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ABSTRACT 

In this paper, the Homotopy Analysis Method (HAM) is 
applied to obtain high accuracy series solutions of roll motions 
of a ship, which encounters a nonlinear wave of large amplitude. 
Comparisons are made between roll responses in linear and 
nonlinear beam waves with identical wave slope and frequency. 
Furthermore, Floquet theory is applied to analyze the stability of 
HAM series solutions. Besides that, numerical simulation is used 
to verify the analytical solution and study the behaviors of the 
system under disturbance. All the results demonstrate that the 
proposed scheme is an effective analytic technique to study 
nonlinear ship rolling equation, and the stability analysis reveals 
the significance of researching ship roll motion in large 
amplitude nonlinear wave.  

 
 
NOMENCLATURE ϕ roll angle ߶ሶ  angle velocity ߶ሷ  angle acceleration ߶௔ roll response amplitude ܫ௫௫ mass moment of inertia ܫߜ௫௫ added mass moment of inertia D(߶ሶ , ߶) nonlinear damping moment R(ϕ) nonlinear restoring moment M(t) exciting moment ω frequency of encounter ߱଴ natural frequency of the motion థܶ natural period of the motion ܦଵ linear damping term ܦଷ nonlinear damping term 
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,ଷܭ ହܭ nonlinear restoring term ሚ݀ଵ nondimensional linear damping term ሚ݀ଷ nondimensional nonlinear damping term෨݇ଷ, ෨݇ହ nondimensional nonlinear restoring termλ nondimensional inertia term Δ displacement GM metacentric height ܮ௪ wavelength H wave height k wave number 
A wave amplitude 

 
 

INTRODUCTION 

Among the six degrees of ship motion, roll motion plays the 
most significant role as far as ship stability is considered. Most 
of the unexplained accidents and casualties at sea may be 
attributed to the loss of stability due to roll motion, especially its 
nonlinearity [1]. For this reason, it is of the utmost importance to 
study the mechanism of roll motion, predict roll response and 
evaluate the stability of roll motion in inclement environmental 
conditions. 

Over the years, ship roll motion in beam seas has attracted 
considerable attention. Nayfeh and Sanchez applied Floquet 
theory and concepts of bifurcation theory in the analysis of the 
stability of ship roll motions [2]. Lin and Yim [3] developed a 
stochastic analysis procedure by a generalized Melnikov method 
to examine the properties of chaotic roll motion and capsizing of 
ships subjected to periodic excitation with a random noise 
disturbance. McCue and Troesch used Lyapunov exponents to 
predict chaotic vessel motions and indicated specific regions of 
questionable stability [4]. 
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The nonlinear ship roll system is represented using a 
mathematical model with cubic damping, and cubic and quintic 
restoring terms. Approximate analytical and numerical solutions 
have been found to describe the physical phenomenon and many 
methods were developed [5], such as multiple time scales 
method [6] and time averaging method [7]. In this paper, 
Homotopy Analysis Method (HAM) is applied to obtain high 
accuracy series solution, which differs from perturbation method 
in the independence of any parameter assumptions [8]. HAM is 
an approximate analytic method to solve strong nonlinear 
differential equations, originally proposed by Prof. Liao in 1992 
[9]. HAM provides great freedom to choose base functions and 
linear auxiliary operators together with an effective way to 
ensure high accuracy and fast convergence of the series solution, 
thus it has been widely used to solve nonlinear problems in 
science and engineering. 

Most of the previous work discussed about the encountering 
wave based on the linear wave theory which cannot correctly 
describe large beam waves. In this study, ship roll motion 
subjected to a nonlinear wave of large amplitude whose higher-
order harmonic terms are not omitted is considered. Roll 
responses subjected to linear and nonlinear beam waves with 
same wave slope and frequency are compared. Moreover, to 
analyze the stability of nonlinear ship roll motion subjected to 
linear and nonlinear beam waves, Floquet theory [10] is applied. 
Besides that, a Simulink model was developed to verify the 
HAM series solutions and their stability. 

