \ge 0 : C_k > 0.9M_k\},$$

and

$$\mathcal{G}_k = \{i \in \mathcal{G} : i \leq k-1\}, \quad \mathcal{B}_k := \{i \in \mathcal{B} : i \leq k-1\}.$$

The following lemma is the key to the proof of the main theorem.

Lemma

For every $k \ge 1$, $|\mathcal{B}_k| \le k/4 + 1$. As a consequence, $|\mathcal{B}_k| \le k/3$ for every $k \ge 12$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Computational Results

The variant of AC-ACG described above was benchmarked against

- AG method by Ghadimi and Lan (known Lipschitz constant)
- nmAPG method by Li and Lin (known Lipschitz constant)

• UPFAG method by Ghadimi, Lan and Zhang (backtracking) on **five** classes of problems.

All methods stop with a pair (z, v) satisfying

$$oldsymbol{v} \in
abla f(z) + \partial h(z), \qquad rac{\|oldsymbol{v}\|}{\|
abla f(z_0)\| + 1} \leq \hat{
ho}$$

・ロト・西・・日・・日・・日・

1st Problem (Nonconvex QP):

$$\min\left\{f(Z):=-\frac{\xi}{2}\|D\mathcal{B}(Z)\|^2+\frac{\tau}{2}\|\mathcal{A}(Z)-b\|^2:z\in P_n\right\}$$

where P_n is the unit spectraplex, i.e.,

$$P_n := \left\{ Z \in S^n_+ : \operatorname{tr}(Z) = 1 \right\}$$

 $\mathcal{A}: S^n_+ \to \mathbb{R}^{\ell}$ and $\mathcal{B}: S^n_+ \to \mathbb{R}^{p}$ are linear operators, $D \in \mathbb{R}^{p \times p}$ is a positive diagonal matrix, and $b \in \mathbb{R}^{\ell}$ is a vector.

Average Curvature ACG 00000000000

(<i>L</i> , <i>m</i>)		Iteration	Count /		Curv	Good	
(Ľ, Ш)		Running	Time (s)		Curv	ature	Good
	AG	APG	UPFAG	AC	Max	Avg	
$(10^6, 10^6)$	69	117	13	8	1.28E5	1.70E4	88%
	22.0	26.4	8.3	3.5			
$(10^6, 10^5)$	277	502	9	7	1.80E4	2.84E3	86%
	119.0	117.7	5.7	3.1			
$(10^6, 10^4)$	491	1030	13	11	3.26E4	3.89E3	91%
	173.3	245.5	9.1	4.6			
$(10^6, 10^3)$	531	1144	13	12	3.41E4	3.73E3	92%
	168.9	259.3	9.1	6.8			
$(10^6, 10^2)$	535	1156	13	12	3.42E4	3.75E3	92%
	171.8	260.2	8.6	5.5			
$(10^6, 10^1)$	536	1157	13	12	3.43E4	3.75E3	92%
	172.1	266.1	8.3	5.2			

Table: QP — (*I*, *p*, *n*) = (50, 800, 1000), 0.1% sparse ($\alpha = 1$ and $\hat{\rho} = 10^{-7}$)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2nd Problem (SVM):

$$\min_{z \in \mathbb{R}^n} \frac{1}{p} \sum_{i=1}^p \ell(x_i, y_i; z) + \frac{\lambda}{2} ||z||^2 + I_{B_r}(z)$$

for some $\lambda, r > 0$, where $x_i \in \mathbb{R}^n$ is a feature vector, $y_i \in \{1, -1\}$ denotes the corresponding label, $\ell(x_i, y_i; \cdot) = 1 - \tanh(y_i \langle \cdot, x_i \rangle)$ is a nonconvex sigmoid loss function and $I_{B_r}(\cdot)$ is the indicator function of $B_r := \{z \in \mathbb{R}^n : ||z|| \le r\}$.

Average Curvature ACC 00000000000 Computational Results

Implementation and Concluding Remarks

L		Iteration	Count /	Curvature		Good	
L		Running ⁻	Time (s)		Curv	ature	Good
	AG	APG	UPFAG	AC	Max	Avg	
13	37384	42532	130	546	0.25	0.05	67%
	639	649	8	12			
25	112562	123551	278	1131	0.47	0.06	65%
	4419	4486	39	60			
38	155503	163197	401	1032	0.34	0.07	63%
	12636	12101	97	95			
50	79752	79064	247	615	0.18	0.07	71%
	4406	5264	44	39			

Table: SVM — $(\lambda, r) = (1/p, 50)$ ($\alpha = 0.5$ and $\hat{\rho} = 10^{-7}$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

