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Assumptions

The main problem:

(P) min {f (z) + h(z) : z ∈ Rn}

where
h : Rn → (−∞,∞] is a closed proper convex function such
that

D := sup{‖z ′ − z‖ : z , z ′ ∈ dom h} <∞

f is differentiable (not necessarily convex) on dom h and there
exist 0 < m ≤ L such that for every z , z ′ ∈ dom h

‖∇f (z ′)−∇f (z)‖ ≤ L‖z ′ − z‖

f (z ′)− `f (z ′; z) ≥ −m
2 ‖z

′ − z‖2

where `f (z ′; z) := f (z) + 〈∇f (z), z ′ − z〉.
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Approximate solutions

A necessary condition for z̄ to be a local minimizer of (P) is that

0 ∈ ∇f (z̄) + ∂h(z̄)

Goal: for given ρ̂ > 0, find a ρ̂-approximate solution of (P), i.e., a
pair (ẑ , v̂) such that

v̂ ∈ ∇f (ẑ) + ∂h(ẑ), ‖v̂‖ ≤ ρ̂

There are a couple of ACG methods which accomplishes the above
goal (e.g., Ghadimi-Lan’s method). This talk describes a different
and novel ACG method for doing that.
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Motivation

Traditional adaptive ACG methods compute the next iterate as

zk+1 = zk+1(Mk) := argminz

{
`f (z ; x̃k) + h(z) +

Mk
2 ‖z − x̃k‖2

}
where x̃k is a convex combination of zk and another auxiliary
iterate xk , and Mk > 0 is chosen so as to satisfy

Mk ≥ C(zk+1; x̃k) :=
2[f (zk+1)− `(zk+1; x̃k)]

‖zk+1 − x̃k‖2
(∗)

Choosing Mk as the smallest one satisfying (∗) results in faster
convergence rate but finding an approximation to this Mk leads to
an expensive line search on Mk . A sufficient condition for (∗) is to
impose the maximum curvature condition

Mk ≥ max
i=0,...,k

C(zi+1; x̃i )

This strategy leads to a simpler search for Mk but results in a
relatively large Mk .
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Motivation

We will exploit the novel idea of choosing Mk as

Mk =

∑k−1
i=0 C(zi+1; x̃i)

k α

where α ∈ (0, 1)

Note: No search for Mk is involved here!
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AC-ACG method

Average Curvature ACG (AC-ACG) Method

0. Let α, γ ∈ (0, 1), tolerance ρ̂ > 0 and initial point z0 ∈ dom h
be given; set A0 = 0, x0 = z0, M0 = γL and k = 0

1. compute

ak =
1 +
√
1 + 4MkAk
2Mk

Ak+1 = Ak+ak x̃k =
Akzk + akxk

Ak+1

2. compute

xk+1 = argminu

{
ak (`f (u; x̃k) + h(u)) +

1
2‖u − xk‖2

}
zg

k+1 = argminu

{
`f (u; x̃k) + h(u) +

Mk
2 ‖u − x̃k‖2

}
vk+1 = Mk(x̃k − zg

k+1) +∇f (zg
k+1)−∇f (x̃k)
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AC-ACG method

3. if ‖vk+1‖ ≤ ρ̂ then output (ẑ , v̂) = (zg
k+1, vk+1) and stop;

otherwise, compute

Ck = max

{
2
[
f (zg

k+1)− `f (zg
k+1; x̃k)

]
‖zg

k+1 − x̃k‖2 ,
‖∇f (zg

k+1)−∇f (x̃k)‖
‖zg

k+1 − x̃k‖

}

C avg
k =

1
k + 1

k∑
j=0

Cj

Mk+1 = max

{
1
α

C avg
k , γL

}
4. set

zk+1 =


zg

k+1 if Ck ≤ 0.9Mk (good iteration)
Ak zk +ak xk+1

Ak+1
otherwise (bad iteration)

and k ← k + 1, and go to step 1
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AC-ACG method

Remarks:

both good and bad iterations perform well-known types of
acceleration steps
if

α ≤ 0.9
8

(
1 +

1
0.9γ

)−1

then it can be shown that the proportion of good iterations is
at least 2/3
in practice, α can be much larger, i.e., Ω(1) instead of Ω(γ)

our implementation sets α = 0.5 or 0.7 or 1
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Convergence rate and iteration-complexity

Theorem
The following statements hold:
(a) for every k ≥ 1, we have vk ∈ ∇f (zk) + ∂h(zk)

(b) for every k ≥ 12, we have

min
1≤i≤k

‖vi‖2 ≤ O
(

M2
k D2

γk2 +
θkmMkD2

k

)
where

θk := max

{
Mk
Mi

: 0 ≤ i ≤ k
}
≥ 1.