 
 
SHIP ROLLING IN BEAM SEAS 

When considering roll motions in beam seas, it is possible 
to ignore the coupling of rolling and other degrees of freedom of 
ship motion. Ship roll motions in beam waves can be modeled as 
the motion of a simple pendulum and the general equation reads 

 

  ( , ) ( ) ( )xx xxI I D R M t                   (1) 

 

If the natural frequency of the roll motion, 0  is known, 
the value of the moment of inertia is determined in the form 

 

  2
0xx xxI I GM                    (2) 

 

Assuming the ship is symmetric and in upright position, the 
restoring moment is a function of the underwater form of the ship 
hull and may be approximated by a quintic polynomial of the 
form 
 

3 5
3 5( )R GM K K                    (3) 

The damping moment could be represented in several ways, in 
this work the formulation of the cubic polynomial are used 
 

 3
1 3( , )D D D                       (4) 

 

Besides that, assuming that the wavelength is large compared 
with the ship beam and the heading angle of the beam wave is 90 
degrees, the wave exciting moment could be approximated by 
 

( ) ( )xxM t I t                     (5) 

 
 

NONLINEAR LARGE WAVE LOAD 

For a monochromatic gravity wave with a small wave slope, 
according to the linear wave theory, the elevation of the free 
surface can be expressed as 

 

( , ) cos( )x t A kx t                  (6) 

 

Thus, the local wave slope in Eqn. (5) takes the form of 
 

( ) cos( )t kA t                   (7) 

 

Here, the effect of the initial phase of the encountered wave is 
neglected, which only represents a phase shift of the responding 
oscillation of the ship in a monochromatic gravity wave. Thus 
the exciting moment of the outer wave is written as 
 

2( ) cos( )xxM t I kA t                 (8) 

 

However, for a large amplitude monochromatic wave, Eqn. 
(6) based on the linear wave theory cannot correctly describe the 
free surface elevation. According to the previous work by Liao 
[11], the exact solution of nonlinear large amplitude wave is 
expressed as 

 

0

( , ) cos ( )n
n

x t a n kx t 




              (9) 

 

where na  represents the wave amplitude of the n-th  wave 

component. Consequently, for a ship that encounters a large 
monochromatic wave, the local wave slope in Eqn. (5) can be 
described as 
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0

( ) cosn
n

t k a n t 




                 (10) 

 

Therefore, the exciting moment is written as 
 

2 2

1

( ) cos( )xx n
n

M t I k n a n t 




              (11) 

 
 

NONDIMENSIONAL SHIP ROLLING MODEL 

Dividing Eqn. (1) by ( )xx xxI I , it is obtained that 

 

 3 2 3 5
1 3 0 3 5

1

cosn
n

d d k k F n t       




           (12) 

 

where ik  are the relative restoring coefficients, id  are the 
relative damping coefficients, 2 2

n nF k n a   are the relative 
amplitudes of exciting moment, and ( )xx xx xxI I I    is non-

dimensional inertia term. 
Furthermore, by introducing the transformation 0t  , the 

new form of Eqn. (12) yields 
 

3 3 5
1 3 3 5

1

cosn
n

d d k k F n      




                   (13) 

 

where 1 1 0/d d  , 3 0 3d d , 2
3 3 0/k k  , 2

5 5 0/k k  , 2
0/n nF F   

and 0/   . Therefore, the property of the nonlinear system 

is determined by 1d , 3d , 3k , 5k , nF  and  . 

 
 
HOMOTOPY ANALYSIS SCHEME 

To seek the steady-state analytical solutions of Eqn. (13), 
the Homotopy Analysis Method is developed in this section. 
Firstly, defining new variable    , Eqn. (13) becomes 

 

32
2 3 5

1 3 3 52
1

cosn
n

d d k k F n
        
  





   
         

        (14) 

 

The steady-state periodic solution of Eqn. (14) can be expressed 
as 

 
0

( ) sin( ) cos( )n n
n

a n b n   




              (15) 

 

where ,n na b  are constants to be determined. 

For simplicity, define nonlinear operators as 
 

 
32

2 3 5
1 3 3 52

1

cosn
n

d d k k F n
     


   

 





   
         

       �

(16) 

Then, in the framework of HAM, the zeroth-order deformation 
equation is constructed as 
 

0 0( ; ) ( ) ( ;( ) )1 q c q qq             
 

� �          (17) 

 

where [0,1]q  is the embedding parameter, 0 0c   is the 
convergence control parameter,   is the auxiliary linear 
operator and 0 ( )   is the initial estimate of ( )  . Obviously, 
there exists 
 

0( ;0) ( ), ( ;1) ( )        
 

          (18) 

 

That is, mapping function ( ; )q 


 deforms from the initial 
estimate 0  to the exact solution   as q  varies from 0 to 1. 