3rd Problem (Sparse PCA):

$$\min\langle -\hat{\Sigma}, X \rangle_F + \frac{\mu}{2} \|X\|_F^2 + Q_{\lambda,b}(Y) + \lambda \|Y\|_1 + \frac{\beta}{2} \|X - Y\|_F^2 + I_{\mathcal{F}^k}(X)$$

s.t. $X, Y \in \mathbb{R}^{p \times p}$

where $\hat{\Sigma} \in \mathbb{R}^{p \times p}$ is an empirical covariance matrix, μ, λ, β, b are positive scalars,

$$\|Y\|_{1} := \sum_{i,j=1}^{p} |Y_{ij}|, \quad Q_{\lambda,b}(X) := \sum_{ij=1}^{p} q_{\lambda,b}(X_{ij})$$

where

$$q_{\lambda,b}(t):= \left\{egin{array}{cc} -rac{t^2}{2b}, & ext{if} \ |t|\leq b\lambda; \ rac{b\lambda^2}{2}-\lambda|t|, & ext{otherwise} \end{array}
ight.$$

and $I_{\mathcal{F}^k}(\cdot)$ is the indicator function of the Fantope

$$\mathcal{F}^k := \{X \in S^n : 0 \preceq X \preceq I \text{ and } \operatorname{tr}(X) = k\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

L		Iteration	$Count \; / \;$	Curvature		Good	
L		Running	Time (s)		Curv	ature	Good
	AG	APG	UPFAG	AC	Max	Avg	
2.33	21	18	7	15	2.00	0.72	67%
	8.63	4.96	6.71	7.33			
4	7	9	8	7	3.67	3.41	71%
	10.08	2.73	7.55	3.94			
63	32	43	18	27	44.41	31.12	89%
	19.91	12.06	17.61	12.04			
60.67	35	46	17	31	0.18	0.07	94%
	19.01	14.28	16.97	12.51			

Table: Sparse PCA ($\alpha = 0.5$ and $\hat{\rho} = 10^{-7}$)

4th Problem (Constrained matrix completion):

$$\min_{X\in\mathbb{R}^{m\times n}}\left\{\frac{1}{2}\|\Pi_{\Omega}(X-O)\|_{F}^{2}+\mu\sum_{i=1}^{r}p(\sigma_{i}(X)):\|X\|_{F}\leq R\right\}$$

where $O \in \mathbb{R}^{\Omega}$ is an incomplete observed matrix, $\mu > 0$ is a parameter, $r := \min\{m, n\}$, $\sigma_i(X)$ is the *i*-th singular value of X and

$$p(t) = p_{eta, heta}(t) := eta \log\left(1 + rac{|t|}{ heta}
ight)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The Main Problem	Average Curvature ACG	Computational Results

L	Func	tion Va	lue $ imes$ 10)00 /	Running Time			Curvature	Good	
	I	lteratio	n Count	:		imes1000	seconds		Curvature	Good
	AG	APG	UPFA	G AC	AG	APG	UPFAG	AC	Max Avg	
4	2.26	1.81	2.60	2.29	4.6	1.0	2.6	0.9	1.00 0.31	96%
	3856	1036	521	765						
9	3.89	3.36	4.26	3.88	10.3	1.6	4.3	1.2	1.00 0.28	94%
	9158	1617	576	968						
20	4.28	3.64	4.64	4.27	29.2	2.8	4.6	1.2	0.99 0.25	91%
	22902	2875	676	1079						
30	5.97	5.24	6.75	5.97	41.7	4.2	6.8	1.3	0.97 0.23	89%
	37032	3717	606	1085						

Table: MC — 100K MovieLens dataset (lpha= 0.5 and $\hat{
ho}=$ 5 imes 10⁻⁴)

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

5th Problem: (Nonnegative matrix factorization)

$$\min\left\{f(V,W):=\frac{1}{2}\|X-VW\|_F^2: V\in\mathbb{R}^{n\times p}_+, W\in\mathbb{R}^{p\times \ell}_+\right\}$$

based on a facial image dataset provided by AT&T Laboratories Cambridge

$$n = 10,304$$
 $\ell = 400$ $p = 20$

Method	Function	Iteration	Running
	Value	Count	time(s)
AG	2.80E+09	786	73.03
APG	2.80E+09	87	14.91
UPFAG	2.80E+09	37	11.12
AC	2.80E+09	37	4.70

Table: NMF ($\alpha = 0.7$ and $\hat{\rho} = 10^{-7}$)

(ロ) (型) (E) (E) (E) (O)(C)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Implementation Remarks

- We can choose α to control the percentage of good iterations.
- We have been able to solve problems for which dom *h* is unbounded but sometimes unboundness of dom *h* can cause difficulty.

Concluding Remarks

- We have presented AC-ACG that is an ACG method based on the average of the previously observed curvatures.
- AC-ACG does not require any line search for M_k .
- We have argued that AC-ACG is quite promising computationally.
- We have established a convergence rate bound for AC-ACG in terms of the average observed curvatures (novel result).
- We have shown that AC-ACG has an iteration-complexity bound that is similar to the ones for other ACG methods (e.g., Lan and Ghadimi's AG method).

Average Curvature ACG

Computational Results

Implementation and Concluding Remarks

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

THE END Thanks!