The facts that θk = O(1) and Mk/L = O(1) imply that the
iteration-complexity bound for AC-ACG to obtain ρ̂-approx. sol. is

O
(

LD
ρ̂

+
mLD2

ρ̂2 + 1
)
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Proof techniques

Define

G := {k ≥ 0 : Ck ≤ 0.9Mk}, B := {k ≥ 0 : Ck > 0.9Mk},

and

Gk = {i ∈ G : i ≤ k − 1}, Bk := {i ∈ B : i ≤ k − 1}.

The following lemma is the key to the proof of the main theorem.

Lemma

For every k ≥ 1, |Bk | ≤ k/4 + 1. As a consequence, |Bk | ≤ k/3 for
every k ≥ 12.
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Computational Results

The variant of AC-ACG described above was benchmarked against
AG method by Ghadimi and Lan (known Lipschitz constant)
nmAPG method by Li and Lin (known Lipschitz constant)
UPFAG method by Ghadimi, Lan and Zhang (backtracking)

on five classes of problems.

All methods stop with a pair (z , v) satisfying

v ∈ ∇f (z) + ∂h(z),
‖v‖

‖∇f (z0)‖+ 1 ≤ ρ̂
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1st Problem (Nonconvex QP):

min

{
f (Z ) := −ξ2‖DB(Z )‖2 +

τ

2‖A(Z )− b‖2 : z ∈ Pn

}
where Pn is the unit spectraplex, i.e.,

Pn :=
{

Z ∈ Sn
+ : tr(Z ) = 1

}
A : Sn

+ → R` and B : Sn
+ → Rp are linear operators, D ∈ Rp×p is a

positive diagonal matrix, and b ∈ R` is a vector.
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(L,m)
Iteration Count /
Running Time (s)

Curvature Good

AG APG UPFAG AC Max Avg
(106, 106) 69

22.0
117
26.4

13
8.3

8
3.5

1.28E5 1.70E4 88%

(106, 105) 277
119.0

502
117.7

9
5.7

7
3.1

1.80E4 2.84E3 86%

(106, 104) 491
173.3

1030
245.5

13
9.1

11
4.6

3.26E4 3.89E3 91%

(106, 103) 531
168.9

1144
259.3

13
9.1

12
6.8

3.41E4 3.73E3 92%

(106, 102) 535
171.8

1156
260.2

13
8.6

12
5.5

3.42E4 3.75E3 92%

(106, 101) 536
172.1

1157
266.1

13
8.3

12
5.2

3.43E4 3.75E3 92%

Table: QP — (l , p, n) = (50, 800, 1000), 0.1% sparse (α = 1 and ρ̂ = 10−7)
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2nd Problem (SVM):

min
z∈Rn

1
p

p∑
i=1

`(xi , yi ; z) +
λ

2 ‖z‖
2 + IBr (z)

for some λ, r > 0, where xi ∈ Rn is a feature vector, yi ∈ {1,−1}
denotes the corresponding label, `(xi , yi ; ·) = 1− tanh(yi〈·, xi〉) is a
nonconvex sigmoid loss function and IBr (·) is the indicator function
of Br := {z ∈ Rn : ‖z‖ ≤ r}.
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L
Iteration Count /
Running Time (s)