Using Taylor’s theorem, ( ; )q 


 is expanded in power series 
of q  as follows 

 

0
1

( ; ) ( ) ( ) m
m

m

q q     




 


           (19) 

 

where 
 

0

1 ( ; )
( )

!

m

m m
q

q

m q

  








            (20) 

 

Assuming that 0c  is properly chosen and the power series (19) 
is convergent at 1q  , the series solution is obtained 
 

0
1

( ) ( ) ( )m
m

     




              (21) 
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Substituting the series (19) into the zeroth-order 
deformation equation (17) and equating the like-power of q , 
the so-called m th-order deformation equation is obtained 

 1 0 1( ) ( ) ( )m m m m mc R       


�             (22) 

 

where 
 

0, 1,

1, 2m

m

m



  

                 (23) 

 

0 1 2{ , , , , }kk     


              (24) 

 

and 
 

 
2

2 1 1
12

1

1 1 1 1
13

3

1

1 1

0

1 1
0 0

3
0 0

( ; )1
( )

( 1)!

cos1 m m
n

n

m m i m m i
j m i ji

m i j m

m

m m m

q

m

i j
i j i j

F n d

d

q
R

m q

k

   
 

  

 

 
  






 



     
  

   
 



 



 

 


 



   


 

 


 

 
   

 






   

             

             

  











�

11 1 1

1
0 0

5
0 0

m i j km m i m i k

i j k l m i j k l
i j k l

k   
        

    
   

                 

(25) 
 

Note that, the right-hand side mR  is known in the m th-order 

deformation equation, and the sub-problems are linear, 
decoupled and can be solved by means of the symbolic 
computation software, such as Wolfram Mathematica 9.0. The 
detailed solution process can be referred in Appendix A. 

Consequently, at the M th-order approximation, it exists 
 

0
1

( ) ( ) ( )
M

m
m

     


                (26) 

 

To demonstrate the convergence of the series solution, the 
discrete squared residual error is defined as 
 

  2

0

1
( )

1

K

n
k

kK  
 







  � �            (27) 

 

where K  is the number of the discrete points ( 50K   in this 
paper), / K   and ( )   are the n th-order approximation 
of the series solution. 

 
 

TEST VESSEL PARAMETERS 

In order to illustrate the effectiveness of the Homotopy 
Analysis Method and the resulting complicated dynamics, the 
unbiased low freeboard model of Wright and Marshfield [6] is 
used in this paper. Detailed physical characteristics of the test 
vessel and corresponding non-dimensional parameters are listed 
in Tab. 1 and Tab. 2, respectively. 

 

 
Table 1: COEFFICIENTS OF COSIDERED TEST VESSEL 

  0.8 
1

0 ( )rad s   5.278 
1

1( )d rad s  0.171 

3( )d s 0.108 
1 2

3(( ) )k rad s  -39.056 
1 2

5(( ) )k rad s  7.549 
 
 

Table 2: CORRESPONDING NONDIMENSIONAL 
PARAMETERS 

1d  3d  3k  5k  

0.0324 0.570 -1.402 0.271 
 
 

NONLINEAR BEAM WAVE INFORMATION 

According to [6] the beam of the test vessel is 0.4 meter, the 
wave length is set as 4mwL   in this paper, which is long 
enough compared with the vessel beam. With different wave 
slopes, three monochromatic gravity deep waves, which satisfy 
the fully nonlinear PDEs (see Liao [11]) governing the 
propagating deep-water wave problem, are given in the Tab. 3-5 
as follows. For simplicity, only six of the main wave components 
in Eqn. (9) are considered. 
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(a) CASE 1 

 

(b) CASE 2 

 

(c) CASE 3 

Figure 1. LOCAL WAVE SLOPES 

 
 

Table 3: BEAM WAVE INFORMATION – CASE 1 
1a  11.25164 10  4a  43.92717 10  

2a  21.30581 10  5a  58.19823 10  

3a  32.07357 10  6a  51.82049 10  

/ wH L  26.36620 10    4.00276  
 
 

Table 4:  BEAM WAVE INFORMATION – CASE 2 
1a  11.82295 10  4a  32.39072 10  

2a  23.01474 10  5a  48.15455 10  

3a  37.74436 10  6a  42.95614 10  

/ wH L 29.54930 10    4.10404  
 
 

