An Average Curvature Accelerated Composite Gradient (ACG) Method for Nonconvex Smooth Composite Optimization Problems

Jiaming Liang ${ }^{1}$ Renato D.C. Monteiro ${ }^{1}$

${ }^{1}$ School of Industrial and Systems Engineering, Georgia Tech
INFORMS Annual Meeting - October 22, 2019
(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks
(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks

The main problem:

$$
(P) \quad \min \left\{f(z)+h(z): z \in \mathbb{R}^{n}\right\}
$$

where

- $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is a closed proper convex function such that

$$
D:=\sup \left\{\left\|z^{\prime}-z\right\|: z, z^{\prime} \in \operatorname{dom} h\right\}<\infty
$$

- f is differentiable (not necessarily convex) on dom h and there exist $0<m \leq L$ such that for every $z, z^{\prime} \in \operatorname{dom} h$

$$
\begin{aligned}
\left\|\nabla f\left(z^{\prime}\right)-\nabla f(z)\right\| & \leq L\left\|z^{\prime}-z\right\| \\
f\left(z^{\prime}\right)-\ell_{f}\left(z^{\prime} ; z\right) & \geq-\frac{m}{2}\left\|z^{\prime}-z\right\|^{2}
\end{aligned}
$$

where $\ell_{f}\left(z^{\prime} ; z\right):=f(z)+\left\langle\nabla f(z), z^{\prime}-z\right\rangle$.
(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks

A necessary condition for \bar{z} to be a local minimizer of (P) is that

$$
0 \in \nabla f(\bar{z})+\partial h(\bar{z})
$$

Goal: for given $\hat{\rho}>0$, find a $\hat{\rho}$-approximate solution of (P), i.e., a pair (\hat{z}, \hat{v}) such that

$$
\hat{v} \in \nabla f(\hat{z})+\partial h(\hat{z}), \quad\|\hat{v}\| \leq \hat{\rho}
$$

There are a couple of ACG methods which accomplishes the above goal (e.g., Ghadimi-Lan's method). This talk describes a different and novel ACG method for doing that.
(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks

Traditional adaptive ACG methods compute the next iterate as

$$
z_{k+1}=z_{k+1}\left(M_{k}\right):=\operatorname{argmin}_{z}\left\{\ell_{f}\left(z ; \tilde{x}_{k}\right)+h(z)+\frac{M_{k}}{2}\left\|z-\tilde{x}_{k}\right\|^{2}\right\}
$$

where \tilde{x}_{k} is a convex combination of z_{k} and another auxiliary iterate x_{k}, and $M_{k}>0$ is chosen so as to satisfy

$$
M_{k} \geq \mathcal{C}\left(z_{k+1} ; \tilde{x}_{k}\right):=\frac{2\left[f\left(z_{k+1}\right)-\ell\left(z_{k+1} ; \tilde{x}_{k}\right)\right]}{\left\|z_{k+1}-\tilde{x}_{k}\right\|^{2}} \quad(*)
$$

Choosing M_{k} as the smallest one satisfying (*) results in faster
convergence rate but finding an approximation to this M_{k} leads to an expensive line search on M_{k}. A sufficient condition for $(*)$ is to
impose the maximum curvature condition

This strategy leads to a simpler search for M_{k} but results in a relatively large M_{k}

Traditional adaptive ACG methods compute the next iterate as

$$
z_{k+1}=z_{k+1}\left(M_{k}\right):=\operatorname{argmin}_{z}\left\{\ell_{f}\left(z ; \tilde{x}_{k}\right)+h(z)+\frac{M_{k}}{2}\left\|z-\tilde{x}_{k}\right\|^{2}\right\}
$$

where \tilde{x}_{k} is a convex combination of z_{k} and another auxiliary iterate x_{k}, and $M_{k}>0$ is chosen so as to satisfy

$$
\begin{equation*}
M_{k} \geq \mathcal{C}\left(z_{k+1} ; \tilde{x}_{k}\right):=\frac{2\left[f\left(z_{k+1}\right)-\ell\left(z_{k+1} ; \tilde{x}_{k}\right)\right]}{\left\|z_{k+1}-\tilde{x}_{k}\right\|^{2}} \tag{*}
\end{equation*}
$$

Choosing M_{k} as the smallest one satisfying ($*$) results in faster convergence rate but finding an approximation to this M_{k} leads to an expensive line search on M_{k}.
impose the maximum curvature condition