Curvature Good

AG APG UPFAG AC Max Avg
13 37384

639
42532
649

130
8

546
12

0.25 0.05 67%

25 112562
4419

123551
4486

278
39

1131
60

0.47 0.06 65%

38 155503
12636

163197
12101

401
97

1032
95

0.34 0.07 63%

50 79752
4406

79064
5264

247
44

615
39

0.18 0.07 71%

Table: SVM — (λ, r) = (1/p, 50) (α = 0.5 and ρ̂ = 10−7)
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3rd Problem (Sparse PCA):

min〈−Σ̂,X 〉F +
µ

2 ‖X‖
2
F + Qλ,b(Y ) + λ‖Y ‖1 +

β

2 ‖X − Y ‖2F + IFk (X )

s.t. X ,Y ∈ Rp×p

where Σ̂ ∈ Rp×p is an empirical covariance matrix, µ, λ, β, b are
positive scalars,

‖Y ‖1 :=

p∑
i ,j=1
|Yij | , Qλ,b(X ) :=

p∑
ij=1

qλ,b (Xij)

where

qλ,b(t) :=

 − t2

2b , if |t| ≤ bλ;

bλ2

2 − λ|t|, otherwise
and IFk (·) is the indicator function of the Fantope

Fk := {X ∈ Sn : 0 � X � I and tr(X ) = k}.
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L
Iteration Count /
Running Time (s)

Curvature Good

AG APG UPFAG AC Max Avg
2.33 21

8.63
18
4.96

7
6.71

15
7.33

2.00 0.72 67%

4 7
10.08

9
2.73

8
7.55

7
3.94

3.67 3.41 71%

63 32
19.91

43
12.06

18
17.61

27
12.04

44.41 31.12 89%

60.67 35
19.01

46
14.28

17
16.97

31
12.51

0.18 0.07 94%

Table: Sparse PCA (α = 0.5 and ρ̂ = 10−7)
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4th Problem (Constrained matrix completion):

min
X∈Rm×n

{
1
2‖ΠΩ(X − O)‖2F + µ

r∑
i=1

p(σi (X )) : ‖X‖F ≤ R
}

where O ∈ RΩ is an incomplete observed matrix, µ > 0 is a
parameter, r := min{m, n}, σi (X ) is the i-th singular value of X
and

p(t) = pβ,θ(t) := β log

(
1 +
|t|
θ

)
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L
Function Value ×1000 /

Iteration Count
Running Time
×1000 seconds

Curvature Good

AG APG UPFAG AC AG APG UPFAG AC Max Avg
4 2.26

3856
1.81
1036

2.60
521

2.29
765

4.6 1.0 2.6 0.9 1.00 0.31 96%

9 3.89
9158

3.36
1617

4.26
576

3.88
968

10.3 1.6 4.3 1.2 1.00 0.28 94%

20 4.28
22902

3.64
2875

4.64
676

4.27
1079

29.2 2.8 4.6 1.2 0.99 0.25 91%

30 5.97
37032

5.24
3717

6.75
606

5.97
1085

41.7 4.2 6.8 1.3 0.97 0.23 89%

Table: MC — 100K MovieLens dataset (α = 0.5 and ρ̂ = 5× 10−4)
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5th Problem: (Nonnegative matrix factorization)

min

{
f (V ,W ) :=

1
2‖X − VW ‖2F : V ∈ Rn×p

+ ,W ∈ Rp×`
+

}
based on a facial image dataset provided by AT&T Laboratories
Cambridge

n = 10, 304 ` = 400 p = 20

Method Function
Value

Iteration
Count

Running
time(s)

AG 2.80E+09 786 73.03
APG 2.80E+09 87 14.91

UPFAG 2.80E+09 37 11.12
AC 2.80E+09 37 4.70

Table: NMF (α = 0.7 and ρ̂ = 10−7)
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Implementation Remarks

We can choose α to control the percentage of good iterations.
We have been able to solve problems for which dom h is
unbounded but sometimes unboundness of dom h can cause
difficulty.
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Concluding Remarks

We have presented AC-ACG that is an ACG method based on
the average of the previously observed curvatures.
AC-ACG does not require any line search for Mk .
We have argued that AC-ACG is quite promising
computationally.
We have established a convergence rate bound for AC-ACG in
terms of the average observed curvatures (novel result).
We have shown that AC-ACG has an iteration-complexity
bound that is similar to the ones for other ACG methods (e.g.,
Lan and Ghadimi’s AG method).
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THE END

Thanks!
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