Table 5: BEAM WAVE INFORMATION – CASE 3 
1a  12.25563 10  4a  39.93992 10  

2a  25.39358 10  5a  35.26656 10  

3a  22.09279 10  6a  32.98442 10  

/ wH L 11.27324 10    4.24652  
 

In order to investigate the property of ship rolling in 
nonlinear beam waves, the information of linear deep-water 
waves corresponding to foregoing three nonlinear wave cases is 
given below: 

 

 
Table 6: LINEAR WAVE INFORMATION 

  
  

wL

( 22 g  ) 

/ wH L

( 210 )
A  

( 110 )

Case 1 4.00276 3.84315  6.36620 1.22331
Case 2 4.10404 3.65580  9.54930 1.74552
Case 3 4.24652 3.41460  12.7324 2.17380

 
 
Then the local wave slopes ( ( )t , Eqns. (7) and (9)) are plotted 
in the Fig. 1 for different cases. 

 
 

RESULTS ANALYSIS 

HAM is applied to solve the rolling equation (Eqn. (12)) in 
six conditions, namely linear and nonlinear wave of Case 1-3, 
respectively. Setting 0 1c   , all series solutions are expanded to 

10th order with residual error less than 55 10 . Stability of the 
roll motion is studied in the context of Floquet theory, and details 
of stability analysis are stated in Appendix B. The criteria of 
stability is the maximum modulus of calculated eigenvalues 

1 2,   of the roll motion. If | | 1i  , the roll motion is stable, 

otherwise, it is considered to be unstable. 

There exist three steady-state solutions of Case 1 both in 
linear and nonlinear wave, two of the solutions are stable and the 
other is unstable, which is illustrated in Tab. 7 and shown in Fig. 
2 (a). For Case 2 and 3 in both linear and nonlinear wave, there 
only exists one solution for each condition. The roll responses 
are plotted in Figure 2 (b) and (c) respectively. It is obvious that 
the difference between roll responses in linear and nonlinear 
waves becomes significant with the increment of wave slope. 
Especially in Case 3, there is an obvious drop of maximum roll 
angle from 42.8849°in linear wave to 34.6369°in nonlinear 
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wave. As shown in Tab. 8, solutions of Case 2 are both stable, 
but the maximum modulus of i  in nonlinear wave increases to 
0.662, larger than that of linear wave. From Tab. 9, the maximum 
value of | |i  is 0.243 in linear wave situation, which means 
that the roll response is stable, while solution in nonlinear wave 
is unstable since 1| |  reaches 1.072. Thus, in the condition of a 
large wave slope, the behavior of ship roll motion in nonlinear 
wave differs from its counterpart in linear wave. 

 

 
Table 7: ROLL RESPONSE—CASE 1 

  ߶௠௔௫ ߶௠௜௡ |ߣଵ| |ߣଶ| 
solution1 

linear 38.712 -38.712 0.325 0.325
nonlinear 39.678 -37.295 0.326 0.326

solution2 
linear 14.628 -14.628 0.765 0.765

nonlinear 12.660 -15.686 0.765 0.765

solution3 
linear 29.088 -29.088 1.868 0.137

nonlinear 29.107 -29.940 1.865 0.133
 
 

Table 8: ROLL RESPONSE—CASE 2 
 ߶௠௔௫ ߶௠௜௡ |ߣଵ| |ߣଶ| 

linear 41.2846 -41.2846 0.276 0.276 
nonlinear 39.0820 -41.0962 0.662 0.122 

 
 

Table 9: ROLL RESPONSE—CASE 3 
 ߶௠௔௫ ߶௠௜௡ |ߣଵ| |ߣଶ|

linear 42.8849 -42.8849 0.243 0.243 
nonlinear 34.6369 -43.3705 1.072 0.071 

 
 

 

(a) CASE 1 

 

(b) CASE 2 

 

(c) CASE 3 

Figure 2. ROLL RESPONSE 

 
 

 

Figure 3. NUMERICAL SIMULATION 
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Figure 4. STABILITY ANALYSIS OF SOLUTION 3  

IN CASE 1 

To study the unstable solution (solution 3) in Case 1, the 
system is rewritten as 

 