Traditional adaptive ACG methods compute the next iterate as

$$
z_{k+1}=z_{k+1}\left(M_{k}\right):=\operatorname{argmin}_{z}\left\{\ell_{f}\left(z ; \tilde{x}_{k}\right)+h(z)+\frac{M_{k}}{2}\left\|z-\tilde{x}_{k}\right\|^{2}\right\}
$$

where \tilde{x}_{k} is a convex combination of z_{k} and another auxiliary iterate x_{k}, and $M_{k}>0$ is chosen so as to satisfy

$$
\begin{equation*}
M_{k} \geq \mathcal{C}\left(z_{k+1} ; \tilde{x}_{k}\right):=\frac{2\left[f\left(z_{k+1}\right)-\ell\left(z_{k+1} ; \tilde{x}_{k}\right)\right]}{\left\|z_{k+1}-\tilde{x}_{k}\right\|^{2}} \tag{*}
\end{equation*}
$$

Choosing M_{k} as the smallest one satisfying ($*$) results in faster convergence rate but finding an approximation to this M_{k} leads to an expensive line search on M_{k}. A sufficient condition for $(*)$ is to impose the maximum curvature condition

$$
M_{k} \geq \max _{i=0, \ldots, k} \mathcal{C}\left(z_{i+1} ; \tilde{x}_{i}\right)
$$

This strategy leads to a simpler search for M_{k} but results in a relatively large M_{k}.

We will exploit the novel idea of choosing M_{k} as

$$
M_{k}=\frac{\sum_{i=0}^{k-1} \mathcal{C}\left(z_{i+1} ; \tilde{x}_{i}\right)}{k \alpha}
$$

where $\alpha \in(0,1)$
Note: No search for M_{k} is involved here!
(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks

Average Curvature ACG (AC-ACG) Method

0 . Let $\alpha, \gamma \in(0,1)$, tolerance $\hat{\rho}>0$ and initial point $z_{0} \in \operatorname{dom} h$ be given; set $A_{0}=0, x_{0}=z_{0}, M_{0}=\gamma L$ and $k=0$

1. compute

$$
a_{k}=\frac{1+\sqrt{1+4 M_{k} A_{k}}}{2 M_{k}} \quad A_{k+1}=A_{k}+a_{k} \quad \tilde{x}_{k}=\frac{A_{k} z_{k}+a_{k} x_{k}}{A_{k+1}}
$$

2. compute

$$
\begin{aligned}
& x_{k+1}=\operatorname{argmin}_{u}\left\{a_{k}\left(\ell_{f}\left(u ; \tilde{x}_{k}\right)+h(u)\right)+\frac{1}{2}\left\|u-x_{k}\right\|^{2}\right\} \\
& z_{k+1}^{g}=\operatorname{argmin}_{u}\left\{\ell_{f}\left(u ; \tilde{x}_{k}\right)+h(u)+\frac{M_{k}}{2}\left\|u-\tilde{x}_{k}\right\|^{2}\right\} \\
& v_{k+1}=M_{k}\left(\tilde{x}_{k}-z_{k+1}^{g}\right)+\nabla f\left(z_{k+1}^{g}\right)-\nabla f\left(\tilde{x}_{k}\right)
\end{aligned}
$$

3. if $\left\|v_{k+1}\right\| \leq \hat{\rho}$ then output $(\hat{z}, \hat{v})=\left(z_{k+1}^{g}, v_{k+1}\right)$ and stop; otherwise, compute

$$
\begin{aligned}
C_{k} & =\max \left\{\frac{2\left[f\left(z_{k+1}^{g}\right)-\ell_{f}\left(z_{k+1}^{g} ; \tilde{x}_{k}\right)\right]}{\left\|z_{k+1}^{g}-\tilde{x}_{k}\right\|^{2}}, \frac{\left\|\nabla f\left(z_{k+1}^{g}\right)-\nabla f\left(\tilde{x}_{k}\right)\right\|}{\left\|z_{k+1}^{g}-\tilde{x}_{k}\right\|}\right\} \\
C_{k}^{\text {avg }} & =\frac{1}{k+1} \sum_{j=0}^{k} C_{j} \\
M_{k+1} & =\max \left\{\frac{1}{\alpha} C_{k}^{\text {avg }}, \gamma L\right\}
\end{aligned}
$$