 3 2 3 5
1 3 0 3 5

1

cosn
n

d d k k F n t

 

       




    







 



 


      (28) 

 

and the simulated system in Simulink is shown in Fig. 3. The 
“Linear Wave” and “Nonlinear Wave” blocks act as the 
encountering wave, also mean the exciting moment in Eqn. (12). 
The “Subtractor”, “Integrator”, “Damping Term” and “Restoring 
Term” blocks together act as the mathematical rolling model

3 2 3 5
1 3 0 3 5d d k k              in Eqn. (12). 50s roll motion is 

simulated with time step of 0.001s starting at the initial value of  
( , ) (24.82 ,52.50 / s)    , which is a point on the phase trajectory 
of periodic HAM series solution. 

The phase trajectory of roll motion is described in Fig. 4 
where the red dot represents the initial state in the numerical 
simulation. Three limit cycles corresponding to three steady 
states are also plotted in Fig. 4. In the first stage of the simulation, 
the phase trajectory of roll motion is close to the limit cycle of 
solution 3. In the progress of the simulation, the phase trajectory 
deviates from the limit cycle of solution 3 and tends to the limit 
cycle of solution 1 in the final stage. The numerical simulation 
demonstrates the unstable characteristics of solution 3, for the 
truncation error of the initial state serves as a disturbance.  
 
 

 

(a) LINEAR WAVE CONDITION 

 

(b) NONLINEAR WAVE CONDITION 

Figure 5. STABILITY ANALYSIS OF THE SOLUTION IN 
CASE 3 

 
 

Similarly, to study the stability of the solution in Case 3, 
500s roll motion is simulated with time step 0.001s, and 
numerical results are plotted in Fig. 5. For linear wave condition, 
the roll motion is stable, and the solution obtained by HAM is in 
high conformity with the numerical simulation as shown in Fig. 
5 (a). This validates the accuracy and effectivity of HAM. For 
nonlinear wave condition, although there is an obvious drop of 
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maximum roll angle from the linear condition, the roll motion of 
HAM series solution is unstable, which is further demonstrated 
by the numerical simulation as shown in Fig. 5 (b). When the 
wave slope is large, e.g. 11.27324/ 10wH L    as shown in Tab. 

5, the ship roll motion in nonlinear wave is unstable, since the 
maximum absolute value of the eigenvalue is 1 1.072   in 

Tab. 9. 

 

 

 
Figure 6. FINAL ROLL RESPONSE STATE IN CASE 3 

BASED ON NUMERICAL SIMULATION 

 

 
Due to the unstable characteristics, the ship roll motion 

doesn’t tend to the limit cycle of the HAM solution of Case 3. 
According to the numerical simulation, the final state is plotted 
in Fig. 6. It shows that the final state is a double closed cycle 
with period 2.9598816T s , which is almost twice of the period 
of encountering beam wave ( 2 / 1.4796081T s   ). 

 
 
CONCLUSIONS 

In this paper, we apply Homotopy Analysis Method to 
analyze ship roll behavior in large amplitude beam waves. The 
approximate analytical solutions of the nonlinear roll equation 
are obtained with high accuracy and stability of each solution is 
studied in the context of Floquet theory. Obvious difference 
between roll responses of linear and nonlinear waves are 
observed. The following conclusions are drawn: 

1) An effective HAM scheme is successfully proposed to 
solve the steady states of the equation of ship roll motion in 
nonlinear waves, which is validated by numerical simulation. 

2) In Case 1, when wave slope is small, there are three 
solutions of roll responses, and solutions in nonlinear wave are 
almost the same with their counterparts of linear wave. One of 
the solutions is unstable and finally shifts to one of the other two 
stable solutions under disturbance. 

3) When the wave slope becomes larger, the difference of 
roll motions between linear and nonlinear encountering waves 
gets more significant. 

4) In Case 3, when the wave slope is large enough, even if 
the roll amplitude in nonlinear wave is smaller than its 
counterpart in linear wave, the roll motion of HAM solution 
becomes unstable. Based on numerical simulation, the period of 
roll motion in nonlinear wave is almost twice of that of the 
encountering beam wave. 

In conclusion, the results above demonstrate that the 
proposed Homotopy Analysis Method is an effective analytic 
technique to study the steady states of ship roll motion in beam 
waves, and the stability analysis in this paper reveals the 
significance of researching ship roll motion in large amplitude 
nonlinear waves. 
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Appendix A: HAM Solution Process 

In the framework of HAM, there is a great freedom to 
choose the initial estimate 0 ( )   and the auxiliary linear 

operator  . Under the rule of solution expression (15), it is 
straightforward to choose 

 

0 0 0( ) sin cosa b                  (A.1) 

 

and 
 

 
2

2
2

[ ]f
f

f




 �                (A.2) 

 

where 0a  and 0b  are constants to be determined. The 

auxiliary linear operator has the property 
 

 1 2sin 0cosC C  �              (A.3) 

 

where 1C  and 2C  are constants. 

Considering the rule of solution expression (15) and the 
property of the auxiliary linear operator  , Eqn. (25) can be 
expressed as 

 

   
2

1 ,1 ,1 , ,
2

( ) sin sio sc n cos
m m

m m m m m
i

i m

I J

j
jR a a i bb j    

 

    


   

          (A.4) 

where ,m ia , ,m jb  are coefficients. If , 0m ia   or , 0m jb  , the 

solution of the m th-order deformation equation, Eqn. (22), 
contains the so-called secular term sin   or cos  , which 
disobeys the rule of solution expression, Eqn. (15).  To avoid 
this situation,  
 

,1 ,10, 0m ma b               (A.5) 

 

are enforced. Therefore, the solution of Eqn. (22) is obtained 
 

   
2 2

1 , ,

,1 ,1

( ) ( ) si

co

n cos

s sin

m mI

m m m m i m j
i

m m

J

j

a i b

a

j

b

   



 




 

  

 

 
    (A.6) 

 

where 
 

,
, 2 2

, ( 2, , )
(1 )

m i
m i m

a
a i I

i 
 


   


            (A.7) 

,
, 2 2

, ( 2, , )
(1 )

m j
m j m

b
b j J

j 
 


   


           (A.8) 

 

and ,1ma , ,1mb  are unknown coefficients which can be 

determined in the ( 1)m  th-order deformation equation. Note 
that Eqn. (A.5) provides a set of additional algebraic equations 
for 1,1ma   and 1,1mb  , which makes the problem closed. 

 
 

Appendix B: Stability Analysis 

To ascertain the stability of the roll motion, the Floquet 
Theory [10] is applied. Considering the infinitesimal disturbance

( )t , the rolling motion is in the form 

 

( ) ( ) ( )t t t                     (B.1) 

 

Substituting ( )t  into Eqn. (13) and keeping only linear terms 
of ( )t , it follows 
 

2 2 2 4
1 3 0 3 5( 3 ) ( 3 5 ) 0d d k k                   (B.2) 

 

which is a linear ordinary differential equation with periodic 
coefficients. Due to 
 

( ) ( )t T t                    (B.3) 

 

Eqn. (B.2) is periodic with period T . There exist two linearly 
independent solutions 1( )t  and 2 ( )t , and the fundamental 

matrix solution of Eqn. (B.2) is defined as 
 

              1 1

2 2

( ) ( )
( )

( ) ( )

t t
t

t t

 
 
 

   
 




              (B.4) 

 

which satisfies             
 

               ( ) ( )t T C t                  (B.5) 
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where C  is a monodromy matrix associated with the 
fundamental matrix solution ( )t .  

Introducing 1 1

2 2

( ) ( )
( )

( ) ( )

t t
t

t t

 
 
 

   
 




, there exists 

 

                 ( ) ( )t P t                   (B.6) 

 

where P  is a constant nonsingular matrix. Substituting Eqn. 
(B.6) into Eqn. (B.5), it holds 
 

      1( ) ( ) ( )t T P CP t B t             (B.7) 

 

where B  is a diagonal matrix in the form of 1

2

0

0
B




 
  
 

 and 

B  and C  are similar matrices. Thus, 
 

   
1 1 1 2 2 2( ) ( ), ( ) ( )t T t t T t                (B.8) 

 

It follows from Eqn. (B.8) that 
 

   1 1 1 2 2 2( ) ( ), ( ) ( )n nt nT t t nT t               (B.9) 

 

where n  is an integer. Consequently, as time evolves ( )n   

 

             
0,     if    1

,     if    1
i

i
i





   

            (B.10) 

 

and the disturbance ( )t  becomes unbounded with time if the 
modulus of any eigenvalue is larger than 1. 
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