4. set

$$
z_{k+1}=\left\{\begin{array}{ccl}
z_{k+1}^{g} & \text { if } C_{k} \leq 0.9 M_{k} & \text { (good iteration) } \\
\frac{A_{k} z_{k}+a_{k} x_{k+1}}{A_{k+1}} & \text { otherwise } & \text { (bad iteration) }
\end{array}\right.
$$

and $k \leftarrow k+1$, and go to step 1

Remarks:

- both good and bad iterations perform well-known types of acceleration steps
- if

$$
\alpha \leq \frac{0.9}{8}\left(1+\frac{1}{0.9 \gamma}\right)^{-1}
$$

then it can be shown that the proportion of good iterations is at least $2 / 3$

- in practice, α can be much larger, i.e., $\Omega(1)$ instead of $\Omega(\gamma)$
- our implementation sets $\alpha=0.5$ or 0.7 or 1
(1) The Main Problem
- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

44 Implementation and Concluding Remarks

Theorem

The following statements hold:
(a) for every $k \geq 1$, we have $v_{k} \in \nabla f\left(z_{k}\right)+\partial h\left(z_{k}\right)$
(b) for every $k \geq 12$, we have

$$
\min _{1 \leq i \leq k}\left\|v_{i}\right\|^{2} \leq \mathcal{O}\left(\frac{M_{k}^{2} D^{2}}{\gamma k^{2}}+\frac{\theta_{k} m M_{k} D^{2}}{k}\right)
$$

where

$$
\theta_{k}:=\max \left\{\frac{M_{k}}{M_{i}}: 0 \leq i \leq k\right\} \geq 1
$$

The facts that $\theta_{k}=\mathcal{O}(1)$ and $M_{k} / L=\mathcal{O}(1)$ imply that the iteration-complexity bound for AC-ACG to obtain $\hat{\rho}$-approx. sol. is

$$
\mathcal{O}\left(\frac{L D}{\hat{\rho}}+\frac{m L D^{2}}{\hat{\rho}^{2}}+1\right)
$$

(1) The Main Problem

- Assumptions
- Approximate solutions
(2) Average Curvature ACG Method
- Motivation
- AC-ACG method
- Convergence rate and iteration-complexity
- Proof techniques
(3) Computational Results

4 Implementation and Concluding Remarks

Define

$$
\mathcal{G}:=\left\{k \geq 0: C_{k} \leq 0.9 M_{k}\right\}, \quad \mathcal{B}:=\left\{k \geq 0: C_{k}>0.9 M_{k}\right\},
$$

and

$$
\mathcal{G}_{k}=\{i \in \mathcal{G}: i \leq k-1\}, \quad \mathcal{B}_{k}:=\{i \in \mathcal{B}: i \leq k-1\} .
$$

The following lemma is the key to the proof of the main theorem.

Lemma

For every $k \geq 1,\left|\mathcal{B}_{k}\right| \leq k / 4+1$. As a consequence, $\left|\mathcal{B}_{k}\right| \leq k / 3$ for every $k \geq 12$.

Computational Results

The variant of AC-ACG described above was benchmarked against

- AG method by Ghadimi and Lan (known Lipschitz constant)
- nmAPG method by Li and Lin (known Lipschitz constant)
- UPFAG method by Ghadimi, Lan and Zhang (backtracking) on five classes of problems.

All methods stop with a pair (z, v) satisfying

$$
v \in \nabla f(z)+\partial h(z), \quad \frac{\|v\|}{\left\|\nabla f\left(z_{0}\right)\right\|+1} \leq \hat{\rho}
$$

1st Problem (Nonconvex QP):

$$
\min \left\{f(Z):=-\frac{\xi}{2}\|D \mathcal{B}(Z)\|^{2}+\frac{\tau}{2}\|\mathcal{A}(Z)-b\|^{2}: z \in P_{n}\right\}
$$

where P_{n} is the unit spectraplex, i.e.,

$$
P_{n}:=\left\{Z \in S_{+}^{n}: \operatorname{tr}(Z)=1\right\}
$$

$\mathcal{A}: S_{+}^{n} \rightarrow \mathbb{R}^{\ell}$ and $\mathcal{B}: S_{+}^{n} \rightarrow \mathbb{R}^{p}$ are linear operators, $D \in \mathbb{R}^{p \times p}$ is a positive diagonal matrix, and $b \in \mathbb{R}^{\ell}$ is a vector.

(L, m)	Iteration Count / Running Time (s)					Curvature	Good
	AG	APG	UPFAG	AC	Max		
$\left(10^{6}, 10^{6}\right)$	69	117	13	8	1.28 E 5	1.70 E 4	88%
	22.0	26.4	8.3	3.5			
$\left(10^{6}, 10^{5}\right)$	277	502	9	7	1.80 E 4	2.84 E 3	86%
	119.0	117.7	5.7	3.1			
$\left(10^{6}, 10^{4}\right)$	491	1030	13	11	3.26 E 4	3.89 E 3	91%
	173.3	245.5	9.1	4.6			
$\left(10^{6}, 10^{3}\right)$	531	1144	13	12	3.41 E 4	3.73 E 3	92%
	168.9	259.3	9.1	6.8			
$\left(10^{6}, 10^{2}\right)$	535	1156	13	12	3.42 E 4	3.75 E 3	92%
	171.8	260.2	8.6	5.5			
$\left(10^{6}, 10^{1}\right)$	536	1157	13	12	3.43 E 4	3.75 E 3	92%
	172.1	266.1	8.3	5.2			

Table: QP - $(I, p, n)=(50,800,1000), 0.1 \%$ sparse $\left(\alpha=1\right.$ and $\left.\hat{\rho}=10^{-7}\right)$

2nd Problem (SVM):

$$
\min _{z \in \mathbb{R}^{n}} \frac{1}{p} \sum_{i=1}^{p} \ell\left(x_{i}, y_{i} ; z\right)+\frac{\lambda}{2}\|z\|^{2}+I_{B_{r}}(z)
$$

for some $\lambda, r>0$, where $x_{i} \in \mathbb{R}^{n}$ is a feature vector, $y_{i} \in\{1,-1\}$ denotes the corresponding label, $\ell\left(x_{i}, y_{i} ; \cdot\right)=1-\tanh \left(y_{i}\left\langle\cdot, x_{i}\right\rangle\right)$ is a nonconvex sigmoid loss function and $I_{B_{r}}(\cdot)$ is the indicator function of $B_{r}:=\left\{z \in \mathbb{R}^{n}:\|z\| \leq r\right\}$.

L	Iteration Count / Running Time (s)				Curvature	Good	
	AG	APG	UPFAG	AC			
13	37384	42532	130	546	0.25	0.05	67%
	639	649	$\mathbf{8}$	12			
25	112562	123551	278	1131	0.47	0.06	65%
	4419	4486	39	60			
38	155503	163197	401	1032	0.34	0.07	63%
	12636	12101	97	95			
50	79752	79064	247	615	0.18	0.07	71%
	4406	5264	44	39			

Table: $\operatorname{SVM}-(\lambda, r)=(1 / p, 50)\left(\alpha=0.5\right.$ and $\left.\hat{\rho}=10^{-7}\right)$

3rd Problem (Sparse PCA):

$\min \langle-\hat{\Sigma}, X\rangle_{F}+\frac{\mu}{2}\|X\|_{F}^{2}+Q_{\lambda, b}(Y)+\lambda\|Y\|_{1}+\frac{\beta}{2}\|X-Y\|_{F}^{2}+I_{F^{k}}(X)$
s.t. $X, Y \in \mathbb{R}^{p \times p}$
where $\hat{\Sigma} \in \mathbb{R}^{p \times p}$ is an empirical covariance matrix, μ, λ, β, b are positive scalars,

$$
\|Y\|_{1}:=\sum_{i, j=1}^{p}\left|Y_{i j}\right|, \quad Q_{\lambda, b}(X):=\sum_{i j=1}^{p} q_{\lambda, b}\left(X_{i j}\right)
$$

where

$$
q_{\lambda, b}(t):=\left\{\begin{array}{cc}
-\frac{t^{2}}{2 b}, & \text { if }|t| \leq b \lambda ; \\
\frac{b \lambda^{2}}{2}-\lambda|t|, & \text { otherwise }
\end{array}\right.
$$

and $I_{\mathcal{F k}}(\cdot)$ is the indicator function of the Fantope

$$
\mathcal{F}^{k}:=\left\{X \in S^{n}: 0 \preceq X \preceq I \text { and } \operatorname{tr}(X)=k\right\} .
$$

L	Iteration Count / Running Time (s)					Curvature	Good
	AG	APG	UPFAG	AC	Max		
2.33	21	18	7	15	2.00	0.72	67%
	8.63	4.96	6.71	7.33			
4	7	9	8	7	3.67	3.41	71%
	10.08	2.73	7.55	3.94			
63	32	43	18	27	44.41	31.12	89%
	19.91	12.06	17.61	$\mathbf{1 2 . 0 4}$			
60.67	35	46	17	31	0.18	0.07	94%
	19.01	14.28	16.97	$\mathbf{1 2 . 5 1}$			

Table: Sparse PCA ($\alpha=0.5$ and $\hat{\rho}=10^{-7}$)

4th Problem (Constrained matrix completion):

$$
\min _{X \in \mathbb{R}^{m \times n}}\left\{\frac{1}{2}\left\|\Pi_{\Omega}(X-O)\right\|_{F}^{2}+\mu \sum_{i=1}^{r} p\left(\sigma_{i}(X)\right):\|X\|_{F} \leq R\right\}
$$

where $O \in \mathbb{R}^{\Omega}$ is an incomplete observed matrix, $\mu>0$ is a parameter, $r:=\min \{m, n\}, \sigma_{i}(X)$ is the i-th singular value of X and

$$
p(t)=p_{\beta, \theta}(t):=\beta \log \left(1+\frac{|t|}{\theta}\right)
$$

L	Function Value $\times 1000 /$ Iteration Count				Running Time $\times 1000$ seconds				Curvature	Good
	AG	APG	UPFA	AC	AG	APG	UPFA	AC	Max Avg	
4	$\begin{aligned} & 2.26 \\ & 3856 \end{aligned}$	$\begin{aligned} & 1.81 \\ & 1036 \end{aligned}$	$\begin{gathered} 2.60 \\ 521 \end{gathered}$	$\begin{gathered} 2.29 \\ 765 \end{gathered}$	4.6	1.0	2.6	0.9	1.000 .31	96\%
9	$\begin{aligned} & 3.89 \\ & 9158 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 1617 \end{aligned}$	$\begin{gathered} 4.26 \\ 576 \end{gathered}$	$\begin{aligned} & \hline 3.88 \\ & 968 \end{aligned}$	10.3	1.6	4.3	1.2	1.000 .28	94\%
20	$\begin{aligned} & 4.28 \\ & 22902 \end{aligned}$	$\begin{aligned} & 3.64 \\ & 2875 \end{aligned}$	$\begin{gathered} 4.64 \\ 676 \end{gathered}$	$\begin{aligned} & 4.27 \\ & 1079 \end{aligned}$	29.2	2.8	4.6	1.2	0.990 .25	91\%
30	$\begin{aligned} & \hline 5.97 \\ & 37032 \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & 3717 \end{aligned}$	$\begin{aligned} & 6.75 \\ & 606 \end{aligned}$	$\begin{aligned} & 5.97 \\ & 1085 \end{aligned}$	41.7	4.2	6.8	1.3	0.970 .23	89\%

Table: MC - 100K MovieLens dataset ($\alpha=0.5$ and $\hat{\rho}=5 \times 10^{-4}$)

5th Problem: (Nonnegative matrix factorization)

$$
\min \left\{f(V, W):=\frac{1}{2}\|X-V W\|_{F}^{2}: V \in \mathbb{R}_{+}^{n \times p}, W \in \mathbb{R}_{+}^{p \times \ell}\right\}
$$

based on a facial image dataset provided by AT\&T Laboratories Cambridge

$$
n=10,304 \quad \ell=400 \quad p=20
$$

Method	Function Value	Iteration Count	Running time(s)
AG	$2.80 \mathrm{E}+09$	786	73.03
APG	$2.80 \mathrm{E}+09$	87	14.91
UPFAG	$2.80 \mathrm{E}+09$	37	11.12
AC	$2.80 \mathrm{E}+09$	37	$\mathbf{4 . 7 0}$

Table: NMF $\left(\alpha=0.7\right.$ and $\left.\hat{\rho}=10^{-7}\right)$

Implementation Remarks

- We can choose α to control the percentage of good iterations.
- We have been able to solve problems for which dom h is unbounded but sometimes unboundness of dom h can cause difficulty.

Concluding Remarks

- We have presented AC-ACG that is an ACG method based on the average of the previously observed curvatures.
- AC-ACG does not require any line search for M_{k}.
- We have argued that AC-ACG is quite promising computationally.
- We have established a convergence rate bound for AC-ACG in terms of the average observed curvatures (novel result).
- We have shown that AC-ACG has an iteration-complexity bound that is similar to the ones for other ACG methods (e.g., Lan and Ghadimi's AG method).

THE END

Thanks!

